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Proof of Lemma 8.3

In Part 1, we obtain the convergence rates of the derivatives of Y , f̂ , m̂, ϕs(X), ξε̂, and m̂∗.

In Part 2, we use these rates to show the result of the Lemma.

Part 1. Fix a vector l of p positive integers with |l| ≤ ⌈(p + 1)/2⌉. For a differentiable

function g, let g(l) := ∂lg. Since ∂lY (w) = h−(p+|l|)PnY K(l)((w −W )/h), by Lemma 8.1 we

have

∂lY (w) =
1

hp+|l|PY K(l)

(
w −W

h

)
+OP

(√
logn

nhp+2|l|

)
uniformly in w ∈ W . For the leading term, we have (see the comments below)1

1

hp+|l|P Y K(l)

(
w −W

h

)
=

1

hp
∂lP Y K

(
w −W

h

)
=

1

hp
∂l

∫
(mf)(w̃)K

(
w − w̃

h

)
dw̃

= ∂l

∫
(mf)(w + uh)K(u) du =

∫
(mf)(l)(w + uh)K(u) du

= ∂l(mf)(w) +O(hr−|l|)

uniformly in w ∈ W . Indeed, by combining Assumption B(iii) and the Lebesgue Dominated

Convergence Theorem, we can commute integration and differentiation to obtain the first

equality. The second equality follows from the Law of Iterated Expectations, while the

third one from a change of variable. The fourth equality commutes again integration and

1Notice that Assumption C(iii) implies that r > ⌈(p+ 1)/2⌉.
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differentiation thanks to Assumption B, and finally the fifth one applies a Taylor expansion

of order r − |l|. Putting together the previous displays gives

∥∂lY − ∂l(mf)∥∞ = OP

(
dnh

−|l|) for any |l| ≤ ⌈(p+ 1)/2⌉ . (S1)

An analogous reasoning gives

∥∂lf̂ − ∂lf∥∞ = OP (dnh
−|l|) and sup

s
∥∂lϕs(X)− ∂l(ιsf)∥∞ = OP

(
dnh

−|l|) (S2)

for any |l| ≤ ⌈(p+ 1)/2⌉. We now show that

∥∂lm̂− ∂l(mf)∥∞ = OP

(
dn

h|l|τn
+

pn
hp+|l|

)
for any |l| ≤ ⌈(p+ 1)/2⌉ . (S3)

To this end, notice first that

∂lm̂(w) =
1

hp+|l|PnmK(l)

(
w −W

h

)
+

1

hp+|l|Pnm(t− 1)K(l)

(
w −W

h

)
+

1

hp+|l|Pn(m̂−m)tK(l)

(
w −W

h

)
+

1

hp+|l|Pnm̂(t̂− t)K(l)

(
w −W

h

)
. (S4)

Let us handle each term separately. Since t̂ − t = (t̂ + t)(t̂ − t), ∥m̂(t̂ + t)∥∞ = OP (1) from

Lemma 8.1-(ii), K(l) is bounded, and Pn|t̂ − t| = OP (pn), see the proof of Lemma 8.1-(i),

the last term on the right-hand side is OP (pnh
−(p+|l|)) uniformly in w ∈ W . Similarly, since

Pn|t− 1| = OP (pn) from the proof of Lemma 8.1-(i), the second term on the right-hand side

is OP (pnh
−(p+|l|)) uniformly in w ∈ W . By reasoning as at the beginning of this proof, we

get that the first term on the right-hand side is equal to ∂l(mf)(w) +OP (dn h
−|l|) uniformly

in w ∈ W . Finally, the third term is bounded by

∥(m̂−m)t∥∞
h|l|

1

hp
Pn

∣∣∣∣K(l)

(
w −W

h

)∣∣∣∣ = OP

(
∥(m̂−m)t∥∞

h|l|

)
= OP

(
dn

h|l|τn

)
uniformly in w ∈ W , where for the first equality we have used Lemma 8.1, while for the

second equality we have used Equation (21) in Section 8. Gathering results gives (S3).
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The convergence rate for ∂lξε̂ is obtained by a similar reasoning, so

∥∂lξε̂∥∞ = OP

(
dn

h|l|τn
+

pn
hp+|l|

)
for any |l| ≤ ⌈(p+ 1)/2⌉ .

