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Abstract

This note, first, derives explicit expressions for the eigenvalues and eigenfunctions of
K7 for the special case of no heterogeneity in local-to-unit roots (see equation (3) of the
main text). Next, it proves lemmas 2, 3, 4, 5, and equations (20) and (30). Finally, it
provides the reader with a detailed analysis of the Markov chain example. All internal
references have the prefix “A”, whereas all references to the main text do not have any
prefixes. For example, (A1) refers to the first numbered equation in this note, whereas

(1) refers to the first numbered equation in the main text.

A1 Eigenstructure of Kr when ¢, =¢ >0,71=1,...,N.

When the heterogeneity in ¢; is absent, the kernel of K is proportional to

efd)‘t*'s' ef(bt + @ﬂi’(l*t) efd)s + €*¢>(1*8) ef(b — 1= (25
k¢(8’t) = 2¢ + 2¢2 + 2¢2 + ¢3 )

which is the covariance kernel of the demeaned OU process with parameter ¢ > 0. Let A
and f(t) be an eigenvalue-eigenfunction pair for the integral operator with kernel ky(s,t).
Then

1
/0 ko (s, ) F(E)t = AJ(s).

We note that since the covariance kernel corresponds to the demeaned OU, we must have
[ f(t)dt =0 for any A # 0. Therefore, we can rewrite the above identity as

1

1
2 / (@e@=el 4 70 4 200 F1)dt = Af(s),
0



or equivalently,

1 s
/ (¢e—¢(t‘5) +e 9+ e‘¢(1—t)) f(t)dt + / b (e‘W—S) - e—¢(t—5)) F()dt = 20>\ f (s).
0 0
Differentiating both sides with respect to s and dividing by ¢?, we obtain

1 s
/ e—qb(t—s)f(t)dt _ / <€¢(t_5) + e_¢(t_5)) f(t)dt = 2Af/(3) (Al)
0

0

Differentiating once more, we get

1 s
/ pe S f(t)dt — 2 (s) + / ¢ (e¢<t—8> — e_¢(t_5)) F(t)dt = 20f"(s). (A2)
0 0

Differentiating one last time, we get

1 s
/ ¢Pe YU f(t)dt — 2f'(s) — / 67 (2179 4 U7 f(t)de = 20" (5).
0 0
Using (A1) in the latter display yields

(0" = 1/X) f'(s) = f"(s).

Reparameterizing the problem by letting A = we will consider a possibility A = ﬁ

1
¢2+UJ2 (
later), we get

f/”(S) — —w2fl(8),
so that
f'(s) = Acos(ws) + Bsin(ws),
and therefore,

f(s) = acos(ws) + bsin(ws) + c.

We need to find a,b,c, and w. To this end, we will use the following boundary conditions
(obtained from (A1) and (A2))

AF"(0) = Aaf'(0) — f(0), (A3)
Af'(1) = =8 f'(1) — f(1). (A4)



These conditions imply the following relationships

(1= Xw?)a — Apwb + ¢ =0,
(1 = Mw?) cosw — Apwsinw)a + ((1 — w?) sinw + Adw cosw)b + ¢ = 0.

Now, the fact that the integral of f(s) over [0, 1] is zero yields
asin(w)/w — b(cos(w) — 1) /w + ¢ = 0.
Using this in the previous display, we get

(1_>\w2_sir:jw>a_ 1+)\¢wj—coswb:0’ (A5)

1+ \pw? 14 Apw?

1

<(1 — dw?) cosw — sinw> a+ ((1 — Mw?)sinw + cosw — > b=0.
w

For this system to have a nonzero solution, it must be degenerate, with the determinant of

the matrix of the coefficients equal to zero. That is, we must have
—2(1 - M?) +w [(1- Mw?)? — Ap(2 + )\qﬁwQ)] sin(w) + 2(1 + Apw?)(1 — Aw?) cos(w) = 0.
Recalling that A = (w? + ¢?)~!, we note that

(;52

2 _

Hence, the above equation simplifies to the following form
—2(w? + ¢?) + w(P? — 2¢ — w? — 2w?/¢) sin(w) + 2(w? + #* + dw?) cos(w) =0.  (A6)

Figure Al shows the graph of the left hand side (divided by 1 + w? for better scaling) for
the special case where ¢ = 1. The smallest positive root is approximately w = 3.68. It
corresponds to the largest eigenvalue A ~ 1/(1 + 3.682) ~ 0.069. This can be compared to
the largest eigenvalue 1/7% = 0.10 of the covariance operator of the Brownian motion (that
corresponds to the case ¢ = 0).

