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Abstract

This online supplement contains two appendices to “Asymptotically uniformly

most powerful tests for unit roots in Gaussian panels with cross-sectional de-

pendence generated by common factors”. The first appendix, Supplement A,

contains detailed proofs. And the second appendix, Supplement B, presents

results from additional Monte Carlo simulations.

Supplement A. Detailed Proofs

A.1. Preliminaries

This section present some preliminary results that are heavily exploited in the

proofs of our main results.

First, we recall some elementary results from linear algebra (throughout

we only consider real matrices); see, e.g., Lütkepohl (1996) and Magnus &

Neudecker (1999). Let tr[C] denote the trace of a square, real matrix C and

let λmin (C) (and λmax (C)) denote the minimal (maximal) eigenvalue of a sym-

metric, real matrix C. For any real matrix C, let ‖C‖F =
√

tr [C ′C] = ‖C ′‖F
denote its Frobenius norm, while ‖C‖spec =

√
λmax (C ′C) = ‖C ′‖spec denotes

its spectral norm. Recall ‖C‖spec ≤ ‖C‖F .

The inequality ‖CD‖F ≤ ‖C‖spec ‖D‖F is immediate from Raleigh’s quo-

tient. It follows that the Frobenius is submultiplicative, ‖CD‖F ≤ ‖C‖F ‖D‖F .

1



Moreover, the identity ‖C ⊗D‖F = ‖C‖F ‖D‖F easily follows from the alter-

native interpretation of the Frobenius norm being the square-root of the sum of

all squared individual matrix entries. Finally, we note that for square matrices

〈C,D〉F = tr[C ′D] defines an inner product, so we have the Cauchy-Schwarz

inequality | tr[C ′D]| ≤ ‖C‖F ‖D‖F .

Next, we present a general lemma on approximating variances with long-run

variances. The results we present in this appendix are the main keys to many

proofs in Section 3. Moreover, they may be of general interest.

Lemma A.1: Consider an indexed collection of stationary time series {X(h)
t },

h ∈ H. Denote the T ×T covariance matrix of (X
(h)
1 , . . . , X

(h)
T ) by Σh, the m-th

autocovariance of {X(h)
t } by γh(m), and its long run variance by ω2

h <∞. Also

write ω2
h,T = ι′Σhι/T . If suph∈H

∑∞
m=−∞(|m| + 1)|γh(m)| < ∞, then (with A

as defined in the main text),

1. suph∈H |ω2
h,T − ω2

h| = O(T−1),

2. suph∈H
∥∥A′(Σh − ω2

hIT )
∥∥
F

+ suph∈H
∥∥A(Σh − ω2

hIT )
∥∥
F

= O(
√
T ),

3. suph∈H

∥∥∥A′(Σh − ω2
h,T IT )

∥∥∥
F

+ suph∈H

∥∥∥A(Σh − ω2
h,T IT )

∥∥∥
F

= O(
√
T ),

4. suph∈H ‖A′Σh‖F + suph∈H ‖AΣh‖F = O(T ).

Proof: Item 1 follows from ω2
h,T = 1

T

∑
|m|<T (T−|m|)γh(m) and ω2

h =
∑∞
m=−∞ γh(m),

so

|ω2
h,T − ω2

h| =

∣∣∣∣∣ 1

T

∞∑
m=−∞

(min(|m|, T )γh(m)

∣∣∣∣∣ ,
which is indeed O(T−1) uniformly in h.
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For Item 2, tedious but elementary calculations yield∥∥A(Σh − ω2
hIT )

∥∥2

F
=
∥∥A′(Σh − ω2

hIT )
∥∥2

F

=

T∑
s=1

T∑
t=1

(
T−t∑

m=s−t+1

γh(m)− ω2
h1s<t

)2

=

T−1∑
s=1

(
s∑
t=1

(
T∑

m=s+1

γh(m− t)

)2

+

T∑
t=s+1

(
s∑

m=−∞
γh(m− t) +

∞∑
m=T+1

γh(m− t)

)2)

=

T−1∑
s=1

T−s∑
t=1

(T−t∑
m=s

γh(m)

)2

+

( ∞∑
m=s

γh(m) +

∞∑
m=t

γh(m)

)2


≤ 5T

T∑
s=1

( ∞∑
m=s

|γh(m)|

)2

≤ 5T

( ∞∑
m=−∞

|γh(m)|

) ∞∑
m=1

min(m,T )|γh(m)|.

Taking suprema, Item 2 follows immediately from this bound. Item 3 follows

by combining the first two parts and ‖A‖F =
√

T (T−1)
2 = O(T ). The order on

‖A‖F also yields

sup
h∈H
‖A′Σh‖F ≤ sup

h∈H

∥∥A′(Σh − ω2
hIT )

∥∥
F

+ sup
h∈H

ω2
h ‖A′‖F

=O(
√
T ) +O(1)O(T ).

Again, the second part of Item 4 is analogous. �

Recall the covariance matrices Ση and Σε and their rough approximations

Ψη and Ψε defined in Lemma 3.1 and (9), respectively. The following three

lemmas use Lemma A.1 to show that these approximations do work well when

considering partial sums.

Lemma A.2: Under Assumption 2.1,
∥∥Σ−1

η

∥∥
spec

,
∥∥Ψ−1

η

∥∥
spec

,
∥∥Σ−1

ε

∥∥
spec

, and∥∥Ψ−1
ε

∥∥
spec

are all O(1) as n, T →∞.
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Proof: Note that Σε−Ση and Ψε−Ψη are positive semidefinite. Hence λmin (Σε) ≥
λmin (Ση) ≥ infi,T λmin (Ση,i) > 0 and, using Remark 2.2 and Item 1 of Lemma A.1,

λmin (Ψε) ≥λmin (Ψη) = λmin (Ωη ⊗ IT ) = min
i=1,...,n

ω2
η,i,T

≥ inf
i∈N

ω2
η,i − sup

i∈N
|ω2
η,i,T − ω2

η,i| → inf
i∈N

ω2
η,i > 0.

This shows the boundedness of all four norms. �

Lemma A.3: Under Assumption 2.1 we have, as n, T →∞,

‖A′ (Ση −Ψη)‖F + ‖A (Ση −Ψη)‖F = O(
√
nT ) = o(

√
nT ).

Proof: Using block diagonality and Lemma A.1, we obtain the bound

‖A′ (Ση −Ψη)‖2F =

n∑
i=1

∥∥A′(Ση,i − ω2
η,i,T IT )

∥∥2

F

≤ n sup
i∈N

∥∥A′(Ση,i − ω2
η,i,T IT )

∥∥2

F
= O(nT ).

The other part is analogous; every A′ and A′ are replaced by A and A, respec-

tively. �

Lemma A.4: Under Assumptions 2.1, 2.2, and 2.4 we have, as n, T →∞,

‖A′ (Σε −Ψε)‖F + ‖A (Σε −Ψε)‖F = O(n
√
T ) = o(

√
nT ).

Proof: From the definitions of Σε and Ψε we obtain

A′ (Σε −Ψε) =

K∑
k=1

A′
(
λkλ

′
k ⊗

(
Σf,k − ω2

f,k,T IT
))

+A′ (Ση − Ωη ⊗ IT ) ,

which yields the bound ‖A′ (Σε −Ψε)‖F ≤ I + II with

I =

K∑
k=1

∥∥(λkλ′k ⊗A′ (Σf,k − ω2
f,k,T IT

))∥∥
F

and II = ‖A′ (Ση − Ωη ⊗ IT )‖F .

4



Part II is already treated in Lemma A.3. For part I, again using Lemma A.1,

we get a slightly weaker bound since for the factor part there is no block diag-

onality:

I =

K∑
k=1

‖λkλ′k‖F
∥∥A′ (Σf,k − ω2

f,k,T IT
)∥∥
F

≤
K∑
k=1

λ′kλk
∥∥A′ (Σf,k − ω2

f,k,T IT
)∥∥
F

= O(n
√
T ) = o(

√
nT ).

The proof for ‖A (Σε −Ψε)‖F is analogous. �

We now present a general weak convergence result for partial sums using joint

asymptotics. Proposition 3.1 is a special case of Lemma A.5 with ai,n,T = 1.

We provide Lemma A.5 in general terms here as it might be of independent

interest and we also use it in the proof of Proposition 5.1 to demonstrate the

joint convergence of Pa and the local likelihood ratio.

