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Abstract

This note, first, derives explicit expressions for the eigenvalues and eigenfunctions of

KF for the special case of no heterogeneity in local-to-unit roots (see equation (3) of the

main text). Next, it proves lemmas 2, 3, 4, 5, and equations (20) and (30). Finally, it

provides the reader with a detailed analysis of the Markov chain example. All internal

references have the prefix “A”, whereas all references to the main text do not have any

prefixes. For example, (A1) refers to the first numbered equation in this note, whereas

(1) refers to the first numbered equation in the main text.

A1 Eigenstructure of KF when ϕi = ϕ > 0, i = 1, . . . , N.

When the heterogeneity in ϕi is absent, the kernel of KF is proportional to

kϕ(s, t) =
e−ϕ|t−s|

2ϕ
+

e−ϕt + e−ϕ(1−t)

2ϕ2
+

e−ϕs + e−ϕ(1−s)

2ϕ2
+

e−ϕ − 1− ϕ

ϕ3
,

which is the covariance kernel of the demeaned OU process with parameter ϕ > 0. Let λ

and f(t) be an eigenvalue-eigenfunction pair for the integral operator with kernel kϕ(s, t).

Then ∫ 1

0
kϕ(s, t)f(t)dt = λf(s).

We note that since the covariance kernel corresponds to the demeaned OU, we must have∫
f(t)dt = 0 for any λ ̸= 0. Therefore, we can rewrite the above identity as

1

2ϕ2

∫ 1

0

(
ϕe−ϕ|t−s| + e−ϕt + e−ϕ(1−t)

)
f(t)dt = λf(s),
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or equivalently,∫ 1

0

(
ϕe−ϕ(t−s) + e−ϕt + e−ϕ(1−t)

)
f(t)dt+

∫ s

0
ϕ
(
eϕ(t−s) − e−ϕ(t−s)

)
f(t)dt = 2ϕ2λf(s).

Differentiating both sides with respect to s and dividing by ϕ2, we obtain∫ 1

0
e−ϕ(t−s)f(t)dt−

∫ s

0

(
eϕ(t−s) + e−ϕ(t−s)

)
f(t)dt = 2λf ′(s). (A1)

Differentiating once more, we get∫ 1

0
ϕe−ϕ(t−s)f(t)dt− 2f(s) +

∫ s

0
ϕ
(
eϕ(t−s) − e−ϕ(t−s)

)
f(t)dt = 2λf ′′(s). (A2)

Differentiating one last time, we get∫ 1

0
ϕ2e−ϕ(t−s)f(t)dt− 2f ′(s)−

∫ s

0
ϕ2
(
eϕ(t−s) + e−ϕ(t−s)

)
f(t)dt = 2λf ′′′(s).

Using (A1) in the latter display yields

(
ϕ2 − 1/λ

)
f ′(s) = f ′′′(s).

Reparameterizing the problem by letting λ = 1
ϕ2+ω2 (we will consider a possibility λ = 1

ϕ2−ω2

later), we get

f ′′′(s) = −ω2f ′(s),

so that

f ′(s) = A cos(ωs) +B sin(ωs),

and therefore,

f(s) = a cos(ωs) + b sin(ωs) + c.

We need to find a, b, c, and ω. To this end, we will use the following boundary conditions

(obtained from (A1) and (A2))

λf ′′(0) = λϕf ′(0)− f(0), (A3)

λf ′′(1) = −λϕf ′(1)− f(1). (A4)
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These conditions imply the following relationships

(1− λω2)a− λϕωb+ c = 0,

((1− λω2) cosω − λϕω sinω)a+ ((1− λω2) sinω + λϕω cosω)b+ c = 0.

Now, the fact that the integral of f(s) over [0, 1] is zero yields

a sin(ω)/ω − b(cos(ω)− 1)/ω + c = 0.

Using this in the previous display, we get(
1− λω2 − sinω

ω

)
a− 1 + λϕω2 − cosω

ω
b = 0, (A5)(

(1− λω2) cosω − 1 + λϕω2

ω
sinω

)
a+

(
(1− λω2) sinω +

1 + λϕω2

ω
cosω − 1

ω

)
b = 0.

For this system to have a nonzero solution, it must be degenerate, with the determinant of

the matrix of the coefficients equal to zero. That is, we must have

−2(1− λω2) + ω
[
(1− λω2)2 − λϕ(2 + λϕω2)

]
sin(ω) + 2(1 + λϕω2)(1− λω2) cos(ω) = 0.

Recalling that λ = (ω2 + ϕ2)−1, we note that

1− λω2 =
ϕ2

ω2 + ϕ2
.

Hence, the above equation simplifies to the following form

−2(ω2 + ϕ2) + ω(ϕ2 − 2ϕ− ω2 − 2ω2/ϕ) sin(ω) + 2(ω2 + ϕ2 + ϕω2) cos(ω) = 0. (A6)

Figure A1 shows the graph of the left hand side (divided by 1 + ω2 for better scaling) for

the special case where ϕ = 1. The smallest positive root is approximately ω = 3.68. It

corresponds to the largest eigenvalue λ ≈ 1/(1 + 3.682) ≈ 0.069. This can be compared to

the largest eigenvalue 1/π2 ≈ 0.10 of the covariance operator of the Brownian motion (that

corresponds to the case ϕ = 0).

Once ω is chosen as a root of (A6), we obtain (from (A5) and the parameterization
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Figure 1: Plot of the (scaled) function of ω defined by the left hand side of (A6) when
ϕ = 1. The graph is scaled by dividing the function by 1 + ω2 to help visualization. The
first three positive roots are, approximately, ω = 3.68, ω = 6.39, and ω = 9.53.