Once w is chosen as a root of (A6), we obtain (from (A5) and the parameterization
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Figure 1: Plot of the (scaled) function of w defined by the left hand side of (A6) when
¢ = 1. The graph is scaled by dividing the function by 1 + w? to help visualization. The
first three positive roots are, approximately, w = 3.68, w = 6.39, and w = 9.53.
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where the coefficient of proportionality h should be chosen so that the eigenfunction f(s)

has unit L9 norm.
To finish our derivations, we need to consider the possibility that A = ﬁ, as men-

tioned above. If this is the case, then we must have
f(s) = ae*® +be™° 4+ c.

Using initial conditions (A3)-(A4) and the requirement that fol f(s)ds = 0, we obtain the



following system

ev —1

o
()\wz—)\qﬁw—i—l— >a+<)\w2+/\q§w+1+e - )b:O,

e v —1

© 1
e‘“()\wz—i—)\qﬁw—i—l—i— >a+e“’<)\w2—/\¢w+l—€ )b—O.
w

For this system to have a non-zero solution, we must have

w

_ 2 2
w_1 w1
e”()\w2+)\¢w+1+€ ) :ew</\w2—)\<;5w—l—1—6 ) .
w

Recalling that A\ = 1/(¢? — w?), and that it must be positive (since the covariance operator

is non-negative definite), we obtain

w ) e v —1 2_ —w ) e —1\?
‘ <¢—w+ % )‘e <¢+w‘ % )

o[ ¢ ew—1\ 6 -1
e<¢—w+ - >_i<¢+w - )

If the sign on the right hand side is ‘4+’, then we have

This implies that

e _ 1
b—w o+w’

4

which is clearly impossible for ¢ > w > 0. If the sign is ‘—’, then we have, after some

algebra,
=W/ +6) +w
¢+w20/(2+¢) —w’
which is only possible if w < 2¢/(2 4+ ¢). Suppose that the latter inequality holds. Then,

taking the logarithm of both sides of the above display and rearranging, we obtain

ln(gb—w)—ln((b—l-w)—i—ln(;_fqb—i—w) —ln<2¢—w> —w=

This equation does hold for w = 0, but not for w > 0. Indeed, the derivative of the left

hand side with respect w is

2
46 2¢ ) 124+6¢+¢2 2
20 16 9 (2+¢ 4 w

@ -t ((25) - )

> 0,



where the last inequality holds because w < 2¢/(2+¢). To summarise, the parameterization
A= ¢2 —7 18 1ncompat1ble with the initial conditions, and the solutions that we have found

for the case A = + > are the only possible ones.

¢2

A2 Proof of lemma 2

Let [ be the T-dimensional vector of ones. A direct derivation yields, for ¢ > 0,

1 1 1 1 1
7 (MUUM) = = (UUs),; — 5 (UUS), = 5 (UGU) + gl UGl
e—Bli—il/T _ g—26T? ,—(j+i)/T

T (1— e 20/T)
/T (1 — e=9/T) 41 — ¢=0edi/T — =20T"=0i/T (1 _ ¢=9)
T2 (1 — e_2¢/T) (e¢/T — 1)
/T (1 — e~99/T) 41 — e=0eH/T — =201 ¢=03/T (1 — ¢=9)
T2 (1 — 6*2‘1’/7’) (e‘WT — 1)
2e9/T (¢7¢ — 1) + T (e29/T — 1) — ¢ 21% (1 — ¢=¢)”
T3 (1 — e=20/T) (e9/T — 1)°

Rearranging the terms on the right hand side of the latter equation yields the lemma for
¢ > 0. For ¢ =0, we have

. 2
MUUM),; = min {i/T, /7% + L _5r — )1y ) 2m)

T ( 2
. 2
n (J/QT)

—3/T=0/T)/ N +T(T+1)2T +1)/ (6T3)