Lemma A.5: Let ai,n,T be a bounded sequence of non-random numbers and
1
n

∑n
i=1 a

2
i,n,T → α. Then, under PMP

0,n,T or PPANIC
0,n,T , as n, T →∞,

1√
n

n∑
i=1

ai,n,T
ω2
η,i,T

(
1

T

T∑
t=1

t−1∑
s=1

ηisηit − δη,i

)
d−→ N(0, α/2).

Proof: First consider the case of ai,n,T being identically equal to one and observe

that this implies convergence of ∆n,T . Recall A + A′ = ιι′ − IT and 2δη,i,T =

ω2
η,i,T − γη,i(0), hence, with ω2

η,i,T = 1
T ι
′Ση,iι,

∆n,T =
1√
nT

n∑
i=1

1

ω2
η,i,T

η′i
A+A′

2
ηi −

1√
n

n∑
i=1

δη,i,T
ω2
η,i,T

=
1

2
√
n

n∑
i=1

( ι′ηi√
Tωη,i,T

)2

− 1

− 1

2
√
n

n∑
i=1

1

ω2
η,i,T

(
1

T
η′iηi − γη,i(0)

)
.

Observe that Xi,T := ι′ηi√
Tω2

η,i,T

∼ N(0, 1) and are independent across i ∈ N.

Thus, for each T , 1√
2n

∑n
i=1(X2

i,T−1) has the same distribution as 1√
2n

∑n
i=1(X2

i −

1), where X2
i
iid∼ χ2(1). Therefore, as the latter converges to a standard normal

distribution as n→∞ (CLT), so does the former under joint limits. Thus, the

first, leading term converges in distribution to N(0, 1/2).
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Asymptotic negligibility of the second, mean-zero term follows from

sup
i

var(
1

T
η′iηi) =

2

T 2
sup
i

tr[Σ2
η,i] =

2

T 2
sup
i
‖Ση,i‖2F

=
2

T
sup
i

∣∣∣∣∣∣
T−1∑

m=−(T−1)

(1− |m|
T

)γ2
η,i(m)

∣∣∣∣∣∣ = O(T−1).

For general ai,n,T we can apply a double array CLT, see 1.9.3 in Serfling

(1980), to the first (slightly adapted) term in the expansion. The Lindeberg

condition is readily verified since we have a weighted sum of i.i.d. centered χ2

variables. Asymptotic negligibility of the second remainder term follows from

the boundedness condition on the ai,n,T . �

Remark A.1: We can obtain the same conclusion without requiring Gaussian

innovations: as long as the Lindeberg condition holds, for example thanks to

higher moment conditions, the same Theorem 1.9.3 of Serfling (1980) applies.

We conclude this subsection by taking care of important terms that appear

repeatedly in the remainder.

Lemma A.6: Suppose that Assumptions 2.1-2.4 hold. Then, under PMP
0,n,T or

PPANIC
0,n,T and as n, T →∞, we have

1.
∥∥∥( 1

nΛ′Ω−1
η Λ

)−1
∥∥∥
F

= O(1),

2.
∥∥∥∑T

t=2 η·,t

∥∥∥
F

= Op(
√
nT ),

3.
∥∥∥∑T

t=2 f·,t

∥∥∥
F

= Op(
√
T ),

4.
∥∥ι′η̃Ω−1

η Λ
∥∥
F

= Op(
√
nT ), and

5.
∥∥η̃Ω−1

η Λ
∥∥
F

= Op(
√
nT ).

Proof: For Item 1, recall that K is fixed, so that the norm we consider is irrel-

evant. As

Λ′Ω−1
η Λ =

n∑
i=1

1

ω2
η,i,T

λiλ
′
i ≥

1

supi∈N ω
2
η,i,T

n∑
i=1

λiλ
′
i,
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the smallest eigenvalue of Λ′Ω−1
η Λ is larger than that of Λ′Λ. Thus,∥∥∥∥∥

(
1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥

spec

≤ sup
i∈N

ω2
η,i,T

∥∥∥∥∥
(

1

n
Λ′Λ

)−1
∥∥∥∥∥

spec

→ sup
i∈N

ω2
i

∥∥Ψ−1
Λ

∥∥
spec

<∞,

thanks to Assumptions 2.1 and 2.2.

Item 2 follows from

E

∥∥∥∥∥
T∑
t=1

η·,t

∥∥∥∥∥
2

F

= E ‖η̃′ι‖2F = ι′Eη̃η̃′ι = ι′
n∑
i=1

Eηiη
′
iι = T

n∑
i=1

ω2
η,i,T = O(nT ).

Note that the expectation of
∥∥∥∑T

t=2 η·,t

∥∥∥2

F
is given by (T −1)

∑n
i=1 ω

2
η,i,T−1 and

is thus of the same order.

Item 3 can be obtained along a similar line of proof.

For Item 4, note Eη̃′ιιη̃ = TΩη, so that

E
∥∥ι′η̃Ω−1

η Λ
∥∥2

F
= tr E[η̃′ιιη̃]Ω−1

η ΛΛ′Ω−1
η

= T tr ΛΛ′Ω−1
η ≤ T ‖Λ‖

2
F

∥∥Ω−1
η

∥∥
spec

= O(nT ).

Item 5 follows similarly from Eη·,tη
′
·,t = diag(γη,1(0), . . . , γη,n(0)) =: D, so

E
∥∥η̃Ω−1

η Λ
∥∥2

F
= tr(Λ′Ω−1

η

T∑
t=1

E[η·,tη
′
·,t]Ω

−1
η Λ) ≤ T ‖Λ‖2F

∥∥Ω−1
η

∥∥2

spec
‖D‖spec ,

which is indeed O(nT ) thanks to Assumptions 2.1 and 2.2. �

A.2. Proofs of Section 3

A.2.1. Proof of Lemma 3.1

Proof: In the following all probabilities and expectations are evaluated under

PPANIC
0,n,T . To obtain the desired result, we consider the difference between the

two central sequences ∆n,T −∆PANIC
n,T and the difference between the two Fisher

informations JPANIC
n,T − 1

2 . We show that expectations and variances of both

differences converge to zero, implying L2 convergence.

Part A: Under the null, ∆E = η and hence

∆n,T −∆PANIC
n,T =

1√
nT

η′A′(Ψ−1
η − Σ−1

η )η − 1√
n

n∑
i=1

δη,i,T
ω2
η,i,T

.
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We first show that the difference has mean zero. We have, using tr(A) = 0 and

block diagonality of Ση,

E[∆n,T −∆PANIC
n,T ] =

1√
nT

tr(A′(Ψ−1
η − Σ−1

η )Ση)− 1√
n

n∑
i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr(A′Ψ−1
η Ση)− 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr((Ωη
−1 ⊗A′)Ση)− 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

=
1√
n

1

T

n∑
i=1

1

ω2
η,i,T

tr [A′Ση,i]−
1√
n

n∑
i=1

δη,i,T
ω2
η,i,T

= 0,

as tr [A′Ση,i] = Tδη,i,T .

To show that the variance of ∆PANIC
n,T −∆n,T goes to zero, observe

nT 2 var(∆PANIC
n,T −∆n,T ) = var(η′Cηη) (A.1)

= tr[CηΣηCηΣη] + tr[CηΣηC
′
ηΣη]

≤‖CηΣη‖2F + ‖CηΣη‖F ‖ΣηCη‖F ,

with Cη = A′(Ψ−1
η − Σ−1

η ). Hence, it suffices to show ‖CηΣη‖F = o(
√
nT ) and

‖ΣηCη‖F = o(
√
nT ). Since Ψ−1

η and A′ commute, we obtain

‖CηΣη‖F =
∥∥A′Ψ−1

η (Ση −Ψη)
∥∥
F
≤

∥∥Ψ−1
η

∥∥
spec
‖A′(Ση −Ψη)‖F ,

which is indeed o(
√
nT ) by Lemmas A.2 and A.3. For ‖ΣηCη‖F , we first have

to approximate AΣη with AΨη before we can use the commutativity as above:

‖ΣηCη‖F ≤ ‖ΨηCη‖F +
∥∥C ′η(Ση −Ψη)

∥∥
F

=
∥∥A′(Ση −Ψη)Σ−1

η

∥∥
F

+
∥∥(Ψ−1

η − Σ−1
η

)
A(Ση −Ψη)

∥∥
F

≤
∥∥Σ−1

η

∥∥
spec
‖A′(Ψη − Ση)‖F

+
(∥∥Ψ−1

η

∥∥
spec

+
∥∥Σ−1

η

∥∥
spec

)
‖A(Ση −Ψη)‖F = o(

√
nT ).