λ = (ω2 + ϕ2)−1)

a = h

(
1

ω
+

ϕω

ϕ2 + ω2
− cosω

ω

)
,

b = h

(
ϕ2

ϕ2 + ω2
− sinω

ω

)
,

c = h
ϕ2

ϕ2 + ω2

(
cosω − 1

ω
− sinω

ϕ

)
,

where the coefficient of proportionality h should be chosen so that the eigenfunction f(s)

has unit L2 norm.

To finish our derivations, we need to consider the possibility that λ = 1
ϕ2−ω2 , as men-

tioned above. If this is the case, then we must have

f(s) = aeωs + be−ωs + c.

Using initial conditions (A3)-(A4) and the requirement that
∫ 1
0 f(s)ds = 0, we obtain the
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following system(
λω2 − λϕω + 1− eω − 1

ω

)
a+

(
λω2 + λϕω + 1 +

e−ω − 1

ω

)
b = 0,

eω
(
λω2 + λϕω + 1 +

e−ω − 1

ω

)
a+ e−ω

(
λω2 − λϕω + 1− eω − 1

ω

)
b = 0.

For this system to have a non-zero solution, we must have

eω
(
λω2 + λϕω + 1 +

e−ω − 1

ω

)2

= e−ω

(
λω2 − λϕω + 1− eω − 1

ω

)2

.

Recalling that λ = 1/(ϕ2 −ω2), and that it must be positive (since the covariance operator

is non-negative definite), we obtain

eω
(

ϕ

ϕ− ω
+

e−ω − 1

ω

)2

= e−ω

(
ϕ

ϕ+ ω
− eω − 1

ω

)2

.

This implies that

eω
(

ϕ

ϕ− ω
+

e−ω − 1

ω

)
= ±

(
ϕ

ϕ+ ω
− eω − 1

ω

)
.

If the sign on the right hand side is ‘+’, then we have

eω

ϕ− ω
=

1

ϕ+ ω
,

which is clearly impossible for ϕ > ω > 0. If the sign is ‘−’, then we have, after some

algebra,

eω =
ϕ− ω

ϕ+ ω

2ϕ/(2 + ϕ) + ω

2ϕ/(2 + ϕ)− ω
,

which is only possible if ω < 2ϕ/(2 + ϕ). Suppose that the latter inequality holds. Then,

taking the logarithm of both sides of the above display and rearranging, we obtain

ln(ϕ− ω)− ln(ϕ+ ω) + ln

(
2ϕ

2 + ϕ
+ ω

)
− ln

(
2ϕ

2 + ϕ
− ω

)
− ω = 0.

This equation does hold for ω = 0, but not for ω > 0. Indeed, the derivative of the left

hand side with respect ω is

− 2ϕ

ϕ2 − ω2
+

4ϕ
2+ϕ(

2ϕ
2+ϕ

)2
− ω2

− 1 = ω2

(
2ϕ
2+ϕ

)2
12+6ϕ+ϕ2

4 − ω2

(ϕ2 − ω2)

((
2ϕ
2+ϕ

)2
− ω2

) > 0,
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where the last inequality holds because ω < 2ϕ/(2+ϕ). To summarise, the parameterization

λ = 1
ϕ2−ω2 is incompatible with the initial conditions, and the solutions that we have found

for the case λ = 1
ϕ2+ω2 are the only possible ones.

A2 Proof of lemma 2

Let l be the T -dimensional vector of ones. A direct derivation yields, for ϕ > 0,

1

T

(
MU ′

ϕUϕM
)
ij

=
1

T

(
U ′
ϕUϕ

)
ij
− 1

T 2

(
U ′
ϕUϕl

)
i
− 1

T 2

(
U ′
ϕUϕl

)
j
+

1

T 3
l′U ′

ϕUϕl

=
e−ϕ|j−i|/T − e−2ϕT 2

e−ϕ(j+i)/T

T
(
1− e−2ϕ/T

)
−
eϕ/T

(
1− e−ϕi/T

)
+ 1− e−ϕeϕi/T − e−2ϕT 2

e−ϕi/T
(
1− e−ϕ

)
T 2
(
1− e−2ϕ/T

) (
eϕ/T − 1

)
−
eϕ/T

(
1− e−ϕj/T

)
+ 1− e−ϕeϕj/T − e−2ϕT 2

e−ϕj/T
(
1− e−ϕ

)
T 2
(
1− e−2ϕ/T

) (
eϕ/T − 1

)
+
2eϕ/T

(
e−ϕ − 1

)
+ T

(
e2ϕ/T − 1

)
− e−2ϕT 2 (

1− e−ϕ
)2

T 3
(
1− e−2ϕ/T

) (
eϕ/T − 1

)2 .

Rearranging the terms on the right hand side of the latter equation yields the lemma for

ϕ > 0. For ϕ = 0, we have

1

T

(
MU ′

0U0M
)
ij

= min {i/T, j/T}+ (i/T )2

2
− i/T − (i/T ) / (2T )

+
(j/T )2

2
− j/T − (j/T ) / (2T ) + T (T + 1) (2T + 1) /

(
6T 3

)
= − |i/T − j/T | /2 + (i/T )2

2
− i/T

2
+

1

4
+

(j/T )2

2
− j/T

2
+

1

4
− (i/T ) / (2T )− (j/T ) / (2T ) + T (T + 1) (2T + 1) /

(
6T 3

)
− 1/2,

which yields the lemma for ϕ = 0.