J/T
2 2 4 2 T Z
—(i/T)/(2T) = (j/T)/ (2T) + T (T +1) (2T + 1) / (6T?) — 1/2,

Y P VLA E S W T i

which yields the lemma for ¢ = 0. O

A3 Proof of lemma 3

The uniform boundedness of |k (s,t)| follows from that of |ag (s,t)] = —ae (s,t) and the
definitions by(s) fo ag (s,t)dt and ¢y = fo fo ag (s,t) dtds. The uniform boundedness of
lag (s,t)| follows from the inequality e~#* > 1—¢. This inequality implies that the maximum
of |ag (s,t)] over s,t € [0,1]% is no larger than 1/2. The uniform bound on |k (s, t)| equals
1 because kg (s,t) < —bg(s) — by(t) <1 and —kgy (s,t) < —ag (s,t) —cp < 1.



To establish the uniform boundedness of |ky 7 (s,t)|, we will prove that |wg1 rag (s,t)],
lwea 1 (bp(t) + by(s))l, |dgr], and |ey 1 (s,t)| are uniformly bounded. For ¢ > 0, we have

1 — e—olt—s| 1— pllt=sl
7‘[/‘ = = )
lworras (s,1)] = = (1—e20/T) ~ T(1—p?)

where p = e~?/T. This yields

1—pT

) <——+ <
’wd)lvTaqs (37 )‘ — T(]. _p2) —

Clearly, |wo1rao (s,t)] = |t —s|/2 < 1. Hence, |wgirag (s, t)] < 1 for all ¢ > 0 and all
positive integers T
Note that

¢/T
we2,Tbe(t) = e‘ﬁ/T/—lw¢17Tb¢(t)

for ¢ > 0 and w2, 7bo(t) = wo1,rbo(t). Since we1 by (t) = fol We1,10¢ (5,t) ds and |wei rae (s,t)] <
1 for all ¢ > 0 and T, we have |wg; 7b4(t)| < 1. But ’ﬁ%‘ < 1. Therefore, |wga 7bg(t)] < 1

for all ¢ > 0 and T'. Hence, |wg2,7 (bg (5) + by ()] < 2 for all ¢ >0 and T
Next, by definition, for ¢ > 0,

2p(pT—1)—}—T(1—,02)—Tz(l—p)2
T3 (1 —p?) (1 - p)?

)

dg,r =

where p = e~?/T. This yields, after some algebra (see section A9),

Z?;OQ(T—MT—J'—l)p{

T3 (1+ p) (A7)

der = —

Therefore, |dg | < 1 for all ¢ >0 and T. For ¢ =0, dor = (T + 1) (2T + 1) / (67?) —1/2,
and hence, |dp | < 1/2 for all T. To summarize, |dy | <1 for all ¢ > 0 and T
Finally, for ¢ > 0, we have

eor (5.1) = eqrr (5,1) + e 2 e r (s,1) (A8)



with

2 — e 95 — e 2(e?T —1—-¢/T)

cort (1) = 73 (1— e 20/T) T(1— e 20/T)(e4/T — 1) and (A9)
6—¢(t+s) -1 (2 — e P _ 6—<Z5t) 6—¢/T (1 _ 6_¢)
€42,T (S, t) = T (1 - e_2¢/T) + T2 (1 — e—2¢>/T) (1 — e—¢/T) (AlO)
(T (1—e9/T) — (1— ) e¢/T)”
T3 (1—e20/T) (1 - e*¢/T)2 '
For term eg; 7 (s,t), we have
9 pTs—pTt  2(1—pT) 2
t) < < < =
oS TRy SR A ST
and o/ o/
2 —1—-9/T 2(1 —e™ 2
—€¢1T (S7t) S (6 ¢/ ) S ( ¢ ) S )
’ T(1— e 20/T)(e?/T —1) = T(1— e 20/T) = T
so that 5
|6¢1,T (S,t) | < T (All)
For the components of the term egs 1 (s,t), we have
1 — T(t+s) 12T 1424 ... 4 2T-1)
P < p _LEp A tp <1, (A12)
T(1-p*) ~T(1-p?) T
9 _ Ts Tt 1— T 20 (1 T—1)2
C=p=p )pl=rp) 200+ +p ) (A13)
T2 (1=p%) (1=p) % (14 p)
and (see a derivation in the next section)
T(1-p)—(1-p")p)?
(TA-p)—(1=p")p) “1 (A14)
T3(1 = p?)(1 - p)?
These bounds yield
lego.r (s,1)] < 2. (A15)

Combining this with the above bound for e 7 (s,t) yields
leg.r (s,)] < 4

for all ¢ > 0 and all 7. For ¢ = 0, we obviously have |eg 7 (s,t)] = |[s+¢t|/(2T) < 1.