Part B: First, we show that the expectation of JPANIC
n,T converges to 1

2 . We

have

nT 2EJPANIC
n,T = tr

[
A′Σ−1

η AΣη
]

= tr
[
A′Ψ−1

η AΣη
]
− tr

[
A′C ′ηΣη

]
= tr[A′A] + tr[A′Ψ−1

η A(Ση −Ψη)]− tr[ΣηCηA].
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This implies that the leading term is 1
2nT

2, since the final two terms are o(nT 2):

use the arguments already presented in Part A together with the relation be-

tween the trace and the Frobenius norm and

1

nT 2
‖A‖2F =

1

nT 2
tr [A′A] =

1

T 2
tr [A′A] =

T (T − 1)

2T 2
→ 1

2
.

Next, we show that the variance converges to zero. By the arguments in

(A.1), with Dη = A′Σ−1
η A,

n2T 4 var(JPANIC
n,T ) ≤ 2 ‖ΣηDη‖2F .

The required order is now easily verified, since

‖ΣηDη‖F ≤
∥∥A′Ψ−1

η AΣη
∥∥
F

+ ‖ΣηCηA‖F
≤‖A′A‖F +

∥∥A′Ψ−1
η A(Ση −Ψη)

∥∥
F

+ ‖ΣηCηA‖F

and ‖A′A‖F =
√
n ‖A′A‖F ≤

√
n ‖A‖2F =

√
nT (T − 1)/2. �

A.2.2. Proof of Lemma 3.2

Proof: In the following all probabilities and expectations are evaluated under

PMP
0,n,T . The proof of this lemma follows the idea of the proof of Lemma 3.1 by

considering means and variances. The proof that JMP
n,T converges to 1

2 in L2 is

almost identical to its counterpart in the proof of Lemma 3.1: just replace η by

ε, Ση by Σε, Cη by Cε etc. The same replacements yield that the variance of

∆̃MP
n,T −∆MP

n,T converges to zero, by applying them to the arguments starting at

(A.1). We are left to show that the expectation of ∆̃MP
n,T−∆MP

n,T converges to zero.

This remaining expectation is more complicated since the variance matrices Σε

and Ψε have additional terms due to the presence of unobservable factors.

Recall, under PMP
0,n,T , ∆Y = ε and note

∆̃MP
n,T −∆MP

n,T =
1√
n

(
1

T
ε′A′

(
Ψ−1
ε − Σ−1

ε

)
ε−

n∑
i=1

δη,i,T
ω2
η,i,T

)
.
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Thus, we have

E[∆̃MP
n,T −∆MP

n,T ] =
1√
nT

tr[A′Ψ−1
ε Σε]−

1√
n

n∑
i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr[A′Ψ−1
η Ση]− 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

+
1√
nT

K∑
k=1

tr
[
ψ−1
ε λkλ

′
k ⊗A′Σf,k

]
+

1√
nT

tr
[(

(ψ−1
ε − Ω−1

η )⊗A′
)

Ση
]

=: I + II + III.

In the proof of Lemma 3.1 we have established that the first term equals zero.

Therefore, the current proof is complete once we show the final two terms con-

verge to zero.

Convergence to zero of II follows from 1
T tr(A′Σf,k) = δf,k,T = O(1) in

combination with

K∑
k=1

tr
[
ψ−1
ε λkλ

′
k

]
= tr[Λ′ψ−1

ε Λ] = tr
[
Ω−1
F − Ω−1

F

(
Ω−1
F + Λ′Ω−1

η Λ
)−1

Ω−1
F

]
≤ tr

[
Ω−1
F

]
=

K∑
k=1

1

ω2
f,k,T

→
K∑
k=1

1

ω2
f,k

<∞.

Convergence to zero of III follows from

|III| ≤ 1√
nT

n∑
i=1

(
Ω−1
η Λ

(
Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

)
i,i
| tr [A′Ση,i] |

≤ 1√
nT

tr(Ω−1
η Λ

(
Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η ) sup

i
| tr [A′Ση,i] |.

≤ 1√
nT
‖Λ‖2F

∥∥Ω−1
η

∥∥2

spec

∥∥∥(Ω−1
F + Λ′Ω−1

η Λ
)−1
∥∥∥

spec
sup
i
| tr [A′Ση,i] |.

Observe supi tr [A′Ση,i] = O(T ) by Item 4 of Lemma A.1. From Assumption 2.2

we get ‖Λ‖F = O(
√
n) and

n
∥∥∥(Ω−1

F + Λ′Ω−1
η Λ

)−1
∥∥∥

spec
=

∥∥∥∥∥
(

1

n
Ω−1
F +

1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥

spec

= λ−1
min(

1

n
Ω−1
F +

1

n
Λ′Ω−1

η Λ) ≤ λ−1
min(

1

n
Λ′Ω−1

η Λ)

≤ λ−1
min(

1

n
Λ′Λ) sup

i∈N
ω2
η,i,T → λ−1

min(ΨΛ) sup
i∈N

ω2
η,i <∞.

10



A combination of these observations with the penultimate display yields III =

o(1). �

A.2.3. Proof of Lemma 3.3

Proof: We have

|∆∗n,T − ∆̃MP
n,T | =

1√
nT
| tr(Aε̃(ψ∗ε

−1 − ψε−1)ε̃′)|

≤ 1√
nT

∥∥∥ψ∗ε−1 − ψε−1
∥∥∥
F
‖ε̃′Aε̃‖F .

We consider each norm separately. We have∥∥∥ψ∗ε−1 − ψε−1
∥∥∥
F
≤
∥∥(Λ′Ω−1

η Λ + ΩF )−1 − (Λ′Ω−1
η Λ)−1

∥∥
spec

∥∥Ω−1
η

∥∥2

spec
‖Λ‖2F

= O(n−2)O(1)O(n) = O(n−1),

as ‖Λ‖F = O(
√
n) by Assumption 2.2,

∥∥Ω−1
η

∥∥
spec

= O(1) by Assumption 2.1,

and

n
∥∥(Λ′Ω−1

η Λ + ΩF )−1 − (Λ′Ω−1
η Λ)−1

∥∥
spec

=

∥∥∥∥∥∥
(

Λ′Ω−1
η Λ

n
+

ΩF
n

)−1

−

(
Λ′Ω−1

η Λ

n

)−1
∥∥∥∥∥∥

spec

=

∥∥∥∥∥∥−
(

Λ′Ω−1
η Λ

n
+

ΩF
n

)−1
ΩF
n

(
Λ′Ω−1

η Λ

n

)−1
∥∥∥∥∥∥

spec

≤
∥∥∥∥ΩF
n

∥∥∥∥
spec

∥∥∥∥∥∥
(

Λ′Ω−1
η Λ

n
+

ΩF
n

)−1
∥∥∥∥∥∥

spec

∥∥∥∥∥∥
(

Λ′Ω−1
η Λ

n

)−1
∥∥∥∥∥∥

spec

,

which is O(n−1): the second norm converges to the third, which is O(1) by

Item 1 of Lemma A.6. For ‖ε̃′Aε̃‖F , we note that ‖ε̃′Aε̃‖F =
∥∥∥ε̃′A+A′

2 ε̃
∥∥∥
F

and

recall that A+A′ = ιι′ − IT , so that

2 ‖ε̃′Aε̃‖F = ‖ε̃′(ιι′ − IT )ε̃‖F ≤ ‖ι
′ε̃‖2F + ‖ε̃‖2F = Op(nT ),

as ‖ε̃‖F ≤ ‖Λ‖F
∥∥∥f̃∥∥∥

F
+ ‖η̃‖F = O(

√
n)Op(

√
T ) +Op(

√
nT ) and, using Items 2

and 3 of Lemma A.6, a similar bound holds for ‖ι′ε̃‖F . Conclude that the

central sequence difference is Op(n
−1/2). �
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A.2.4. Proof of Lemma 3.4

Proof: As ψ∗ε
−1 projects out the factors, we have

∆∗n,T −∆n,T =
1√
nT

tr(Aε̃ψ∗ε
−1ε̃′)− 1√

nT
tr(Aη̃Ωη

−1η̃′)

=
1√
nT

tr(Aη̃(ψ∗ε
−1 − Ωη

−1)η̃′).