A3 Proof of lemma 3

The uniform boundedness of |kϕ (s, t)| follows from that of |aϕ (s, t)| = −aϕ (s, t) and the

definitions bϕ(s) =
∫ 1
0 aϕ (s, t) dt and cϕ =

∫ 1
0

∫ 1
0 aϕ (s, t) dtds. The uniform boundedness of

|aϕ (s, t)| follows from the inequality e−ϕx ≥ 1−ϕ. This inequality implies that the maximum

of |aϕ (s, t)| over s, t ∈ [0, 1]2 is no larger than 1/2. The uniform bound on |kϕ (s, t)| equals
1 because kϕ (s, t) ≤ −bϕ(s)− bϕ(t) ≤ 1 and −kϕ (s, t) ≤ −aϕ (s, t)− cϕ ≤ 1.
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To establish the uniform boundedness of |kϕ,T (s, t)| , we will prove that |ωϕ1,Taϕ (s, t)|,
|ωϕ2,T (bϕ(t) + bϕ(s))|, |dϕ,T |, and |eϕ,T (s, t)| are uniformly bounded. For ϕ > 0, we have

|ωϕ1,Taϕ (s, t)| =
1− e−ϕ|t−s|

T
(
1− e−2ϕ/T

) =
1− ρT |t−s|

T (1− ρ2)
,

where ρ = e−ϕ/T . This yields

|ωϕ1,Taϕ (s, t)| ≤
1− ρT

T (1− ρ2)
≤ 1.

Clearly, |ω01,Ta0 (s, t)| = |t− s| /2 < 1. Hence, |ωϕ1,Taϕ (s, t)| ≤ 1 for all ϕ ≥ 0 and all

positive integers T.

Note that

ωϕ2,T bϕ(t) =
ϕ/T

eϕ/T − 1
ωϕ1,T bϕ(t)

for ϕ > 0 and ω02,T b0(t) = ω01,T b0(t). Since ωϕ1,T bϕ(t) =
∫ 1
0 ωϕ1,Taϕ (s, t) ds and |ωϕ1,Taϕ (s, t)| ≤

1 for all ϕ ≥ 0 and T, we have |ωϕ1,T bϕ(t)| ≤ 1. But
∣∣∣ ϕ/T

eϕ/T−1

∣∣∣ ≤ 1. Therefore, |ωϕ2,T bϕ(t)| ≤ 1

for all ϕ ≥ 0 and T. Hence, |ωϕ2,T (bϕ (s) + bϕ (t))| ≤ 2 for all ϕ ≥ 0 and T.

Next, by definition, for ϕ > 0,

dϕ,T =
2ρ
(
ρT − 1

)
+ T

(
1− ρ2

)
− T 2 (1− ρ)2

T 3 (1− ρ2) (1− ρ)2
,

where ρ = e−ϕ/T . This yields, after some algebra (see section A9),

dϕ,T = −
∑T−2

j=0 (T − j) (T − j − 1) ρj

T 3 (1 + ρ)
. (A7)

Therefore, |dϕ,T | ≤ 1 for all ϕ > 0 and T . For ϕ = 0, d0,T = (T + 1) (2T + 1) /
(
6T 2

)
− 1/2,

and hence, |d0,T | ≤ 1/2 for all T. To summarize, |dϕ,T | ≤ 1 for all ϕ ≥ 0 and T .

Finally, for ϕ > 0, we have

eϕ,T (s, t) = eϕ1,T (s, t) + e−2ϕT 2
eϕ2,T (s, t) (A8)
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with

eϕ1,T (s, t) =
2− e−ϕs − e−ϕt

T 2
(
1− e−2ϕ/T

)− 2(eϕ/T − 1− ϕ/T )

T (1− e−2ϕ/T )(eϕ/T − 1)
and (A9)

eϕ2,T (s, t) =
e−ϕ(t+s) − 1

T
(
1− e−2ϕ/T

) + (2− e−ϕs − e−ϕt
)
e−ϕ/T

(
1− e−ϕ

)
T 2
(
1− e−2ϕ/T

) (
1− e−ϕ/T

) (A10)

+

(
T
(
1− e−ϕ/T

)
−
(
1− e−ϕ

)
e−ϕ/T

)2
T 3
(
1− e−2ϕ/T

) (
1− e−ϕ/T

)2 .

For term eϕ1,T (s, t) , we have

eϕ1,T (s, t) ≤ 2− ρTs − ρTt

T 2 (1− ρ2)
≤

2
(
1− ρT

)
T 2 (1− ρ2)

≤ 2

T
,

and

−eϕ1,T (s, t) ≤ 2(eϕ/T − 1− ϕ/T )

T (1− e−2ϕ/T )(eϕ/T − 1)
≤ 2(1− e−ϕ/T )

T (1− e−2ϕ/T )
≤ 2

T
,

so that

|eϕ1,T (s, t) | ≤ 2

T
. (A11)

For the components of the term eϕ2,T (s, t) , we have

1− ρT (t+s)

T (1− ρ2)
≤ 1− ρ2T

T (1− ρ2)
=

1 + ρ2 + · · ·+ ρ2(T−1)

T
≤ 1, (A12)

(
2− ρTs − ρTt

)
ρ
(
1− ρT

)
T 2 (1− ρ2) (1− ρ)

≤
2ρ
(
1 + · · ·+ ρT−1

)2
T 2 (1 + ρ)

≤ 1, (A13)

and (see a derivation in the next section)(
T (1− ρ)− (1− ρT )ρ

)2
T 3(1− ρ2)(1− ρ)2

≤ 1. (A14)

These bounds yield

|eϕ2,T (s, t) | ≤ 2. (A15)

Combining this with the above bound for eϕ1,T (s, t) yields

|eϕ,T (s, t)| ≤ 4

for all ϕ > 0 and all T. For ϕ = 0, we obviously have |e0,T (s, t)| = |s+ t| / (2T ) ≤ 1.
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Summing up the above results, we obtain

sup
ϕ≥0

sup
T≥1

max
s,t∈[0,1]2

|kϕ,T (s, t)| ≤ 1 + 2 + 1+4 = 8.