Summing up the above results, we obtain

supsup max |kgr (s,t)] <142+ 14+4=38.
$>0T>1 s,t€[0,1]?

A4 Proof of inequality (A14)

We have

T \2 T
(- p) - (1- gy (T-'p) _1-12
T3(1—p)(1—p)? — T3(1—p?) ~ T(1-p?
— — 92 _ T
(1 p)+(1T2€ )_+p2) +d-p) (A16)

If T is even, then (A16) is no larger than

2(1—p*) +2(1 = p*) +--- +2(1 = p*77?)
T2(1 - p?) '

On the other hand, (1—p?*)/(1—p?) = 14 p? +-- -+ p?*=1) < k. Therefore, the expression
in the above display is no larger than

2042+---4T/2) T+2 _|1
T2 CAT T2
for T'> 2. If T is odd and T" > 3, then (A16) is no larger than

2(1—p*) +2(1 = p*) +--- +2(1 — pX(TFD/2)

T3(1-p?)
20+ -+ (T+1)/2) (T+1)(T+3) 2
< = <=z
= T? AT? =3
for T' > 3. Finally, for T'= 1, we have
(TA=p) =1 =p")p)?* 1-p

= <1.
T3(1 - p*)(1 = p)? l+p~

To summarize, for all integer T' > 1, we have

(T(1—p)—(1—ph)p)?
i A0




A5 Proof of equation (20)

For ¢ =0,
|[fe(0)eo,r(s, )| = [s +t|/(2T) < 1/T,

so that the bound (20) obviously holds. Consider the case ¢ > 0, or in terms of p, p € (0, 1).
Using representation (A8) of eg 7 (s,t), and inequalities (A11) and (A15), we obtain

3 2 3
e (@) esr (5.0)] < legrr (s,8)| + p°T legar (s,1)] < 7T 2071

For p € (0,1 — 1/T?], this yields

2 4
| fe (&) €p T (s,t)] < T +2e72T < T

so that (20) holds. It remains to consider the case p € (1 — 1/72,1). For this case, we will
show that

lego,r(s,1)] < =, (A17)

el

so that
3
|fe (@) o (s,)] < legrr (s,8)] + p°7 legor (s, 1)] <

which yields (20).
In the remaining part of the proof we establish (A17). Recall decomposition (A10):

. 4
= 7

Nl
Nl

p =1 2=p" = p™)p(=p")  (T(L=p) = (1=p")p)?
T(1-p?) T3(1—p?)(1—p) T3(1=p*)(1—-p)3?

6¢2’T(S, t) =

Rearranging the sum of the first two terms on the right hand side, and denoting T'(1 — p) —
(1 —pT)p as S,r, we obtain

B (1 _ st)(l o th) (2 _ st _ th)S . SZT
ot O="ra sy A e MY
Now note that
T-1 '
Spr=(1=p)* Y (T—35)p <T*(1-p)* (A19)
=0

10



To see that the first equality holds, consider the following arguments

T—-1 T—-1 T-1 T—-1
. 1—0p d 1—-0p d1-p"
DT =it = Ty P = g =T —p D p =T —p—
= = = p i p pl—p
o l=pT Tp" ' —p)+1-p"  S,r
=T P 2 = 2
L—p (I-p) (1-p)

For the last term on the right hand side of (A18), inequality (A19) yields

S2 T(1—p)
0< 22 < : A20
ST M-~ 14p (A20)
For the negative of the second term, it yields
2—pls —plt)s 2(1—pt) 21(1-
T2(1 = p*)(1—p) 1+p lL+p
Finally, for the first term on the right hand side of (A18), we have
1— Ts 1— Tt 1_T2 T(1 —
0< ! p)(Qp)S( plg( P (A22)
T(1-p?) TA—-p*) = 1+p