Note that for a symmetric matrix B,

tr(Aη̃Bη̃′) = tr(η̃Bη̃′A′) = tr(A′η̃Bη̃′) = tr

(
A+A′

2
η̃Bη̃′

)
,

so, as ψ∗ε
−1 and Ωη are symmetric and A+A′ = ιι′ − IT , we have

| tr(Aη̃(ψ∗ε
−1 − Ωη

−1)η̃′)| = 1

2
| tr((ιι′ − IT )η̃(ψ∗ε

−1 − Ωη
−1)η̃′)|

≤ | tr(ι′η̃(ψ∗ε
−1 − Ωη

−1)η̃′ι)|+ | tr(η̃(ψ∗ε
−1 − Ωη

−1)η̃′)|

≤
∥∥∥(Λ′Ω−1

η Λ
)−1
∥∥∥
F

(∥∥ι′η̃Ω−1
η Λ

∥∥2

F
+
∥∥η̃Ω−1

η Λ
∥∥2

F

)
= O(n−1)(Op(nT ) +Op(nT )) = Op(T ),

using Items 1, 4, and 5 of Lemma A.6. �

A.2.5. Proof of Proposition 3.1

Proof: Apply Lemma A.5 with ai,n,T = 1 for all i, n, T . �

A.3. Proofs of Section 4

A.3.1. Proof of Lemma 4.1

Remark A.2: The proof follows along similar lines as that of Moon & Perron

(2004). By treating the norm of η̃′η̃ differently, we obtain, under the assump-

tions of this paper,
∥∥∥ΛHK − Λ̂

∥∥∥
F

= op(1) instead of the Op(1) obtained by Moon

& Perron (2004). In particular, we exploit ‖η̃′η̃‖spec = op(
√
nT ), whereas Moon

& Perron (2004) only use ‖η̃′η̃‖F = Op(
√
nT ).

Proof: As Moon & Perron (2004), we take HK = f̃ ′f̃
T

Λ′Λ̄
n . First note that from

the definitions of HK and Λ̂ and using ε̃ = f̃Λ′ + η̃ we have

Λ̂− ΛHK =
1

nT
(ε̃′ε̃− Λf̃ ′f̃Λ′)Λ̄ =

1

nT
(η̃′f̃Λ′ + Λf̃ ′η̃ + η̃′η̃)Λ̄,

12



so that

∥∥∥ΛHK − Λ̂
∥∥∥
F
≤

∥∥∥η̃′f̃Λ′Λ̄
∥∥∥
F

nT
+

∥∥∥Λf̃ ′η̃Λ̄
∥∥∥
F

nT
+

1

nT

∥∥η̃′η̃Λ̄
∥∥
F

≤2

√
n

T

∥∥∥η̃′f̃∥∥∥
F√

nT

‖Λ‖F√
n

∥∥Λ̄
∥∥
F√
n

+
1

nT
‖η̃′η̃‖spec

∥∥Λ̄
∥∥
F
. (A.2)

By the definition of Λ̄,
∥∥Λ̄
∥∥
F

=
√
nK = O(

√
n). We have

E
∥∥∥η̃′f̃∥∥∥2

F
=E

K∑
k=1

n∑
i=1

(
T∑
t=1

fktηit

)2

=

K∑
k=1

n∑
i=1

T∑
t=1

T∑
s=1

γη,i(t− s)γf,k(t− s)

≤Mn

K∑
k=1

T∑
t=1

T∑
s=1

|γf,k(t− s)|

=Mn

K∑
k=1

T−1∑
m=−(T−1)

(T − |m|)|γf,k(m)| = O(nT ),

for some finite constant M , using that, thanks to Assumption 2.1, γη,i(t − s)
is bounded uniformly in i and t − s. Thus, each term of the first summand in

(A.2) is Op(1).

Finally, we consider the second summand, which is treated differently from

Moon & Perron (2004). We obtain
∥∥∥ΛHK − Λ̂

∥∥∥
F

= op(1) if we can indeed

show that ‖η̃′η̃‖spec = op(
√
nT ) (Moon & Perron (2004) only use ‖η̃′η̃‖F =

Op(
√
nT )). For this, note that 1

T η̃
′η̃ = 1

T

∑T
t=1 η̃·,tη̃

′
·,t, which can be considered

an approximation to Γη := diag(γη,1(0), . . . , γη,n(0)), the n × n cross-sectional

covariance matrix of the η. From Assumption 2.1, ‖Γη‖spec < ∞. We now

show that indeed the approximation works. Using Isserlis’ Theorem to write

13



E[η2
i,tη

2
i,s] = 2γη,i(t− s)2 + E[η2

i,t]E[η2
i,s], we have

E

∥∥∥∥∥ 1

T

T∑
t=1

η̃·,tη̃
′
·,t − Γη

∥∥∥∥∥
2

F

=

n∑
i=1

n∑
j=1

E

(
1

T

T∑
t=1

ηi,tηj,t − E[ηi,tηj,t]

)2

=

n∑
i=1

n∑
j=1

1

T 2

T∑
t=1

T∑
s=1

E[ηi,tηj,tηi,sηj,s]− E[ηi,tηj,t]E[ηi,sηj,s]

=

n∑
i=1

1

T 2

T∑
t=1

T∑
s=1

2γη,i(t− s)2

+

n∑
i 6=j

1

T 2

T∑
t=1

T∑
s=1

γη,i(t− s)γη,j(t− s)

= O(n/T ) +O(n2/T ).

Conclude that the difference in Frobenius norm is Op(n/
√
T ).

Remark A.3: Note that, even without Gaussianity, this conclusion holds as

long as the long-run variances of the {η2
i,t} are uniformly bounded.

Thus,

‖η̃′η̃‖spec ≤

∥∥∥∥∥
T∑
t=1

η̃·,tη̃
′
·,t − TΓη

∥∥∥∥∥
F

+ ‖TΓη‖spec

=Op(n
√
T ) +O(T ) = op(

√
nT ).

Finally, we show the boundedness properties of HK . First note that

‖HK‖F ≤

∥∥∥f̃ ′f̃∥∥∥
F

T

‖Λ‖F√
n

∥∥Λ̄
∥∥
F√
n

= Op(1).

To show boundedness of the inverse, we will show that the limiting eigenvalues

of HK are positive. Introduce Γf := diag(γf,1(0), . . . , γf,K(0)), the K × K

covariance matrix of the f , and write∥∥∥∥HK − Γf
Λ′Λ̄

n

∥∥∥∥
spec

≤
∥∥∥∥Λ′Λ̄

n

∥∥∥∥
F

∥∥∥∥∥ f̃ ′f̃T − ΓF

∥∥∥∥∥
F

= Op(1)op(1),

where the latter follows from Assumption 2.1. As ΓF has full rank, it is sufficient

to show that the eigenvalues of Λ′Λ̄
n are bounded away from zero. Λ̄ is defined

through the eigenvectors of ε̃′ε̃/(nT ). As the eigenvalues of ε̃′ε̃ are closely

related to those of Λf̃ ′f̃Λ′, we can use this relation to learn about the rank of
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Λ′Λ̄. Formally, define D to be the K×K matrix with the K largest eigenvalues

of ε̃′ε̃/(nT ). Then, from the definition of Λ̄,

D =
Λ̄′√
n

ε̃′ε̃

nT

Λ̄√
n
.

Recalling some of the above results we obtain∥∥∥∥∥ ε̃′ε̃nT − Λf̃ ′f̃Λ′

nT

∥∥∥∥∥
spec

= op(n
−1/2), (A.3)

so that

D =
Λ̄′√
n

Λf̃ ′f̃Λ′

nT

Λ̄√
n

+ op(n
−1/2) =

Λ̄′Λ

n
Γf

Λ′Λ̄

n
+ op(1).

As the Kth largest eigenvalue of ε̃′ε̃/(nT ) is bounded away from zero (using

(A.3) the nonzero limiting eigenvalues are given by those of ΨΛΓF , a product

of two rank K matrices), so must the limit of Λ′Λ̄
n and thus HK . �
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A.3.2. Proof of Lemma 4.2

Proof: First note that

E
∥∥∥Ω̂η − Ωη

∥∥∥2

F
=

n∑
i=1

E(ω̂2
η,i − ω2

η,i)
2 ≤ n max

i=1,...,n
E(ω̂2

η,i − ω2
η,i)

2 = o(1),

from Assumption 4.1. Thus both
∥∥∥Ω̂η − Ωη

∥∥∥
F

and
∥∥∥Ω̂η − Ωη

∥∥∥
spec

are op(1).

Together with Assumption 2.1 this also implies, with probability converging to

one,

0 <
infi∈N ω

2
η,i

2
< min
i=1,...,n

ω̂2
η,i ≤ max

i=1,...,n
ω̂2
η,i < 2 sup

i∈N
ω2
η,i <∞.