A4 Proof of inequality (A14)

We have

(T (1− ρ)− (1− ρT )ρ)2

T 3(1− ρ2)(1− ρ)2
=

(
T − 1−ρT

1−ρ ρ
)2

T 3(1− ρ2)
≤

T − 1−ρT

1−ρ ρ

T 2(1− ρ2)

=
(1− ρ) + (1− ρ2) + · · ·+ (1− ρT )

T 2(1− ρ2)
. (A16)

If T is even, then (A16) is no larger than

2(1− ρ2) + 2(1− ρ4) + · · ·+ 2(1− ρ2(T/2))

T 2(1− ρ2)
.

On the other hand, (1−ρ2k)/(1−ρ2) = 1+ρ2+ · · ·+ρ2(k−1) ≤ k. Therefore, the expression

in the above display is no larger than

2(1 + 2 + · · ·+ T/2)

T 2
=

T + 2

4T
≤ 1

2

for T ≥ 2. If T is odd and T ≥ 3, then (A16) is no larger than

2(1− ρ2) + 2(1− ρ4) + · · ·+ 2(1− ρ2((T+1)/2))

T 2(1− ρ2)

≤ 2(1 + · · ·+ (T + 1)/2)

T 2
=

(T + 1)(T + 3)

4T 2
≤ 2

3

for T ≥ 3. Finally, for T = 1, we have

(T (1− ρ)− (1− ρT )ρ)2

T 3(1− ρ2)(1− ρ)2
=

1− ρ

1 + ρ
≤ 1.

To summarize, for all integer T ≥ 1, we have

(T (1− ρ)− (1− ρT )ρ)2

T 3(1− ρ2)(1− ρ)2
≤ 1.
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A5 Proof of equation (20)

For ϕ = 0,

|fϵ(0)e0,T (s, t)| = |s+ t|/(2T ) ≤ 1/T,

so that the bound (20) obviously holds. Consider the case ϕ > 0, or in terms of ρ, ρ ∈ (0, 1).

Using representation (A8) of eϕ,T (s, t), and inequalities (A11) and (A15), we obtain

|fϵ (ϕ) eϕ,T (s, t)| ≤ |eϕ1,T (s, t)|+ ρ2T
3 |eϕ2,T (s, t)| ≤ 2

T
+ 2ρ2T

3
.

For ρ ∈
(
0, 1− 1/T 2

]
, this yields

|fϵ (ϕ) eϕ,T (s, t)| ≤ 2

T
+ 2e−2T ≤ 4

T
,

so that (20) holds. It remains to consider the case ρ ∈ (1− 1/T 2, 1). For this case, we will

show that

|eϕ2,T (s, t)| ≤
2

T
, (A17)

so that

|fϵ (ϕ) eϕ,T (s, t)| ≤ |eϕ1,T (s, t)|+ ρ2T
3 |eϕ2,T (s, t)| ≤ 2

T
+

2

T
=

4

T
,

which yields (20).

In the remaining part of the proof we establish (A17). Recall decomposition (A10):

eϕ2,T (s, t) =
ρT (t+s) − 1

T (1− ρ2)
+

(2− ρTs − ρTt)ρ(1− ρT )

T 2(1− ρ2)(1− ρ)
+

(T (1− ρ)− (1− ρT )ρ)2

T 3(1− ρ2)(1− ρ)2
.

Rearranging the sum of the first two terms on the right hand side, and denoting T (1− ρ)−
(1− ρT )ρ as SρT , we obtain

eϕ2,T (s, t) =
(1− ρTs)(1− ρTt)

T (1− ρ2)
−

(2− ρTs − ρTt)SρT

T 2(1− ρ2)(1− ρ)
+

S2
ρT

T 3(1− ρ2)(1− ρ)2
. (A18)

Now note that

SρT = (1− ρ)2
T−1∑
j=0

(T − j)ρj ≤ T 2(1− ρ)2. (A19)
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To see that the first equality holds, consider the following arguments

T−1∑
j=0

(T − j)ρj = T
T−1∑
j=0

ρj −
T−1∑
j=0

jρj = T
1− ρT

1− ρ
− ρ

d

dρ

T−1∑
j=0

ρj = T
1− ρT

1− ρ
− ρ

d

dρ

1− ρT

1− ρ

= T
1− ρT

1− ρ
− ρ

−TρT−1(1− ρ) + 1− ρT

(1− ρ)2
=

SρT

(1− ρ)2
.

For the last term on the right hand side of (A18), inequality (A19) yields

0 ≤
S2
ρT

T 3(1− ρ2)(1− ρ)2
≤ T (1− ρ)

1 + ρ
. (A20)

For the negative of the second term, it yields

0 ≤
(2− ρTs − ρTt)SρT

T 2(1− ρ2)(1− ρ)
≤ 2(1− ρT )

1 + ρ
≤ 2T (1− ρ)

1 + ρ
. (A21)

Finally, for the first term on the right hand side of (A18), we have

0 ≤ (1− ρTs)(1− ρTt)

T (1− ρ2)
≤ (1− ρT )2

T (1− ρ2)
≤ T (1− ρ)

1 + ρ
. (A22)

Using these bounds in (A18), and recalling that the first and the last terms enter the right

hand side with positive sign while the second term enters the right hand side with negative

sign, we obtain

|eϕ2,T (s, t)| ≤
2T (1− ρ)

1 + ρ
.