Using these bounds in (A18), and recalling that the first and the last terms enter the right
hand side with positive sign while the second term enters the right hand side with negative

sign, we obtain

2T(1 - p)
) < ———.
les2r(s, ) < —— ;
Since we are considering the case where p € (1 — 1/72,1), this yields (A17). O

A6 Proof of lemma 4

First, let us prove the following lemma. Let w be the T'x T" orthogonal matrix with t-th col-
umn wy, where for t < T, wy is a vector with s-th coordinate wys = —+/2/T cos ((s — 1/2) «t/T)
while wp =1/ V/T. Here [ is the T-dimensional vector of ones.

Lemma Al. For any ¢ > 0,
W/MU(;)Ud,MW = D¢ — A(z),
where Dy, is a diagonal matriz with t-th diagonal element equal to |1 — exp {(int — ¢) /T}| >

ift <T and zero if t =T ; and Ay is a positive semi-definite matriz of rank two with t, s-th

11



2 _yr (1 B e_¢/T) cos (t/2T) cos (ms/2T)
‘6(—¢+iﬂ't)/T _ 1‘2 ‘6(—¢>+iﬂ's)/T _ 1’2

1_|_e—¢/T€—2¢>T2 B . . 1— e 20
(T (- o) (- o) s e IR,

Proof: Let us partition Uy into the upper T3 x T submatrix Ué)l) and the lower T' x T
matrix Uf). We have
Uél) = (e_¢T2, . ,e_2¢/T,6_¢/T),vi,

where v is the T-dimensional vector with ¢-th coordinate vi; = e~ ?¢=1/T Obviously,

wMUUY Mw = 0 for ¢ = 0. (A23)
For ¢ > 0,
—24T?
7.1 1—e
where 1 = w' M.
Next, note that
1 —e /T 0
-
0 1
and therefore,
14 e 20/ _e=0/T 0 . 0
—e /T 14 e 20/T _e=9/T .. 0
@@\ _
(Ud) Us ) =
0 : 14+ e 20/T _o=9¢/T
0 0 . —e~ /T 1
It is straightforward to verify that wy, t = 1,...,T are eigenvectors of

-1
(Uf),Uf)> — e_¢/Tele'1 —e /T (1 — e_¢/T> erer — Lo—oll' /T
with corresponding eigenvalues equal to d;tl = |1 —exp{(—¢ +int) /T}* for t < T and

12



d;% = |1 —exp{—¢/T}* — 14—o. Here e; denotes the t-th column of the T-dimensional
identity matrix, and 14— is the indicator of the event ¢ = 0.
Let Dy = diag {dg1,...,dpr}. Then
- (o) —1 -1 _
((Ud() ),Uqg )) —e ¥ Tereh — e /T (1 - e_¢/T> erelp — 1¢:0ll'/T) =wDyw'.

Applying the Sherman-Morrison formula for the inverse of a low rank perturbation of an

invertible matrix to the left hand side of the above equality yields, for ¢ > 0,

e_d)/T , 6_2¢
—=vvy +
1—eo/T 11 (1—e20/T) (1 — e=29)

= 2)17 (2
wDyw' = U(;(S )/U; ) 4 VY, (A25)

where v is as defined above, and vs is the T-dimensional vector with ¢-th coordinate

vgy = /2T I=D/T | (=6/2T —6(t=1)/T

Similarly, for ¢ = 0, the Sherman-Morrison formula yields

wDsw' = UP'US + 1A+ B, (A26)

where A and B are some matrices, the exact form of which is of no consequence to what
follows.
Mutiplying both sides of equation (A25) by w/M from left and by Mw from right and

rearranging, we obtain

W/MU(2)/U(2)MW = wMwD,wMw — ix x!
o "¢ - ¢ 1 _ oo/
e
- 2%,

(1—e20/T) (1 — e=29)
where 29 = wMwvy. Summing up with (A24) yields

(—20(T*H1/T) | o—0/T
1—e20/T

w'MUéqung = W/MWD¢W/MW—
e2¢

/
_ (1 — 6—2¢/T) (1 — 672¢) ToToy

1T (A27)

for ¢ > 0.
Note that wWMw = I — eTe’T, where e denotes the last column of the T-dimensional

identity matrix, so that w MwDsw'Mw = Dg. Further, a direct calculation shows that