To get the convergence rate for ∂lm̂∗, we proceed as in (S4), where m̂ is replaced by m̂∗, and

use the reasoning below it to obtain that

∥∂lm̂∗ − ∂l(mf)∥∞ = OP

(
dn
h|l| +

pn
hp+|l| +

∥(m̂∗ −m)t∥∞
h|l|

)
.

By definition of m̂∗,

(m̂∗ −m)t =

(
m̂

f̂
−m

)
t+

ξε̂

f̂
t .

For the first term on the right-hand side we have that, uniformly over W ,(
m̂

f̂
−m

)
t =

m̂−mf̂

f
t+

m̂−mf̂

f

f − f̂

f̂
t1
(
f̂(·) ≥ τn/2

)
= OP

(
dn
τ 2n

+
pn
hpτn

)
.

Specifically, by Equation (19) evaluated at δ = 1 we get that the first equality holds with

probability approaching one. To obtain the second equality, we use ∥f̂ −f∥∞ = OP (dn) from

the proof of Lemma 8.2-(ii) and ∥m̂−mf∥∞ = OP (dnτ
−1
n + pnh

−p) which follows from (S3)

evaluated at l = 0. Using a similar reasoning, we can prove that uniformly over W

ξε̂

f̂
t = OP

(
dn
τ 2n

+
pn
hpτn

)
.

Gathering the previous four displays leads to

∥(∂lm̂∗ − ∂l(mf)∥∞ = OP

(
dn

τ 2nh
|l| +

pn
hp+|l|τn

)
. (S5)

Part 2. We now show that m̂ ∈ Gl(Wn) with probability approaching one (wpa1), for all l

such that |l| ≤ ⌈(p+1)/2⌉. By Assumption B there exists η > 0 such that ∥m(l)∥∞+η < M for

all |l| ≤ ⌈(p+1)/2⌉. So, it suffices to show that wpa1 (a) m̂ is ⌈(p+1)/2⌉ times differentiable

over Wn, and (b) supw

∣∣[m̂(l)(w)−m(l)(w)
]
1 (f(w) ≥ τ/2)

∣∣ ≤ η.
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To show (a), we first use Equation (19) with δ = 1/2 to get that

wpa1 Wn ⊂
{
w : f̂(w) ≥ τn/4

}
. (S6)

Since by Assumption B(iii) m̂ is differentiable ⌈(p + 1)/2⌉ times over {w : f̂(w) ≥ τn/4},

condition (a) follows.

To prove (b), define the event

DC
n :=

{
∥(m̂−m)1 (f(·) ≥ τn/2) ∥∞ ≤ Cdnτ

−1
n

}
∩
{
∥Y (l) − (mf)(l)∥∞ ≤ Cdnh

−|l| and ∥f̂ (l) − f (l)∥∞ ≤ Cdnh
−|l| for |l| ≤ ⌈(p+ 1)/2⌉

}
∩
{
Wn ⊂ {w : f̂(w) ≥ τn/4}

}
.

From Equation (21) evaluated at δ = 1/2 and Equations (S1), (S2), and (S6), by choosing

C large enough P (DC
n ) can be made arbitrarily close to 1 for each large n. Hence, to prove

(b) it is sufficient to show that the event DC
n implies that

sup
w∈Wn

∣∣m̂(l)(w)−m(l)(w)
∣∣ ≤ dn

τ
|l|
n h|l|

for |l| ≤ ⌈(p+ 1)/2⌉ (S7)

where the inequality holds up to a universal constant depending on C,M , and l.

Assume from now on that the event DC
n holds. Then

m̂(l) =
Y

(l)

f̂
−

∑
0≤|j|≤|l|−1

(
l1
j1

)
. . .

(
lp
jp

)
f̂ (l−j)

f̂
m̂(j)

over Wn. Similarly, over the set Wn we have

m(l) =
(mf)(l)

f
−

∑
0≤|j|≤|l|−1

(
l1
j1

)
. . .