Since we are considering the case where ρ ∈ (1− 1/T 2, 1), this yields (A17).

A6 Proof of lemma 4

First, let us prove the following lemma. Let w be the T ×T orthogonal matrix with t-th col-

umn wt, where for t < T, wt is a vector with s-th coordinate wts = −
√
2/T cos ((s− 1/2)πt/T ) ,

while wT = l/
√
T . Here l is the T -dimensional vector of ones.

Lemma A1. For any ϕ ≥ 0,

w′MU ′
ϕUϕMw = Dϕ −∆ϕ,

where Dϕ is a diagonal matrix with t-th diagonal element equal to |1− exp {(iπt− ϕ) /T}|−2

if t < T and zero if t = T ; and ∆ϕ is a positive semi-definite matrix of rank two with t, s-th

11



entry

∆ϕ,ts =
2

T
e−ϕ/T

(
1− e−ϕ/T

) cos (πt/2T )∣∣e(−ϕ+iπt)/T − 1
∣∣2 cos (πs/2T )∣∣e(−ϕ+iπs)/T − 1

∣∣2
×

(
1 + e−ϕ/T e−2ϕT 2

1 + e−ϕ/T

(
1− (−1)t e−ϕ

)(
1− (−1)s e−ϕ

)
+ (−1)t+s 1− e−2ϕ

1 + e−ϕ/T

)
.

Proof: Let us partition Uϕ into the upper T 3 × T submatrix U
(1)
ϕ and the lower T × T

matrix U
(2)
ϕ . We have

U
(1)
ϕ =

(
e−ϕT 2

, . . . , e−2ϕ/T , e−ϕ/T
)′

v′1,

where v1 is the T -dimensional vector with t-th coordinate v1t = e−ϕ(t−1)/T . Obviously,

w′MU
(1)′
ϕ U

(1)
ϕ Mw = 0 for ϕ = 0. (A23)

For ϕ > 0,

w′MU
(1)′
ϕ U

(1)
ϕ Mw =

1− e−2ϕT 2

e2ϕ/T − 1
x1x

′
1, (A24)

where x1 = w′Mv1.

Next, note that

(
U

(2)
ϕ

)−1
=


1 −e−ϕ/T 0

1
. . .

. . . −e−ϕ/T

0 1


and therefore,

(
U

(2)′
ϕ U

(2)
ϕ

)−1
=



1 + e−2ϕ/T −e−ϕ/T 0 . . . 0

−e−ϕ/T 1 + e−2ϕ/T −e−ϕ/T . . . 0
...

. . .
. . .

. . .
...

0
...

. . . 1 + e−2ϕ/T −e−ϕ/T

0 0 . . . −e−ϕ/T 1


.

It is straightforward to verify that wt, t = 1, . . . , T are eigenvectors of(
U

(2)′
ϕ U

(2)
ϕ

)−1
− e−ϕ/T e1e

′
1 − e−ϕ/T

(
1− e−ϕ/T

)
eT e

′
T − 1ϕ=0ll

′/T

with corresponding eigenvalues equal to d−1
ϕt = |1− exp {(−ϕ+ iπt) /T}|2 for t < T and

12



d−1
ϕT = |1− exp {−ϕ/T}|2 − 1ϕ=0. Here et denotes the t-th column of the T -dimensional

identity matrix, and 1ϕ=0 is the indicator of the event ϕ = 0.

Let D̄ϕ = diag {dϕ1, . . . , dϕ,T } . Then((
U

(2)′
ϕ U

(2)
ϕ

)−1
− e−ϕ/T e1e

′
1 − e−ϕ/T

(
1− e−ϕ/T

)
eT e

′
T − 1ϕ=0ll

′/T

)−1

= wD̄ϕw
′.

Applying the Sherman-Morrison formula for the inverse of a low rank perturbation of an

invertible matrix to the left hand side of the above equality yields, for ϕ > 0,

wD̄ϕw
′ = U

(2)′
ϕ U

(2)
ϕ +

e−ϕ/T

1− e−ϕ/T
v1v

′
1 +

e−2ϕ(
1− e−2ϕ/T

)
(1− e−2ϕ)

v2v
′
2, (A25)

where v1 is as defined above, and v2 is the T -dimensional vector with t-th coordinate

v2t = eϕ/2T eϕ(t−1)/T + e−ϕ/2T e−ϕ(t−1)/T .

Similarly, for ϕ = 0, the Sherman-Morrison formula yields

wD̄ϕw
′ = U

(2)′
ϕ U

(2)
ϕ + lA+Bl′, (A26)

where A and B are some matrices, the exact form of which is of no consequence to what

follows.

Mutiplying both sides of equation (A25) by w′M from left and by Mw from right and

rearranging, we obtain

w′MU
(2)′
ϕ U

(2)
ϕ Mw = w′MwD̄ϕw

′Mw − e−ϕ/T

1− e−ϕ/T
x1x

′
1

− e−2ϕ(
1− e−2ϕ/T

)
(1− e−2ϕ)

x2x
′
2,

where x2 = w′Mv2. Summing up with (A24) yields

w′MU ′
ϕUϕMw = w′MwD̄ϕw

′Mw−e−2ϕ(T 2+1/T ) + e−ϕ/T

1− e−2ϕ/T
x1x

′
1 (A27)

− e−2ϕ(
1− e−2ϕ/T

)
(1− e−2ϕ)

x2x
′
2

for ϕ > 0.