Therefore,
∥∥∥Ω̂−1

η

∥∥∥
spec

= Op(1), so that finally also
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
F

and
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
spec

are op(1). Similarly, we note for the one-sided long-run variances that
∑n
i=1(δ̂η,i−

δη,i)
2 = op(1) follows from Assumption 4.1, so that, along the same lines, we

obtain maxi=1,...,n δ̂η,i = Op(1).

We split the central sequence difference in three parts: one for replacing

ψ∗ε with ψ̂ε, one to take care of the initial value, and one for estimating the

correction term. Thus ∆̂n,T −∆∗n,T = I − II − III, with

I =
1√
nT

tr(A′ε̃
(
ψ̂−1
ε − ψ∗ε

−1
)
ε̃′)

II =
1√
nT

T∑
t=2

ε′·,1ψ̂
−1
ε ε·,t

III =
1√
n

n∑
i=1

(
δ̂η,i
ω̂2
η,i

− δη,i
ω2
η,i

)
.

For part I, insert Equations (11) and (13) to find

|I| = 1√
nT
| tr(ε̃′A′ε̃(ψ̂−1

ε − ψ∗ε
−1))|

≤ 1√
nT
| tr(ε̃′A′ε̃(Ω̂−1

η − Ω−1
η )|

+
1√
nT

∣∣∣∣tr(Λ̂′Ω̂−1
η ε̃′A′ε̃Ω̂−1

η Λ̂
(

Λ̂′Ω̂−1
η Λ̂

)−1

− Λ′Ω−1
η ε̃′A′ε̃Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1
)∣∣∣∣

≤ 1√
nT
| tr(ε̃′A′ε̃(Ω̂−1

η − Ω−1
η )|

+
1√
nT

∥∥∥∥Ω̂−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

‖ε̃′A′ε̃‖F .
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As Ω̂−1
η − Ω−1

η is diagonal, the first summand is bounded by (using Cauchy-

Schwarz)

1√
nT

(
n∑
i=1

(ε′iAεi)
2

)1/2 ∥∥∥Ω̂−1
η − Ω−1

η

∥∥∥
F

=
1√
nT

Op(
√
nT )op(1) = op(1).

For II, we have

√
nTII ≤

∥∥∥ψ̂−1
ε

∥∥∥
spec
‖ε·,1‖F (‖ι′ε̃‖F + ‖ε·,1‖F )

= Op(1)Op(
√
n)(Op(

√
nT ) +Op(

√
n) = Op(n

√
T ),

where ‖ε·,1‖F ≤ ‖Λ‖F
∥∥∥f̃·,1∥∥∥

F
+ ‖η̃·, 1‖F = Op(

√
n) and

∥∥∥ψ̂−1
ε

∥∥∥
spec

= Op(1)

follows from Assumption 4.1 and Item 2 of Lemma A.7 implying∥∥∥ψ̂−1
ε − ψ∗ε

−1
∥∥∥

spec
= Op(n

−1/2) and∥∥∥ψ∗ε−1
∥∥∥

spec
≤
∥∥Ω−1

η

∥∥
spec

+
∥∥Ω−1

η

∥∥2

spec
‖Λ‖2F

∥∥∥(Λ′Ω−1
η Λ

)−1
∥∥∥
F

= O(1) +O(1)O(n)O(n−1) = O(1),

using Assumptions 2.1 and 2.2 and Item 1 of Lemma A.6. We conclude that

II = Op

(√
n√
T

)
= op(1).

Finally, we obtain for III:

III =
1√
n

n∑
i=1

1

ω2
η,i

(δ̂η,i − δη,i) +
1√
n

n∑
i=1

δ̂η,i
ω̂2
η,iω

2
η,i

(ω2
η,i − ω̂2

η,i)

≤

(
1

n

n∑
i=1

1

(ω2
η,i)

2

)1/2( n∑
i=1

(δ̂η,i − δη,i)2

)1/2

+

(
1

n

n∑
i=1

δ̂2
η,i

(ω̂2
η,iω

2
η,i)

2

)1/2( n∑
i=1

(ω̂2
η,i − ω2

η,i)
2

)1/2

,

which is indeed op(1) thanks to the observations at the beginning of this proof.�

A.4. Auxiliary Lemmas

Lemma A.7: Consider the factor estimates and the HK from Lemma 4.1.

Then, under Assumptions 2.1, 2.2, 2.4, 2.5, and 4.1, under PMP
0,n,T or PPANIC

0,n,T

and as n, T →∞, we have

1.

∥∥∥∥(Λ̂′Ω̂−1
η Λ̂

)−1

−
(
H ′KΛ′Ω−1

η ΛHK

)−1
∥∥∥∥
F

= op(n
−3/2), and
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2.

∥∥∥∥Ω̂−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

= op(n
−1/2).

Proof: We start by noting that
∥∥∥H ′KΛ′Ω−1

η ΛHK − Λ̂′Ω̂−1
η Λ̂

∥∥∥
F

= op(
√
n): The

terms for approximating the loadings are negligible thanks to
∥∥∥ΛHK − Λ̂

∥∥∥
F

(Lemma 4.1) and
∥∥∥Ω−1

η − Ω̂−1
η

∥∥∥
spec

being op(1) in combination with HK being

bounded and
∥∥Ω−1

η

∥∥
spec

= O(1). The term due to approximating the long-run

variances, H ′KΛ′(Ω−1
η − Ω̂−1

η )Λ̂, can again be treated using Cauchy-Schwarz:

Ignoring HK , its (k, l)th entry is given by

n∑
i=1

λikλ̂il((ω̂
2
η,i)
−1 − (ω2

η,i)
−1) ≤

(
n∑
i=1

λikλ̂il

)1/2 ∥∥∥Ω−1
η − Ω̂−1

η

∥∥∥
F

=Op(
√
n)op(1),

thanks to the discussion at the beginning of Section A.3.2.

Next, we have that∥∥∥∥ 1

n
H ′KΛ′Ω−1

η ΛHK

∥∥∥∥
F

≤ ‖HK‖2F
‖Λ‖2F
n

∥∥Ω−1
η

∥∥
spec

= O(1),

and

λmin

(
1

n
H ′KΛ′Ω−1

η ΛHK

)
=

∥∥∥∥∥H−1
K

(
1

n
Λ′Ω−1

η Λ

)−1

(H ′K)−1

∥∥∥∥∥
−1

spec

≥
∥∥H−1

K

∥∥−2

F

∥∥∥∥∥
(

1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥
−1

spec

,

which is bounded away from zero thanks to
∥∥H−1

K

∥∥
F

being bounded and Item 1

of Lemma A.6. Thus, we can restrict attention to a compact subset of the

invertible matrices on RK , on which the matrix inverse is uniformly continuous.

Therefore,
∥∥∥ 1
nH
′
KΛ′Ω−1

η ΛHK − 1
n Λ̂′Ω̂−1

η Λ̂
∥∥∥
F

= op(n
−1/2) implies the same for∥∥∥∥( 1

nH
′
KΛ′Ω−1

η ΛHK

)−1 −
(

1
n Λ̂′Ω̂−1

η Λ̂
)−1

∥∥∥∥
F

.

For Item 2, let a = Ω−1
η ΛHK and b =

(
H ′KΛ′Ω−1

η ΛHK

)−1
and define â =
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Ω̂−1
η Λ̂ and b̂ =

(
Λ̂′Ω̂−1

η Λ̂
)−1

analogously. Thus∥∥∥∥Ω̂−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

=
∥∥∥âb̂â′ − aba′∥∥∥

F

≤ ‖â− a‖F
∥∥∥b̂∥∥∥

F
‖â‖F + ‖a‖F

∥∥∥b̂− b∥∥∥
F
‖â‖F + ‖a‖F ‖b‖F ‖â− a‖F .

From Assumption 2.2 and HK being bounded it follows that ‖b‖F = Op(n
−1)

and in combination with Assumption 2.1 we obtain

‖a‖F ≤
∥∥Ω−1

η

∥∥
spec
‖Λ‖F ‖HK‖F = Op(

√
n).

From Item 1,
∥∥∥b̂− b∥∥∥

F
= op(n

−3/2) so that also
∥∥∥b̂∥∥∥

F
= Op(n

−1). Finally, we

have

‖â− a‖F ≤
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
spec

∥∥∥Λ̂
∥∥∥
F
‖HK‖F +

∥∥Ω−1
η

∥∥
spec

∥∥∥Λ̂− ΛHK

∥∥∥
F

=op(1)Op(
√
n)Op(1) +O(1)op(1) = op(

√
n),

where
∥∥∥Λ̂− ΛHK

∥∥∥
F

= op(1) by Lemma 4.1. Combining all these results indeed

yields the correct rate. �

Independent proof of Proposition 5.1: Here we demonstrate the joint asymp-

totic normality required to apply the second part of Corollary 5.1. We divide

the proof into two parts. In Part A, we prove the theorem for Pa while in Part B

we discuss ta. We omit the proofs concerning Pb and tb as they follow along the

same lines.