(
lp
jp

)
f (l−j)

f
m(j) .

Taking the difference between the previous two equations and recalling that the event DC
n
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holds lead to

sup
w∈Wn

∣∣m̂(l)(w)−m(l)(w)
∣∣ ≤ ∥Y (l) − (mf)(l)∥∞

τn
+ ∥(mf)(l)∥∞

∥f̂ − f∥∞
τ 2n

+ max
0≤|j|≤|l|−1

{
||f̂ (l−j) − f (l−j)||∞

τn

[
sup
w∈Wn

|m̂(j)(w)−m(j)(w)|+ ||m(j)||∞
]}

+ max
0≤|j|≤|l|−1

{
∥f (l−j)∥∞

supw∈Wn
|m̂(j)(w)−m(j)(w)|

τn

}
+ max

0≤|j|≤|l|−1
∥f (l−j)m(j)∥∞

∥f̂ − f∥∞
τ 2n

≤ dn
h|l|τn

+M2dn
τ 2n

+ max
0≤|j|≤|l|−1

{
dn

h|l|−|j|τn

[
sup
w∈Wn

|m̂(j)(w)−m(j)(w)|+M

]}
+M max

0≤|j|≤|l|−1

supw∈Wn
|m̂(j)(w)−m(j)(w)|

τn
+M2dn

τ 2n
(S8)

where the inequalities hold up to a universal constant that depends only on l and C.

Next, fix l such that |l| = 1. By (S8)

sup
w∈Wn

∣∣m̂(l)(w)−m(l)(w)
∣∣ ≤ dn

τnh
+M2dn

τ 2n
+

dn
τnh

[
dn
τn

+M

]
+M

dn
τ 2n

+M2dn
τ 2n

≤ dn
τnh

up to a constant that depends only on M , C, and l, where in the last inequality we have

used hτ−1
n = o(1). Thus, (S7) holds for |l| = 1.

We now proceed by induction. Fix l′ such that 2 ≤ |l′| ≤ ⌈(p + 1)/2⌉ and assume that (S7)

holds for any l such that |l| ≤ |l′| − 1. Evaluating (S8) at l′ leads to

sup
w∈Wn

∣∣∣m̂(l′)(w)−m(l′)(w)
∣∣∣ ≤ dn

τnh|l′| +M2dn
τ 2n

+ max
0≤|j|≤|l′|−1

{
dn

h|l′|−|j|τn

[
dn

τ
|j|
n h|j|

+M

]}
+M max

0≤|j|≤|l′|−1

{
dn

τ
|j|+1
n h|j|

}
+M2dn

τ 2n
≤ dn

h|l′|τ
|l′|
n

where the inequalities hold up to universal constants that depend only on C, M , and l′.

Since the induction assumption holds for |l| = 1, we have proved that (S7) holds for all

|l| ≤ ⌈(p+ 1)/2⌉.

The proofs of (ii)-(v) follow from the same arguments and Equations (S2), (S3), and (S5).
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This yields that for |l| ≤ ⌈(p+ 1)/2⌉

sup
w∈Wn

∣∣∣∣∣∂l m̂

f̂
(w)− ∂lm(w)

∣∣∣∣∣ = OP

(
dn

τ
1+|l|
n h|l|

+
pn

hp+|l|τ
|l|
n

)
sup
s∈S

sup
w∈Wn

∣∣∂lι̂s(w)− ∂lιs(w)
∣∣ = OP

(
dn

τ
|l|
n h|l|

)
sup
w∈Wn

∣∣∣∣∣∂l ξε̂

f̂
(w)

∣∣∣∣∣ = OP

(
dn

τ
1+|l|
n h|l|

+
pn

hp+|l|τ
|l|
n

)

sup
w∈Wn

∣∣∣∣∣∂l m̂
∗

f̂
(w)− ∂lm(w)

∣∣∣∣∣ = OP

(
dn

τ
2+|l|
n h|l|

+
pn

hp+|l|τ
|l|+1
n

)
.
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