Note that w′Mw = IT − eT e
′
T , where eT denotes the last column of the T -dimensional

identity matrix, so that w′MwD̄ϕw
′Mw = Dϕ. Further, a direct calculation shows that

13



the t-th coordinates of x1 and x2 equal

x1t = −
√

2

T

(
1− e−ϕ/T

) (
1− (−1)t e−ϕ

)
cos (πt/2T )∣∣e(−ϕ+iπt)/T − 1
∣∣2 ,

x2t = −
√

2

T

(
1− e−ϕ/T

)
(−1)t

(
eϕ − e−ϕ

)
e−ϕ/2T cos (πt/2T )∣∣e(−ϕ+iπt)/T − 1
∣∣2 .

For ϕ > 0, the lemma now follows from (A27) by verifying that

e−2ϕ(T 2+1/T ) + e−ϕ/T

1− e−2ϕ/T
x1x

′
1 +

e−2ϕ(
1− e−2ϕ/T

)
(1− e−2ϕ)

x2x
′
2 = ∆ϕ.

For ϕ = 0, multiplying both sides of equation (A26) by w′M from left and by Mw from

right and rearranging, we obtain w′MU
(2)′
ϕ U

(2)
ϕ Mw = w′MwD̄ϕw

′Mw. Summing this up

with (A23) yields

w′MU ′
ϕUϕMw = w′MwD̄ϕw

′Mw = Dϕ.

This establishes the lemma for ϕ = 0 because, as is easy to see, ∆ϕ = 0 for ϕ = 0.

We now turn to the proof of lemma 4. By definition of EΣ̃ and lemma A1,

∑T

j=J+1
µ̃j ≤

1

N

∑N

i=1

∑T

j=J+1
Dϕi,jjΩii.

On the other hand,∑T

j=J+1
Dϕi,jj =

∑T−1

j=J+1
|1− exp {(−ϕi + iπj) /T}|−2

≤
∑∞

j=J+1

T 2

ϕ2
i + π2j2

+ o
(
T 2
)

≤
∑∞

j=J+1

T 2

π2j2
+ o

(
T 2
)

≤ T 2

π2J
+ o

(
T 2
)
≤ T 2

9J

for all sufficiently large T, uniformly over ϕi ≥ 0. Therefore,

∑T

j=J+1
µ̃j ≤

T 2

N

∑N

i=1

1

9J
Ωii =

T 2

9JN
tr Ω.

The lemma’s second inequality is a straightforward consequence of the convergence µ̃k/T
2 →

µk > 0 and the fact that, as implied by A4, trΩ/N is converging to a positive value as

N → ∞.
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A7 Proof of lemma 5

We have

E
(
a′ε′Aεb

)
=

∑T

t,s=1

∑N

i,j=1
E (atεitAijεjsbs)

=
∑T

t=1

∑N

i=1
atAiibt = a′b trA.

Further, denoting the i-th row of ε as εi·, we have

E
(
a′ε′Aεbc′ε′Bεd

)
=

∑N

i,j=1

∑N

p,l=1
E (εi·aAijεj·bεp·cBplεl·d)

=
∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·b) (εj·c) (εj·d)AiiBjj)

+
∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·c) (εj·b) (εj·d)AijBij)

+
∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·d) (εj·b) (εj·c)AijBji)

+
∑N

i=1
E ((εi·a) (εi·b) (εi·c) (εi·d)AiiBii) .

We have, first, ∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·b) (εj·c) (εj·d)AiiBjj)

=
∑N

i=1

∑N

j ̸=i

(
a′b
) (

c′d
)
AiiBjj

=
(
a′b
) (

c′d
) [

(trA) (trB)−
∑N

i=1
AiiBii

]
,

second,

∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·c) (εj·b) (εj·d)AijBij)

=
∑N

i=1

∑N

j ̸=i

(
a′c
) (

b′d
)
AijBij

=
(
a′c
) (

b′d
) [

tr
(
A′B

)
−
∑N

i=1
AiiBii

]
,
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third, ∑N

i=1

∑N

j ̸=i
E ((εi·a) (εi·d) (εj·b) (εj·c)AijBji)

=
∑N

i=1

∑N

j ̸=i

(
a′d
) (

b′c
)
AijBji

=
(
a′d
) (

b′c
) [

tr (AB)−
∑N

i=1
AiiBii

]
,

and finally,∑N

i=1
E ((εi·a) (εi·b) (εi·c) (εi·d)AiiBii)

=
∑N

i=1
E
(∑T

t=1
εitat

∑T

t=1
εitbt

∑T

t=1
εitct

∑T

t=1
εitdtAiiBii

)
=

∑N

i=1
AiiBii

(∑T

t,s:t̸=s
atbtcsds +

∑T

t,s:t̸=s
atbsctds +

∑T

t,s:t̸=s
atbscsdt

+
∑T

t=1
Eε4itatbtctdt

)
=

∑N

i=1
AiiBii

((
a′b
) (

c′d
)
+
(
a′c
) (

b′d
)
+
(
a′d
) (

b′c
)
+
∑T

t=1

(
Eε4it − 3

)
atbtctdt

)
.

Summing up,

E
(
a′ε′Aεbc′ε′Bεd

)
=

(
a′b
) (

c′d
)
(trA) (trB) +

(
a′c
) (

b′d
)
tr
(
A′B

)
+
(
a′d
) (

b′c
)
tr (AB)

+
∑N

i=1
AiiBii

∑T

t=1

(
Eε4it − 3

)
atbtctdt.