Part A: First, we establish the joint convergence, under PMP
0,n,T and PPANIC

0,n,T ,

of Pa and the local likelihood ratio. As already hinted at in Remark 3.4, the

results in Sections 3.1 and 3.2 imply that we only have to show this conver-

gence once to get the powers in both experiments, as both likelihood ratios are

asymptotically equivalent and the models coincide under the hypothesis. Hav-

ing established this joint convergence, an application of Le Cam’s third lemma

will lead to the asymptotic distribution of Pa under PMP
h,n,T and PPANIC

h,n,T .

Specifically, Lemmas 3.1 and 3.4 imply that the limiting distributions of(
Pa, log

dPPANIC
h,n,T

dPPANIC
0,n,T

)
and

(
Pa, log

dPMP
h,n,T

dPMP
0,n,T

)
are equal to that of

(
Pa, h∆n,T − 1

4h
2
)
,

under PMP
0,n,T and PPANIC

0,n,T . From Lemma 1 and Lemma 2 in Bai & Ng (2010) we
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see that Pa is adaptive with respect to the estimation of nuisance parameters

while Lemma A.2 in Moon & Perron (2004) shows that 1
nT 2

∑n
i=1E

′
i,−1Ei,−1

converges in probability to 1
2ω

2. Therefore, Pa is asymptotically equivalent to

P̃a =
1√
nT

∑n
i=1 E

′
i,−1∆Ei− 1√

n

∑n
i=1 δη,i√

φ4/2
.

Under PMP
0,n,T or PPANIC

0,n,T , we can compute the asymptotic distribution of all

possible linear combinations of P̃a and ∆n,T by an application of Lemma A.5.

For all α, β in R, we find, using ai,n,T = α
ω2
η,i,T√
φ4/2

+ β in Lemma A.5,

αP̃a + β∆n,T
d−→ N

(
0,

(
α2 + αβ

√
2ω4

φ4
+
β2

2

))
.

Thus, the Cramér-Wold theorem and the asymptotic equivalence of Pa and

P̃a, yield, still under PMP
0,n,T or PPANIC

0,n,T ,

(Pa,∆n,T )
d−→ N

( 0

0

)
,

 1
√

ω4

2φ4√
ω4

2φ4 1/2

 .

Equivalently,(
Pa, log

dPh,n,T
dP0,n,T

)
d−→ N

( 0

− 1
4h

2

)
,

 1 h
√

ω4

2φ4

h
√

ω4

2φ4 1/2h2

 .

Applying Le Cam’s third lemma, we obtain Pa
d−→ N

(
h
√

ω4

2φ4 , 1
)

under

PMP
h,n,T or PPANIC

h,n,T .

Part B: As far as ta is concerned, we recall that ta is adaptive with re-

spect to the estimation of nuisance parameters (see proofs of Theorem 2a) and

b) in Moon & Perron (2004)) and that 1
nT 2

∑T
t=1 Y

′
·,t−1QγY·,t−1 converges in

probability to 1
2ω

2 under PMP
0,n,T . Thus, ta is asymptotically equivalent to

t̃a =

1√
nT

∑n
i=1 Y

′
·,t−1QΛ∆Y·,t−1 −

√
n
∑n
i=1 δη,i√

φ4/2
.

Moreover, we have

1√
nT

T∑
t=1

Y ′·,tQΛ∆Y·,t−1 =
1√
nT

T∑
t=1

E′·,tQΛ∆E·,t−1

=
1√
nT

T∑
t=1

E′·,t∆E·,t−1 −
1√
nT

T∑
t=1

E′·,tΛ(Λ′Λ)−1Λ∆E·,t−1

=
1√
nT

n∑
i=1

E′−1,i∆Ei + op(1),
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where the last equality follows from the proof of Lemma 2 c) in Moon & Perron

(2004). Therefore, ta is asymptotically equivalent to P̃a. Thus, following the

same steps as in Part A, we find ta
d−→ N

(
h
√

ω4

2φ4 , 1
)

under PMP
h,n,T or PPANIC

h,n,T .�
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Supplement B. Additional Monte-Carlo Results

In this supplement we present sizes and powers for additional DGPs and

additional long-run variance estimates. The first subsection provides sizes and

powers for additional DGPs. In the second subsection, we consider the same

DGPs as in Section 6 of the main text and Section B.1, but now with long-run

variances estimated using the Newey & West (1994) bandwidth.

B.1. Sizes and Powers in Additional DGPs

First, Table B.1 complements Table 1 in the main text with the sizes for√
ω4/φ4 ∈ {0.6, 1}. Next, Figures B.1 and B.2 consider the powers in the pres-

ence of MA and AR serial correlation, respectively. The results are similar to

those for i.i.d innovations. Figure B.3 shows the results when the factor inno-

vations are overdifferenced, i.e., the factor is stationary under the hypothesis.

The powers appear to be unaffected. Figure B.4 considers the case of the depen-

dence being generated by three factors, with the corresponding sizes reported

in Table B.2. For very small sample sizes, powers of both tests are affected, but

generally the results are similar also here.

We now consider deviations from our assumptions. Figure B.5 reports the

size-corrected powers of our tests against heterogeneous alternatives of the form

ρi = 1 +
hUi√
nT

,

where the Ui are i.i.d. random variables with mean one. We draw the Ui from a

Uniform(0.2,1.8) distribution. Once again, the finite-sample behavior does not

appear to be affected significantly, for both small and large samples.

Finally, we consider non-Gaussian innovations. Figure B.6 reports size cor-

rected powers with the innovations drawn from a t distribution with five degrees

of freedom. The corresponding sizes are reported in Table B.3. Also here, the

conclusions remain the same.
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Figure B.1: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with MA factor innovations and MA idiosyncratic parts and√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure B.2: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with AR factor innovations and AR idiosyncratic parts and√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure B.3: Size-corrected power of unit-root tests as a function of −h for varying sample sizes

in the PANIC framework with overdifferenced i.i.d. factor innovations and i.i.d. idiosyncratic

parts and
√
ω4/φ4 = 0.8. The factor is stationary. Based on 100 000 replications.
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Figure B.4: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Dependence based on three factors. Based on 100 000 replications.
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Figure B.5: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Alternatives drawn from a Uniform(0.2,1.8) distribution. Based on 100 000

replications.
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Figure B.6: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Innovations drawn from a t5 distribution. Note that the power envelopes

refer to the Gaussian experiment. Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.6 2.8 3.1 1.8 4.5 4.2 2.2 7.0 5.6

25 50 0.6 1.4 4.7 4.0 1.7 4.9 3.6 3.1 8.9 6.2

25 100 0.6 1.8 5.5 4.6 2.3 6.1 4.1 3.9 10.1 6.7

50 50 0.6 2.0 4.3 3.7 2.5 4.5 3.5 5.3 9.9 6.6

50 100 0.6 2.6 5.1 4.2 2.9 5.2 3.7 6.1 11.0 7.0

50 200 0.6 2.9 5.5 4.6 3.4 5.9 4.1 5.3 9.2 6.1

100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.1 8.2

100 200 0.6 3.6 5.3 4.5 3.7 5.3 4.1 7.0 10.0 6.6

100 400 0.6 3.6 5.3 4.5 4.3 6.1 4.5 4.9 7.1 5.1

25 25 0.8 0.9 3.1 3.5 1.8 4.3 4.7 2.4 6.7 6.4

25 50 0.8 1.8 5.1 4.6 1.7 4.4 4.0 3.1 8.3 7.2

25 100 0.8 2.3 5.8 5.2 2.2 5.3 4.6 3.9 9.3 7.8

50 50 0.8 2.4 4.6 4.2 2.4 4.2 4.2 5.1 9.3 8.3

50 100 0.8 3.0 5.4 4.8 2.6 4.6 4.3 5.9 10.1 8.5

50 200 0.8 3.3 5.7 5.2 3.1 5.2 4.7 5.0 8.4 7.1

100 100 0.8 3.5 5.1 4.6 3.1 4.4 4.4 8.7 12.3 10.4

100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.2 7.9

100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.6 5.9

25 25 1.0 1.0 3.3 3.9 1.9 4.3 5.4 2.4 6.5 7.2

25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.2 8.1 8.2

25 100 1.0 2.6 6.0 5.8 2.1 5.0 5.1 3.9 8.9 8.8

50 50 1.0 2.5 4.7 4.6 2.4 4.0 5.0 5.2 9.2 10.1

50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.8 10.0

50 200 1.0 3.4 5.7 5.6 3.0 5.0 5.1 4.9 8.2 8.1

100 100 1.0 3.6 5.2 4.9 3.0 4.2 4.9 8.6 12.1 12.6

100 200 1.0 3.9 5.5 5.3 3.2 4.6 4.9 6.5 9.0 9.1

100 400 1.0 4.0 5.6 5.5 3.8 5.3 5.5 4.6 6.4 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.3 0.5 0.6 1.4 4.1 2.7