13



the t-th coordinates of z; and x2 equal

B \/5(1 — e /) (1 — (=1)" e=) cos (nt/2T)
=T T ’ (—¢+imt)/T _ ’ ’

B 2 (1- e_¢/T) (-1)* (e? —e?) e~ 92T cos (nt/2T)
S |e(-o+imt)/T 1| ’

For ¢ > 0, the lemma now follows from (A27) by verifying that

—2HTHHUT) | o=¢/T 026
[ _e2om T ) (1)

Toxh = Ay.

For ¢ = 0, multiplying both sides of equation (A26) by w'M from left and by Mw from
right and rearranging, we obtain WIMU(;Z)/UQ(SQ)MW = w' MwDyw'Mw. Summing this up
with (A23) yields

w’MUd')U(i)MW =wMwDyw' Mw = D,.

This establishes the lemma for ¢ = 0 because, as is easy to see, Ay = 0 for ¢ = 0. O
We now turn to the proof of lemma 4. By definition of EX and lemma A1,

Z] g1 P = Zz 123 J+1 D, 5

On the other hand,

-1
o0 T? 2
J=T+1 2 + w22 +o(T)

T T .. -2
Zj:JHD@Jj = Zj:J+1\1—6Xp{(—¢>z'+l7r])/T}|

o T2
= Zj:J+17TTj2+0(T2)
T2 9 2
= mytel =g

for all sufficiently large T, uniformly over ¢; > 0. Therefore,

T T2
Z] g+t N Zz—l 9J mtrﬂ'

The lemma’s second inequality is a straightforward consequence of the convergence jiz, /T? —
ur > 0 and the fact that, as implied by A4, tr Q/N is converging to a positive value as
N — oo. ]

14



A7 Proof of lemma 5

We have

E (a''Aeb) = 235:1 Zj;zl E (atgit Aijejsbs)
T N
= Z Z atAZ-Z-bt = a/b tr A.
t=1 i=1

Further, denoting the i-th row of ¢ as ¢;., we have
E (a'e’ Aebd'e' Bed)
N N

- Z” 1 Zp =1 E (e5.aA;ije;.bep.cBpie.d)

= 33 El(ea) (i) (540) (55d) AuByy)
> 12#1 ei.a) (e1.¢) (£.b) (¢1.d) Ay Bij)
+ Zz 1 Z#z i-d) (€5.0) (g.¢) Aij Bji)
+ Zizl E ((gi.a) (g:.b) (gi.c) (ei.d) Ai; Bis) -

We have, first,

SN B (e (o) (e5.0) (25.) AaBy)
N
DI )

IUDINRAC
S (a'b) (¢d) AuBj;
= (a,b> ( d) |: tI‘A tI‘B Z A“Bu:| )

second,

gi-a) (€i.c) (5.0) (¢;.d) Aij Bij)

S E
- Zi=1 Zj  (d'c) (V') Ay By
(d'c) (V'd) [tr (A'B Z A“Bu} ’

15



third,
N N
Zi:l Zj;éi E ((Ei.a) (Ezd) (8]‘.1)) (Ej.c) Aiiji)
— ZleN a’d b/C Aiiji
i e
= (d'd) (Ve [tr (AB) Z A“B”} ,
and finally,
N
> E((eia) (eid) (eic) (ei.d) AiBii)
N T T T T
= Zi_l E (Zt: Eitay Z  Eity Zt—l EitCt thl Eitthn'Bii>
T
Z A“ i (Z bsitots atthsd + Z CLtbSCtds -+ Zt,s:t;ﬁs atbscsdt
+ Zt:l ES?tatthtdt>
Zil AiiBii <(a'b) (c’d) + (a/c) (b/d) a d b/ + Z Eszt atbtctdt>
Summing up,

E (a'c’ Aebd'e' Bed)
= (a'b) (dd) (tr A) (tr B) + (d’c) (b'd) tr (A'B) + (d'd) (V'c) tr (AB)
N T
+ Zi:l AiiBi; —_ (E<f, — 3) arbyerdy.
Recall that E (a’e’ Aeb) = a’btr A and E (e’ Bed) = ¢/dtr B. These equalities and the last
display yield
Cov (d'e’Aeb,de'Bed) = (d'c) (Vd)tr (A'B) + (d'd) (b'c) tr (AB)
N T
+ Zi:l AiiBii _ (E<j, — 3) arbecrdy.
The inequality (29) follows because }Eeft — 3‘ is bounded by 2z uniformly over ¢ and t.