Recall that E (a′ε′Aεb) = a′b trA and E (c′ε′Bεd) = c′d trB. These equalities and the last

display yield

Cov
(
a′ε′Aεb, c′ε′Bεd

)
=

(
a′c
) (

b′d
)
tr
(
A′B

)
+
(
a′d
) (

b′c
)
tr (AB)

+
∑N

i=1
AiiBii

∑T

t=1

(
Eε4it − 3

)
atbtctdt.

The inequality (29) follows because
∣∣Eε4it − 3

∣∣ is bounded by 2κ4 uniformly over i and t.

Indeed, by assumption A1, Eε4it ≤ κ4, and Eε4it − 3 ≤ κ4. On the other hand, Eε4it ≥(
Eε2it

)2
= 1, and thus, κ4 ≥ 1 and Eε4it − 3 ≥ −2 ≥ −2κ4.
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A8 Proof of equation (30)

Since ∥UiM∥2 ≤ tr (MU ′
iUiM) is obvious, it is sufficient to prove that

sup
ρi∈[0,1]

tr
(
MU ′

iUiM
)
≤ 2T 2.

Let U
(1)
i be the upper T 3 × T block of Ui and U

(2)
i be the lower T × T block. Then,

tr
(
MU ′

iUiM
)

= tr
(
MU

(1)′
i U

(1)
i M

)
+ tr

(
MU

(2)′
i U

(2)
i M

)
≤ tr

(
MU

(1)′
i U

(1)
i M

)
+ tr

(
U

(2)′
i U

(2)
i

)
≤ tr

(
MU

(1)′
i U

(1)
i M

)
+ T 2,

where the last inequality follows from the fact that tr
(
U

(2)′
i U

(2)
i

)
equals the sum of squared

elements of the T × T matrix U
(2)
i and all these elements are non-negative and no larger

than 1. Hence, it is sufficient to prove that supρi∈[0,1] tr
(
MU

(1)′
i U

(1)
i M

)
≤ T 2.

Note that

U
(1)
i =

(
ρT

3

i ρT
3−1

i · · · ρi

)′ (
1 ρi · · · ρT−1

i

)
.

Therefore, for ρi = 1, U
(1)
i M = 0 and tr

(
MU

(1)′
i U

(1)
i M

)
≤ T 2 trivially holds. For ρi < 1,

an elementary calculation yields

tr
(
MU

(1)′
i U

(1)
i M

)
= ρ2i

1− ρ2T
3

i

1− ρ2i

(
1− ρ2Ti
1− ρ2i

− 1

T

(
1− ρTi
1− ρi

)2
)

≤ 1

1− ρi

(
1− ρ2Ti
1− ρ2i

− 1

T

(
1− ρTi
1− ρi

)2
)

=
1− ρTi
(1− ρi)

2

(
1 + ρTi
1 + ρi

− 1

T

1− ρTi
1− ρi

)
≤ T

1− ρi

(
1 + ρTi
1 + ρi

− 1

T

1− ρTi
1− ρi

)
.

Since the term in the final bracket is no larger than unity, the obtained bound on tr
(
MU

(1)′
i U

(1)
i M

)
is no larger than T 2 for all non-negative ρi ≤ 1− 1/T. Hence, it is sufficient to show that

sup
ρi∈(1−1/T,1)

1

1− ρi

(
1 + ρTi
1 + ρi

− 1

T

1− ρTi
1− ρi

)
≤ T.
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Let us reparameterize the problem using ρi = 1− x/T, where x ∈ (0, 1) . It is sufficient

to show that

sup
x∈(0,1)

1

x

(
1 + (1− x/T )T

2− x/T
− 1− (1− x/T )T

x

)
≤ 1.

The Taylor expansion of (1− x/T )T at zero yields

(1− x/T )T = 1− x+
T − 1

2T

(
1− x∗

T

)T−2

x2,

where x∗ ∈ [0, x] . Therefore, for all T ≥ 2 and x ∈ (0, 1) we have

(1− x/T )T = 1− x+Rx,Tx
2 with |Rx,T | ≤ 1/2.

This yields

1

x

(
1 + (1− x/T )T

2− x/T
− 1− (1− x/T )T

x

)
=

1

x

(
x/T − x+Rx,Tx

2

2− x/T
+Rx,Tx

)
.

But for T ≥ 2 and x ∈ (0, 1), we have x/T −x+Rx,Tx
2 ≤ 0. Therefore, the right hand side

of the displayed equality is no larger than Rx,T . Thus,

sup
x∈(0,1)

1

x

(
1 + (1− x/T )T

2− x/T
− 1− (1− x/T )T

x

)
≤ 1/2 < 1.

This completes the proof of inequality (30) for all T ≥ 2. A direct verification shows that

the inequality also holds for T = 1.

As a bi-product, we established the fact that function

h(ρi) =

 1
T

1
1−ρ2i

(
1+ρTi
1+ρi

− 1
T

1−ρTi
1−ρi

)
for ρi ∈ [0, 1)

0 for ρi = 1
(A28)

is non-negative, continuous, uniformly in T bounded, and such that, for all T, h(ρi) ≤ 1

and h(1− x/T ) ≤ x/4 for x ∈ [0, 1) . These facts are used in Section 4.4 of the main body

of the paper.
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A9 Proof of equation (A7)

We have

∑T−2

j=0
(T − j) (T − j − 1) ρj = ρT+1 d2

dρ2

T−2∑
j=0

ρj−T+1 = ρT+1 d2

dρ2
ρ1−T − 1

1− ρ

= ρT+1 d

dρ

(1− T )ρ−T + Tρ1−T − 1

(1− ρ)2
=

T (T − 1)(1− ρ)2 + 2((1− T )ρ+ Tρ2 − ρT+1)

(1− ρ)3

=
2ρ(1− ρT )− T (1− ρ2) + T 2(1− ρ)2

(1− ρ)3
.

