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This supplement is organized as follows. Section A provides proofs of the results given in

the main paper. In particular, Section A.1 introduces a preliminary lemma and the proofs

of theorems in Sections 3-6 are given in A.2-A.5, respectively. In Section B, we provide some

additional details to verify (3)-(4) and (6)-(10) in Section 2 of the main paper -see Lemmas 2 and

3 together with their proofs. A simulation study that investigates the �nite sample properties

of the estimators and related test statistics is given in Section C. Throughout the proofs, we

assume that C is a positive constant that may take a di�erent value in each appearance and

de�ne Kkn = K [cn (k/n− τ)]. Other notation is the same as in the main paper unless stated

otherwise.

A Proofs of the main results

A.1 A preliminary Lemma

Let {vk}k≥1 be a p× p′ matrix sequence of random variables and K(x) be a Borel function on

R. Set

Ln(τ) :=
cn
n

n∑
k=1

vkK [cn(k/n− τ)] ,

where {ck}k≥1 is a sequence of positive constants. The following lemma plays a key role in the

proofs of the main results and provides an extension to Lemma 5.1 of Hu et al. (2021).

Lemma 1. Suppose that

(a) supk≥1E ‖vk‖ <∞ and there exist A0 ∈ Rp×p′ and 0 < m := mn →∞ satisfying n/m→
∞ so that maxm≤j≤n−mE

∥∥∥ 1
m

∑j+m
k=j+1 vk −A0

∥∥∥ = o(1);

(b) K(x) is locally Riemann integrable and eventually monotonic so that
∫
|K| <∞.
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Then, for each τ ∈ (0, 1), cn →∞ and cn/n→ 0, we have∥∥∥∥Ln(τ)−A0

∫
K

∥∥∥∥ = oP (1). (A.1)

Remark A.1. Strict stationarity and ergodicity for vk are su�cient for the limit result of condi-

tion (a) above. Indeed, it follows from the stationarity requirement thatE
∥∥∥ 1
m

∑j+m
k=j+1 vk −A0

∥∥∥ =

E
∥∥ 1
m

∑m
k=1 vk −A0

∥∥ for all j. This, together with the ergodicity and the �nite moment condi-

tion, yields (with A0 = E(v1))

max
m≤j≤n−m

E

∥∥∥∥∥∥ 1

m

j+m∑
k=j+1

vk −A0

∥∥∥∥∥∥ = E

∥∥∥∥∥ 1

m

m∑
k=1

vk −A0

∥∥∥∥∥→ 0,

as m→∞, cf. Shiryaev (1996), Theorem 3, p. 413.

Remark A.2. It can be easily seen from the proof of Lemma 1 that (A.1) holds true for τ = 0

and τ = 1, if the one sided integral limits
∫∞
0 K (when τ = 0) and

∫ 0
−∞K (when τ = 1) are used

in the place of
∫
RK. For instance, if τ = 0 the counterpart of (A.5) is∣∣∣∣∣∣cnn

δ2n∑
k=δ1n

K [cn(k/n− τ)]−
∫ ∞
0

K

∣∣∣∣∣∣→ 0. (A.2)

Remark A.3. Suppose that β : [0, 1] → R is Riemann integrable and vt satis�es condition (a)

in Lemma 1. Since, instead of (A.2),∣∣∣∣∣∣ 1n
δ2n∑

k=δ1n

β(k/n)−
∫ 1

0
β

∣∣∣∣∣∣→ 0,

for any δ1n/n→ 0 and δ2n/n→ 1, a minor modi�cation in the proof of Lemma 1 gives

1

n

n∑
k=1

vkβ(k/n) = A0

∫ 1

0
β(τ)dτ + oP (1).

Proof of Lemma 1. We �rst assume that there exists an A > 0 such that K(x) = 0 if

|x| ≥ A and K(x) is Lipschitz continuous on R. These restrictions on K(x) will be removed

later. Without loss of generality, suppose A = 1 and K ≥ 0. Set δ1n = [n(τ − 1/cn)] ∨ 1,

δ2n = [n(τ + 1/cn)] ∨ 1, and

L′n(τ) :=
cn
n

δ2n∑
k=δ1n

vkK [cn(k/n− τ)] .