Indeed, by assumption Al, Eej, < ¢, and Eej; — 3 < 3. On the other hand, Ee}, >
(Es?t)2 =1, and thus, s¢4 > 1 and Ee}, —3 > —2 > —25¢. ]
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A8 Proof of equation (30)
Since |U;M||* < tr (MU!U; M) is obvious, it is sufficient to prove that

sup tr (MU/U;M) < 2T
pi€[0,1]

Let Ui(l) be the upper 7% x T block of U; and UZ»(Z) be the lower T x T" block. Then,

tr (MUIUM) =t (MUPDUOM) + o (MU U M)
< u(MuvIM) 4o (UPUP)
<

tr (MUVU M)+ T2,

where the last inequality follows from the fact that tr (Ui(Z)/UZ@)) equals the sum of squared

elements of the T x T matrix Ui@) and all these elements are non-negative and no larger
than 1. Hence, it is sufficient to prove that sup,, [ 1 tr (MUi(l)/Ui(l)M) < T2
Note that

1 3 3_ ! _
o= (A AT ) (L AT

Therefore, for p; = 1, Ui(l)M =0 and tr (MUi(l),Ui(l)M> < T? trivially holds. For p; < 1,

an elementary calculation yields

1—p2 (12T 1 /1-pT\"
tr (MUZ(l)’UZ(l)M> — p12 1012 p22 - ( Pi )
L —pj L —pj T\ 1-p;

2
1 1—p%T_1<1—p%”>
T l-p\1-p; T\1-p
_ 19 <1+piT_11—pz-T>
(1—p)* \1+p T1—p;
S -

T <1+piT 11—p’{>

L=pi \14+pi T 1—p;

Since the term in the final bracket is no larger than unity, the obtained bound on tr (M U Z-(l) /Ui(l)M )

is no larger than 72 for all non-negative p; < 1 — 1/7. Hence, it is sufficient to show that

1 1 T 11— pF
sup < A, pl>§T.
pe-yrnyl—pi \14+pi T 1—p;

17



Let us reparameterize the problem using p; = 1 — /T, where = € (0,1) . It is sufficient
to show that

T T
sup 1(1+(Q-2/T)" 1-(Q1-2/T) <1
2€(0,1) T 2—z/T T

The Taylor expansion of (1 — z/T)” at zero yields

where 2* € [0, z]. Therefore, for all T > 2 and z € (0, 1) we have
(1-2/T)" =1 -2+ Rypa® with |R, 7| <1/2.

This yields

X

1 <1+(1—x/T)T 11— —x/T)T) 1 <x/T—x+Rz,Tx2

— R .
x 2—z/T x 2—z/T - I’Tw>

But for T > 2 and z € (0, 1), we have 2/T — x + R, rx? < 0. Therefore, the right hand side
of the displayed equality is no larger than R, . Thus,

(AT

z€(0,1) T
This completes the proof of inequality (30) for all 7" > 2. A direct verification shows that
the inequality also holds for T' = 1.
As a bi-product, we established the fact that function

11 (el 1 1fp-T> ‘
& L ot or p; € 0,1
h(pi) = T1-p2 (1+ﬂi T 1-p; pi €[0,1)

(A28)
0 for p; =1

is non-negative, continuous, uniformly in 7' bounded, and such that, for all T, h(p;) < 1
and h(l —xz/T) < x/4 for z € [0,1). These facts are used in Section 4.4 of the main body
of the paper.
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A9 Proof of equation (A7)

We have

1—T_1

T=2 B pas d? ~TH1 _ T+1d72ﬁ’
S @ T i1y 2§jw D

i1 d (L=T)p " +Tp'"" -1 T(T—l)(l—p) +2((1=T)p+Tp* = p™*)

dp (1-p)? a (1-p)3
_2p(1—p") —T(1—p?) +T%(1 - p)?
(1=p)? '

A10 Detailed analysis of the Markov chain example

Recall that in the Markov chain example, we defined X;; as Z;(t/T'), where Z;(s) were
independent across ¢ = 1,..., N continuous time Markov chains with transition probabilities
(57), and such that Z;(0) equals 0 or 1 with equal probabilities. Let X be an N x T matrix
with entries X;;. Our goal is to establish an analogue of theorem 1 for the eigenvectors and
eigenvalues of ¥ = MX'XM/N.