A10 Detailed analysis of the Markov chain example

Recall that in the Markov chain example, we defined Xit as Zi(t/T ), where Zi(s) were

independent across i = 1, . . . , N continuous time Markov chains with transition probabilities

(57), and such that Zi(0) equals 0 or 1 with equal probabilities. Let X be an N ×T matrix

with entries Xit. Our goal is to establish an analogue of theorem 1 for the eigenvectors and

eigenvalues of Σ̂ = MX ′XM/N .

To this end, consider the integral operator ǨF (acting on C[0, 1]) with kernel

ǩF (s, t) =

∫ ∫
ϕ

2
kϕ(s, t)F(dω,dϕ).

Note that the integration with respect to ω is trivial. This is because there are no different

variance weights on cross-sectional series in our Markov chain example. The following are

analogues of assumption A4 and theorem 1.

Assumption A4’. FN weakly converges to F as N,T → ∞. The supports of FN and

F belong to [0, ω̄] ×
[
0, ϕ̄
]
for some 0 < ω̄, ϕ̄ < ∞. The eigenvalues µ̌1 > µ̌2 > . . . of ǨF

are simple.

Theorem A2. Let N,T → ∞ at arbitrary relative rates. Then under A4’, for any fixed

positive integer k,

(i)
∣∣∣F̂ ′

kdk

∣∣∣ P→ 1, where dk = (φ̌k(1/T ), . . . , φ̌k(T/T )) /
√
T and φ̌k(s) is the k-th principal

eigenfunction of ǨF .

(ii) λ̂k/T
P→ µ̌k, where µ̌k is the k-th principal eigenvalue of ǨF .

(iii) λ̂k/ tr Σ̂
P→ µ̌k/

∑∞
j=1 µ̌j .
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Remark A3. In part (ii), we divide λ̂k by T as opposed to T 2 in theorem 1. It is because

the orders of the variances of a process with local-to-unit root and our Markov chain differ

by T .

Proof: The proof is similar to that of theorem 1 so we will be brief. Because of the

special setup of the Markov chain example, we do not have analogues of Steps 1 and 4 of

the proof of theorem 1. Thus, we start from Step 2 and finish by Step 3. Consider

EΣ̂ =
1

N

N∑
i=1

MWiM,

where Wi is a T × T matrix with elements Wi,jk = e−ϕi|k−j|/T /4. It is useful to note that

4Wi/(1− e−2ϕi/T ) = limk→∞ U ′
kϕi

Ukϕi
, where

Ukϕ =



e−Tkϕ e−(T
k+1/T)ϕ . . . e−(T

k+1−1/T)ϕ

...
...

...

e−ϕ/T e−2ϕ/T . . . e−ϕ

1 e−ϕ/T . . . e−ϕ(T−1)/T

0 1 . . . e−ϕ(T−2)/T

...
...

. . .
...

0 0 . . . 1


.

Matrix Uϕ defined just before lemma 2 is identical to U2ϕ. The necessary changes to the

proof of theorem 1 can often be obtained by just formally replacing Uϕ with U∞ϕ.

In particular, the quantity
4(MWiM)jk
T (1−e−2ϕi/T )

is almost equal to kϕi,T (sj , tk) with sj = j/T

and tk = k/T (see (16) for the definition), except the term of kϕi,T which has multiplier

e−2ϕiT
2
disappears because the multiplier becomes (formally) e−2ϕiT

∞
= 0. More precisely,

4(MWiM)jk

T (1− e−2ϕi/T )
= kϕi,T (sj , tk) + e−2ϕiT

2
eϕi2,T (sj , tk),

where eϕi2,T is as in (A10).

Step 2 of the proof then proceeds with only minor changes. One of them is that we com-

pare the eigenvalues of the limiting operator to those of EΣ̂/T instead of EΣ̂/T 2. Another

one is that the upper and lower bounds in lemma 4 become, respectively, ϕ̄
2

T
9J and CkT .

Turning to Step 3, the main change is that A(i) in (23) is now defined simply as

MX ′
i·Xi·M . Note that, for q < T ,

|Xi·Mφ̃q| = |Xi·φ̃q| ≤
√
∥Xi·∥2∥φq∥2 ≤

√
T ,
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where the first equality holds because Mφ̃q = φ̃q, and the last inequality holds because

∥φq∥ = 1 and Xit can take only values 0 and 1. Since we have assumed independence across

i = 1, . . . , N , the above display yields (cf. (31))

V ar

(
1

N

N∑
i=1

φ̃′
rA

(i)φ̃q

)
=

1

N2

N∑
i=1

V ar
(
φ̃′
rA

(i)φ̃q

)
≤ T 2

N
.

By Chebyshev’s inequality, we have (cf. (32))

λ̃11 =

K∑
r=1

λ2
rµ̃r + oP(T ).

Further, instead of (34) we have

V ar

(
1

N

N∑
i=1

T−1∑
r=K+1

(Xi·Mφ̃r)
2

)
≤ 1

N
V ar(∥Xi·∥2) ≤

T 2

N
,

so that (cf. (35) and (36)),

λ̃12 ≤
T−1∑

r=K+1

µ̃r + oP(T ) ≤ (1 + oP(1))
ϕ̄

2

T

9K
.

Step 3 is then completed with only relatively minor changes.
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