Since,

|cn(k/n− τ)| < 1 only if δ1n ≤ k ≤ δ2n, (A.3)
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we have Ln = L′n. Result (A.1) will follow if we prove that for all τ ∈ (0, 1),

E

∥∥∥∥L′n(τ)−A0

∫
K

∥∥∥∥→ 0. (A.4)

Since, Euler summation yields∣∣∣∣∣∣cnn
δ2n∑

k=δ1n

K [cn(k/n− τ)]−
∫
K

∣∣∣∣∣∣→ 0 (A.5)

for all τ ∈ (0, 1), as n→∞, it su�ces to show that E ‖Rn(τ)‖ → 0, where

Rn(τ) =
cn
n

δ2n∑
k=δ1n

(vk −A0) K [cn(k/n− τ)] .

Let γ = γn be integers such that γ → ∞ and γ cn/n → 0, T1n = [δ1n/γ] and T2n = [δ2n/γ].

Noting (A.3), we may write

‖Rn(τ)‖ =

∥∥∥∥∥∥cnn
δ2n∑

k=δ1n

(vk −A0)K [cn(k/n− τ)]

∥∥∥∥∥∥
=

∥∥∥∥∥∥cnn
T2n∑
s=T1n

(s+1)γ∑
k=sγ

(vk −A0)K [cn(k/n− τ)]

∥∥∥∥∥∥
≤ γcn

n

T2n∑
s=T1n

K [cn(sγ/n− τ)]
1

γ

∥∥∥∥∥∥
(s+1)γ∑
k=sγ

(vk −A0)

∥∥∥∥∥∥
+
cn
n

T2n∑
s=T1n

(s+1)γ∑
k=sγ

‖vk −A0‖ |K [cn(k/n− τ)]−K [cn(sγ/n− τ)]|

:= A1n(τ) +A2n(τ).

Recall that supk≥1E ‖vk‖ < ∞ by condition (b). In view of this it is readily seen from the

Lipschitz condition on K(x) that

E sup
τ
A2n(τ) ≤ C γcn

n

cn
n

δ2n∑
k=δ1n

E ‖vk −A0‖ ≤ C
γcn
n
→ 0.

Similarly, using condition (b), we have

EA1n(τ) ≤ max
γ≤s≤n−γ

E

∥∥∥∥∥1

γ

s+γ∑
k=s

vk −A0

∥∥∥∥∥ sup
τ
A3n(τ)→ 0,
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where

A3n(τ) =
γcn
n

T2n∑
s=T1n

K [cn(sγ/n− τ)] ,

and we have used the fact that supτ∈(0,1)
∣∣A3n(τ)−

∫
K
∣∣ → 0. Combining all these facts, we

complete the proof of E ‖Rn(τ)‖ → 0.

We next remove the restrictions on K and then conclude the proof of Lemma 1. Without

loss of generality, we assume K ≥ 0. Since K ≥ 0 is eventually monotonic, for any ε > 0,

there exists a constant A1ε > 0 such that K(x) is monotonic on (−∞,−A1ε) and (A1ε,∞) and∫
|x|>A1ε

K(x)dx < ε. As a consequence, it follows from
∫
K < ∞ that, for any ε > 0 and

A ≥ A1ε + 1, there is some Kε,A(x) Lipschitz continuous on R such that∫
|K −Kε,A| ≤ 2ε, (A.6)

and Kε,A(x) = 0, if |x| ≥ A (see e.g. Theorem 2.26 in Folland, 1999). It has been shown in the

�rst part that, for any ε > 0 and A ≥ A1ε + 1,

cn
n

n∑
k=1

vkKε,A [cn(k/n− τ)] = A0

∫
Kε,A + oP (1).

To show (A.1), it su�ces to show that, as n→∞ �rst and then ε→ 0 (implying A→∞),

Ln,ε(τ) :=
cn
n

n∑
k=1

vkK̃ [cn(k/n− τ)] = oP (1), (A.7)

where K̃(x) = K(x)−Kε,A(x).