Table B.1: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Andrews Bandwidth.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.8 3.9 5.9 4.6 10.5 9.5 3.9 10.8 9.6

25 50 0.6 1.4 5.7 6.6 3.1 8.2 6.4 4.2 12.0 9.4

25 100 0.6 1.8 6.5 7.1 3.5 9.3 6.5 5.1 13.7 9.9

50 50 0.6 1.7 4.4 4.7 4.8 8.2 5.6 6.8 12.9 8.4

50 100 0.6 2.1 5.1 5.1 4.3 8.0 4.8 7.4 14.0 8.4

50 200 0.6 2.4 5.5 5.4 4.6 8.5 5.0 6.4 11.9 7.3

100 100 0.6 2.9 5.0 4.6 5.4 7.8 4.7 11.3 16.6 9.3

100 200 0.6 3.1 5.2 4.8 5.0 7.4 4.5 8.5 12.5 7.4

100 400 0.6 3.3 5.3 5.0 5.7 8.3 4.9 6.0 8.9 5.7

25 25 0.8 1.0 3.7 5.2 4.9 9.8 9.6 4.1 10.0 9.5

25 50 0.8 1.9 5.7 6.0 2.8 6.7 6.0 4.0 10.1 9.0

25 100 0.8 2.5 6.6 6.6 2.9 7.0 6.0 4.7 11.1 9.5

50 50 0.8 2.4 5.0 5.0 4.5 7.1 6.5 6.7 11.4 9.9

50 100 0.8 3.0 5.6 5.5 3.6 6.2 5.3 6.8 11.7 9.6

50 200 0.8 3.3 6.0 5.8 3.7 6.3 5.3 5.7 9.7 8.1

100 100 0.8 3.6 5.4 5.0 4.6 6.3 5.7 10.2 14.2 11.6

100 200 0.8 3.8 5.6 5.3 4.0 5.6 5.0 7.4 10.4 8.6

100 400 0.8 3.9 5.6 5.4 4.4 6.2 5.4 5.2 7.3 6.4

25 25 1.0 1.2 4.0 5.2 5.1 9.6 10.2 4.4 9.8 10.1

25 50 1.0 2.4 6.0 6.1 2.8 6.2 6.3 4.1 9.6 9.5

25 100 1.0 3.1 7.0 6.8 2.8 6.2 6.1 4.8 10.4 10.1

50 50 1.0 2.9 5.3 5.4 4.5 6.8 7.7 6.6 10.9 11.5

50 100 1.0 3.4 5.9 5.7 3.4 5.6 5.8 6.7 10.9 10.9

50 200 1.0 3.8 6.2 6.1 3.4 5.5 5.6 5.6 9.0 8.9

100 100 1.0 3.9 5.6 5.3 4.4 5.9 6.6 9.9 13.6 13.9

100 200 1.0 4.1 5.7 5.5 3.7 5.1 5.4 7.2 9.9 9.9

100 400 1.0 4.2 5.8 5.7 4.1 5.6 5.7 5.0 6.8 6.8

Mean abs. dev. from 5% 2.3 0.8 0.6 1.0 2.2 1.2 1.7 6.1 4.2

Table B.2: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Andrews Bandwidth, three factors.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.7 2.9 3.3 2.0 4.9 4.6 2.3 7.2 5.9

25 50 0.6 1.4 4.7 4.2 1.8 5.0 3.7 3.2 9.1 6.4

25 100 0.6 1.8 5.5 4.7 2.3 6.1 4.2 3.9 10.1 6.8

50 50 0.6 2.0 4.3 3.7 2.6 4.6 3.6 5.3 10.0 6.8

50 100 0.6 2.6 5.1 4.3 2.9 5.3 3.8 6.1 10.9 7.0

50 200 0.6 2.9 5.4 4.5 3.4 5.9 4.1 5.3 9.2 6.1

100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.2 8.2

100 200 0.6 3.6 5.3 4.4 3.6 5.3 4.0 6.9 9.9 6.7

100 400 0.6 3.7 5.4 4.6 4.4 6.2 4.5 4.9 7.1 5.2

25 25 0.8 0.9 3.1 3.5 2.0 4.5 4.9 2.4 6.8 6.5

25 50 0.8 1.8 5.0 4.6 1.7 4.5 4.1 3.1 8.3 7.2

25 100 0.8 2.3 5.9 5.2 2.2 5.3 4.6 3.9 9.3 7.7

50 50 0.8 2.3 4.6 4.2 2.4 4.2 4.3 5.2 9.4 8.3

50 100 0.8 3.0 5.4 4.8 2.6 4.7 4.3 5.9 10.1 8.5

50 200 0.8 3.3 5.7 5.2 3.0 5.2 4.7 5.0 8.4 7.2

100 100 0.8 3.5 5.2 4.7 3.1 4.4 4.4 8.7 12.4 10.4

100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.3 7.9

100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.5 5.9

25 25 1.0 1.0 3.3 3.8 2.0 4.4 5.6 2.5 6.7 7.3

25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.3 8.1 8.2

25 100 1.0 2.6 6.0 5.8 2.2 5.1 5.1 3.9 9.0 8.9

50 50 1.0 2.5 4.7 4.6 2.4 4.1 5.0 5.1 9.1 10.0

50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.9 10.0

50 200 1.0 3.5 5.8 5.6 3.0 5.0 5.2 4.9 8.1 8.1

100 100 1.0 3.6 5.3 4.9 3.0 4.3 5.0 8.6 12.1 12.6

100 200 1.0 3.9 5.5 5.2 3.2 4.6 4.9 6.4 9.0 9.0

100 400 1.0 4.1 5.6 5.5 3.8 5.3 5.4 4.6 6.3 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.2 0.5 0.6 1.4 4.1 2.8

Table B.3: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Andrews Bandwidth, t-distribution with five degrees

of freedom.
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B.2. Finite-Sample Results with the Newey & West (1994) Bandwidth

Tables B.4 to B.6 are analogous to Tables B.1 to B.3. And Figures B.7

to B.15 are analogous to Figures 1 to 3 and B.1 to B.6. In general, the sizes

for the MA case are slightly better controlled with the Newey & West (1994)

bandwidth, at the expense of slightly lower power for small sample sizes.
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Figure B.7: Difference between powers in the MP vs the PANIC framework as a function of

−h with i.i.d. factor innovations and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on

1 000 000 replications.
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Figure B.8: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure B.9: (Size-corrected) power gains from using temp
UMP over Pb for varying values of√

ω4/φ4 and sample sizes in the PANIC framework with i.i.d. factor innovations and i.i.d.

idiosyncratic parts. Based on 100 000 replications.
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Figure B.10: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with MA factor innovations and MA idiosyncratic parts and√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure B.11: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with AR factor innovations and AR idiosyncratic parts and√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure B.12: Size-corrected power of unit-root tests as a function of −h for varying sample sizes

in the PANIC framework with overdifferenced i.i.d. factor innovations and i.i.d. idiosyncratic

parts and
√
ω4/φ4 = 0.8. The factor is stationary. Based on 100 000 replications.
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Figure B.13: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Dependence based on three factors. Based on 100 000 replications.
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Figure B.14: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Alternatives drawn from a Uniform(0.2,1.8) distribution. Based on 100 000

replications.
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Figure B.15: Size-corrected power of unit-root tests as a function of −h for varying sample

sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and√
ω4/φ4 = 0.8. Innovations drawn from a t5 distribution. Note that the power envelopes

refer to the Gaussian experiment. Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.3 1.2 1.5 1.3 3.4 3.6 1.0 3.3 3.6