To this end, consider the integral operator Kz (acting on C[0,1]) with kernel

i (s, 1) = / / §k¢(s,t)f(dw,d¢).

Note that the integration with respect to w is trivial. This is because there are no different
variance weights on cross-sectional series in our Markov chain example. The following are
analogues of assumption A4 and theorem 1.

Assumption A4’. Fy weakly converges to F as N, T — oco. The supports of Fn and
F belong to [0,w] x [O,Q_ﬁ] for some 0 < @,¢ < co. The eigenvalues ji1 > fia > ... of Kr

are simple.

Theorem A2. Let N,T — oo at arbitrary relative rates. Then under A4’, for any fixed
positive integer k,

(i) F,gdk’ 5 1, where dy = (or(1/T),...,0x(T/T)) /NT and @i (s) is the k-th principal
eigenfunction of Kr.

(i1) 5\k/T LN ik, where iy is the k-th principal eigenvalue of K.
R & P y
Gii) M) 05 5 i) S iy
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Remark A3. In part (ii), we divide M by T as opposed to T? in theorem 1. It is because
the orders of the variances of a process with local-to-unit root and our Markov chain differ
by T.

Proof: The proof is similar to that of theorem 1 so we will be brief. Because of the
special setup of the Markov chain example, we do not have analogues of Steps 1 and 4 of

the proof of theorem 1. Thus, we start from Step 2 and finish by Step 3. Consider
N
- 1
Ry M

where W; is a T x T matrix with elements W; ;. = e‘¢i|k—j|/T/4. It is useful to note that
AW; /(1 — e*2¢i/T) = limy 0o U,’wiUk@, where

TR0 (TG (T
e‘WT e_Qd’/T c e~
Uk(j) — 1 efd)/T .. ef(b(T*l)/T
0 1 .. e eT-9)/T
0 0 1

Matrix Uy defined just before lemma 2 is identical to Usg. The necessary changes to the
proof of theorem 1 can often be obtained by just formally replacing Uy with Usg.

In particular, the quantity % is almost equal to kg, r(s;,tx) with s; = j/T
and t, = k/T (see (16) for the definition), except the term of kg, 7 which has multiplier

e 261" disappears because the multiplier becomes (formally) e 20T = (0. More precisely,

A(MW; M) .

_oNm TV R —2¢;T? .
T(l — e*2¢i/T) k¢1 (Sj’tk) +e e¢z’2,T(5]7tk)a

where eg,2 7 is as in (A10).

Step 2 of the proof then proceeds with only minor changes. One of them is that we com-
pare the eigenvalues of the limiting operator to those of ES /T instead of ES /T?. Another
one is that the upper and lower bounds in lemma 4 become, respectively, %% and CiT.

Turning to Step 3, the main change is that A® in (23) is now defined simply as
MX! X; M. Note that, for ¢ < T,

|Xi- M G| = | Xi6q| < \/IIXal2l0qll? < VT,
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where the first equality holds because My, = ¢y, and the last inequality holds because
gl = 1 and Xj; can take only values 0 and 1. Since we have assumed independence across
i=1,..., N, the above display yields (cf. (31))

1 & 1 & T2
il YA | = 5 A®) il
7’<N;%A wq> = N2 ;Var (%A sOq) N
By Chebyshev’s inequality, we have (cf. (32))

K
A1 = Z A2fiy + op(T).
r=1

Further, instead of (34) we have

N T-1 1 T2
2 2
( 2 D (KiMg) ) < Var(1X: ) < 5

so that (cf. (35) and (36)),

T-1

- B 6 T
< < ——.
A1z < Z fir +op(T) < (1+OP(1))29K
r=K+1
Step 3 is then completed with only relatively minor changes. O
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