For any ε > 0, let A be given as in (A.6). First note that, by the local Riemann integrability

of K̃(x), we have∣∣∣∣∣cnn
n∑
k=1

K̃ [cn(k/n− τ)] I(cn|k/n− τ | ≤ A)−
∫ A

−A
K̃(x)dx

∣∣∣∣∣→ 0,

for each τ when n→∞. Therefore, for n su�ciently large,

R1n :=
cn
n

n∑
k=1

∣∣∣K̃ [cn(k/n− τ)] I(cn|k/n− τ | ≤ A)
∣∣∣ ≤ ∫ |K̃(x)|dx+ ε ≤ 3ε.

On the other hand, it follows from the monotonicity of K(x) on (−∞,−A) and (A,∞) that,

whenever n is su�ciently large,

R2n :=
cn
n

n∑
k=1

∣∣∣K̃ [cn(k/n− τ)]
∣∣∣ I(cn|k/n− τ | > A)

=
cn
n

n∑
k=1

K [cn(k/n− τ)] I(cn|k/n− τ | > A)
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≤
∫
|x|>A−cn/n

K(x)dx ≤
∫
|x|>A1ε

K(x)dx < ε.

By using these facts, when n is su�ciently large, we have

cn
n

n∑
k=1

∣∣∣K̃ [cn(k/n− τ)]
∣∣∣ ≤ R1n +R2n ≤ 4ε.

In view of the above, as n→∞ �rst and then ε→ 0,

E ‖Ln,ε‖ ≤ 4ε sup
k≥1

E ‖vk‖ → 0,

as required. This completes the proof of Lemma 1. �

A.2 Proof of Theorem 1

We only consider Mn, i.e., (11) in the main paper, since the limit result for Sn follows easily

from Lemma 1 with vk = xk−1x
′
k−1σ

m
k .

Set Qk,n :=
√

cn
n α
′xk−1σkK [cn(k/n− τ)] where α ∈ Rp. Using Lemma 1 with vk =

[α′g(xk−1)σk]
2, we have

n∑
k=1

Q2
k,n =

cn
n

n∑
k=1

[
α′xk−1σk

]2
K2 [cn(k/n− τ)]

= E
[
α′x0σ1

]2 ∫
K2 + oP (1), (A.8)

where the second equation follows from Lemma 1 - K(x) is replaced by K2(x) and A0 is set

A0 = E [α′x0σ1]
2. In terms of (A.8), it follows from the classical martingale limit theorem (c.g.,

Hall and Heyde (1980), Theorem 3.2 or Wang (2014), Theorem 2.1) that, to prove (11) in the

main paper, it su�ces to show

max
1≤k≤n

|Qk,n| = oP (1). (A.9)

Note that for any A > 0, we have the inequality

max
1≤k≤n

|Qk,n| ≤ max
1≤k≤n

[
|Qk,n| I {‖xk−1σk‖ > A}

]
+ max

1≤k≤n

[
|Qk,n| I {‖xk−1σk‖ ≤ A}

]
≤

{
n∑
k=1

Q2
k,nI {‖xk−1σk‖ > A}

}1/2

+

{
n∑
k=1

Q4
k,nI {‖xk−1σk‖ ≤ A}

}1/4

=: II1n(A)1/2 + II2n(A)1/4.

Similar arguments used in (A.8) show that the �rst term

II1n(A) ≤ ‖α‖2 cn
n

n∑
k=1

‖xk−1σk‖2 I {‖xk−1σk‖ > A}K2 [cn(k/n− τ)]
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= ‖α‖2E ‖x0σ1‖2 I {‖x0σ1‖ > A}
∫
K2 + oP (1) = oP (1),

where we take n→∞ �rst and then A→∞, and the second term

II2n(A) ≤ ‖α‖4A4
(cn
n

)2 n∑
k=1

K4
[
cn(k/n− τ)

]
= oP (1)

for each A > 0, as n → ∞. Combining these facts together, we establish (A.9). The proof of

Theorem 1 is now complete. �

A.3 Proofs of Theorems 2 and 3

We only prove Theorem 3. The proof of Theorem 2 is similar and therefore omitted. Recall

x̂k = (x′k, x̃
′
k)
′, where x̃k−1 = (k/n− τ)xk−1, and note that[

θ̃(τ)

θ̃(1)(τ)

]
=

[
n∑
k=1

x̂k−1x̂
′
k−1Kkn

]−1 n∑
k=1

ykx̂k−1Kkn.