25 50 0.6 0.6 2.5 2.3 1.4 4.2 3.1 1.3 4.1 3.3

25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.2 6.3 4.4

50 50 0.6 0.9 2.1 1.9 2.1 3.9 3.0 1.9 3.8 3.1

50 100 0.6 1.9 3.8 3.1 2.9 5.3 3.6 3.1 6.0 4.2

50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.1 3.6

100 100 0.6 2.3 3.7 2.8 3.4 5.1 3.6 4.1 6.1 4.3

100 200 0.6 2.9 4.4 3.5 3.8 5.5 3.8 3.2 4.7 3.4

100 400 0.6 3.2 4.8 3.9 4.2 6.0 4.1 3.1 4.6 3.5

25 25 0.8 0.4 1.3 1.7 1.4 3.2 4.1 1.1 3.2 4.1

25 50 0.8 0.9 2.8 2.6 1.4 3.7 3.4 1.4 3.9 3.7

25 100 0.8 1.7 4.6 4.0 2.1 5.3 4.4 2.3 5.9 5.0

50 50 0.8 1.2 2.4 2.1 2.0 3.6 3.6 1.9 3.7 3.7

50 100 0.8 2.2 4.2 3.4 2.6 4.7 4.1 3.1 5.6 4.8

50 200 0.8 2.8 4.9 4.2 3.1 5.3 4.4 2.7 4.7 4.0

100 100 0.8 2.6 3.9 3.0 3.2 4.6 4.2 4.0 5.8 5.1

100 200 0.8 3.2 4.6 3.8 3.5 4.9 4.2 3.0 4.4 3.7

100 400 0.8 3.5 5.0 4.3 3.9 5.4 4.6 3.0 4.3 3.8

25 25 1.0 0.5 1.5 1.9 1.4 3.3 4.8 1.1 3.2 4.5

25 50 1.0 1.1 3.0 2.9 1.4 3.6 3.9 1.4 3.9 4.2

25 100 1.0 2.0 4.8 4.5 2.1 5.0 4.9 2.4 5.7 5.6

50 50 1.0 1.3 2.5 2.2 2.0 3.5 4.2 2.0 3.6 4.4

50 100 1.0 2.4 4.2 3.7 2.6 4.5 4.6 3.1 5.5 5.4

50 200 1.0 2.9 5.0 4.4 3.0 5.0 4.8 2.8 4.7 4.4

100 100 1.0 2.7 4.0 3.1 3.1 4.4 4.7 3.9 5.7 5.7

100 200 1.0 3.3 4.8 3.9 3.4 4.8 4.5 3.0 4.3 3.9

100 400 1.0 3.7 5.1 4.5 3.8 5.3 4.9 3.0 4.2 3.9

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.9 2.5 0.9 0.9

Table B.4: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Newey Bandwidth.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.5 1.5 3.3 3.0 7.2 7.9 1.6 5.0 6.3

25 50 0.6 0.6 2.6 4.2 2.4 6.7 5.6 1.6 5.6 5.5

25 100 0.6 1.1 4.7 5.7 3.4 9.1 6.2 2.9 8.7 6.9

50 50 0.6 0.6 1.7 2.6 3.9 6.8 4.8 2.4 5.0 4.3

50 100 0.6 1.3 3.5 3.8 4.2 7.9 4.6 3.7 7.6 5.1

50 200 0.6 1.8 4.4 4.4 4.6 8.6 4.7 3.3 6.6 4.4

100 100 0.6 1.9 3.4 3.2 5.5 7.9 4.5 5.0 7.8 4.9

100 200 0.6 2.4 4.1 3.8 5.2 7.7 4.2 3.7 5.8 3.8

100 400 0.6 2.8 4.6 4.2 5.7 8.3 4.5 3.7 5.7 3.8

25 25 0.8 0.5 1.5 2.8 3.2 6.9 8.1 1.8 4.6 6.2

25 50 0.8 0.8 2.8 3.6 2.2 5.5 5.2 1.6 4.7 5.0

25 100 0.8 1.8 5.1 5.2 2.8 6.9 5.8 2.8 7.0 6.3

50 50 0.8 1.0 2.3 2.6 3.7 5.9 5.6 2.5 4.7 4.9

50 100 0.8 2.1 4.2 4.0 3.6 6.2 5.1 3.6 6.4 5.6

50 200 0.8 2.7 5.0 4.7 3.7 6.4 5.0 3.1 5.5 4.6

100 100 0.8 2.5 3.9 3.3 4.7 6.5 5.4 4.7 6.9 5.8

100 200 0.8 3.1 4.7 4.0 4.1 5.9 4.7 3.3 4.9 4.0

100 400 0.8 3.5 5.0 4.5 4.3 6.1 4.9 3.3 4.7 4.0

25 25 1.0 0.7 1.7 2.7 3.4 6.8 8.7 1.9 4.7 6.6

25 50 1.0 1.1 3.2 3.6 2.2 5.1 5.4 1.8 4.6 5.2

25 100 1.0 2.3 5.5 5.3 2.7 6.2 5.9 2.9 6.7 6.6

50 50 1.0 1.3 2.7 2.7 3.7 5.7 6.6 2.6 4.6 5.6

50 100 1.0 2.6 4.5 4.0 3.4 5.6 5.6 3.5 6.1 6.1

50 200 1.0 3.2 5.4 4.8 3.4 5.6 5.3 3.1 5.1 4.8

100 100 1.0 2.9 4.2 3.4 4.5 6.1 6.3 4.7 6.6 6.6

100 200 1.0 3.4 4.9 4.1 3.8 5.3 5.0 3.3 4.7 4.3

100 400 1.0 3.8 5.3 4.7 4.0 5.5 5.2 3.2 4.4 4.1

Mean abs. dev. from 5% 3.1 1.3 1.2 1.3 1.6 0.8 2.0 1.0 0.8

Table B.5: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Newey Bandwidth, three factors.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.3 1.2 1.7 1.5 3.7 4.0 1.1 3.4 3.8

25 50 0.6 0.7 2.5 2.4 1.5 4.3 3.2 1.3 4.2 3.5

25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.3 6.4 4.5

50 50 0.6 0.9 2.1 1.9 2.2 4.0 3.0 1.9 3.9 3.2

50 100 0.6 1.9 3.9 3.1 2.9 5.3 3.6 3.1 6.0 4.2

50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.2 3.6

100 100 0.6 2.3 3.7 2.9 3.5 5.1 3.6 4.1 6.1 4.3

100 200 0.6 2.9 4.4 3.4 3.8 5.5 3.8 3.2 4.7 3.4

100 400 0.6 3.3 4.9 3.9 4.3 6.1 4.1 3.2 4.6 3.5

25 25 0.8 0.4 1.3 1.7 1.5 3.5 4.3 1.1 3.3 4.1

25 50 0.8 0.9 2.8 2.6 1.4 3.8 3.5 1.4 3.9 3.7

25 100 0.8 1.7 4.6 4.0 2.1 5.2 4.4 2.3 5.9 5.0

50 50 0.8 1.1 2.4 2.0 2.1 3.6 3.6 2.0 3.7 3.8

50 100 0.8 2.2 4.2 3.4 2.7 4.7 4.2 3.1 5.6 4.9

50 200 0.8 2.8 4.9 4.1 3.0 5.3 4.4 2.7 4.8 4.1

100 100 0.8 2.6 4.0 3.0 3.2 4.6 4.2 4.0 5.8 5.1

100 200 0.8 3.2 4.7 3.8 3.5 4.9 4.2 3.0 4.4 3.7

100 400 0.8 3.5 5.0 4.3 3.9 5.5 4.6 3.0 4.3 3.7

25 25 1.0 0.5 1.4 1.8 1.5 3.4 4.9 1.2 3.2 4.6

25 50 1.0 1.0 3.0 2.9 1.4 3.6 3.8 1.5 3.9 4.2

25 100 1.0 2.0 4.9 4.4 2.1 5.0 4.9 2.4 5.8 5.6

50 50 1.0 1.3 2.5 2.2 2.1 3.6 4.3 2.0 3.6 4.3

50 100 1.0 2.4 4.3 3.6 2.6 4.5 4.6 3.1 5.5 5.5

50 200 1.0 3.0 5.0 4.5 3.0 5.0 4.8 2.7 4.7 4.4

100 100 1.0 2.7 4.0 3.1 3.1 4.5 4.7 3.9 5.7 5.7

100 200 1.0 3.3 4.7 3.9 3.4 4.8 4.5 2.9 4.2 3.9

100 400 1.0 3.7 5.2 4.6 3.7 5.2 4.9 2.9 4.1 3.8

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.8 2.5 0.9 0.9

Table B.6: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-

tives. Based on 1 000 000 replications. Newey Bandwidth, t-distribution with five degrees of

freedom.
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