We may write

Dn

([
θ̃(τ)

θ̃(1)(τ)

]
−

[
θ(τ)

θ(1)(τ)

])
= Q−1n

(
Mn +Rn

)
, (A.10)

where Qn = D−1n
∑n

k=1 x̂k−1x̂
′
k−1KknD

−1
n ,Mn = D−1n

∑n
k=1 ekx̂k−1Kkn and

Rn = D−1n

n∑
k=1

[
xk−1

x̃k−1

]
Kkn θ(k/n)′xk−1 −QnDn

[
θ(τ)

θ(1)(τ)

]
.

Let Kj(x) = xjK(x) and Kj,kn = Kj

[
cn(k/n− τ)

]
. As in the proof of Theorem 1, it follows

from Lemma 1 that

Qn =

[
cn
n

∑n
k=1 xk−1x

′
k−1Kkn

cn
n

∑n
k=1 xk−1x

′
k−1K1,kn

cn
n

∑n
k=1 xk−1x

′
k−1K1,kn

cn
n

∑n
k=1 xk−1x

′
k−1K2,kn

]
→P Q2. (A.11)

Similarly, the conditional variance matrix [Mn,Mn] of the martingaleMn is

[Mn,Mn] = D−1n

n∑
k=1

σ2kx̂k−1x̂
′
k−1K

2
knD

−1
n

=

[
cn
n

∑n
k=1 σ

2
kxk−1x

′
k−1K

2
kn

cn
n

∑n
k=1 σ

2
kxk−1x

′
k−1 (1)K

2
kn

cn
n

∑n
k=1 σ

2
kxk−1x

′
k−1 (1)K

2
kn

cn
n

∑n
k=1 σ

2
kxk−1x

′
k−1 (2)K

2
kn

]
→P Ω2,

where (`)K
2(x) = x`K2(x) and (`)K

2
kn =(`) K

2
[
cn(k/n − τ)

]
, indicating thatMn →d N(0,Ω2)

due to Theorem 1. Combining these facts and (A.10), Theorem 3 will follow if we prove

Rn = oP (1) . (A.12)
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In fact, by noting

x′k−1θ(k/n)− x′k−1θ(τ)− x̃′k−1θ
(1)(τ) = (1/2)x′k−1θ

(2)(τ) (k/n− τ)2 ,

where τ is a mean value between k/n and τ (i.e., 0 < τ ≤ 1), it is readily seen that

Rn = D−1n

n∑
k=1

Kkn

[
xk−1

x̃k−1

]{
x′k−1θ(k/n)−

[
xk−1

x̃k−1

]′ [
θ(τ)

θ(1)(τ)

]}

= D−1n

n∑
k=1

Kkn

[
xk−1

x̃k−1

]{
x′k−1θ(k/n)− x′k−1θ(τ)− x̃′k−1θ

(1)(τ)
}

= (1/2)D−1n

n∑
k=1

(k/n− τ)2Kkn

[
xk−1

x̃k−1

]
x′k−1θ

(2)(τ).

Hence,

||Rn|| ≤ (1/2)D−1n

n∑
k=1

(k/n− τ)2Kkn

∥∥∥∥∥
[

xk−1

x̃k−1

]∥∥∥∥∥ ∣∣∣x′k−1θ(2)(τ)
∣∣∣

≤ (1/2)

n∑
k=1

(k/n− τ)2Kkn

[√
cn
n

+

√
c3n
n
|k/n− τ |

]
‖xk−1‖

∣∣∣x′k−1θ(2)(τ)
∣∣∣

≤ C

[
c−2n

√
cn
n

n∑
k=1

K2,kn ‖xk−1‖2 +

√
c3n
n
c−3n

n∑
k=1

|K3,kn| ‖xk−1‖2
]

= C

√
n

c5n

cn
n

n∑
k=1

(K2,kn + |K3,kn|) ‖xk−1‖2 = oP (1),

where we have used the facts that θ(2)(.) is uniformly bounded on [0, 1], n/c5n → 0, and

cn
n

n∑
k=1

(K2,kn + |K3,kn|) ‖xk−1‖2 →P

∫
(K2 + |K3|)E||x0||2,

the latter limit follows directly from Lemma 1. This proves (A.12) and also completes the proof

of Theorem 3. �

A.4 Proofs of Theorems 4 and 5

We only prove Theorem 5. The proof of Theorem 4 is similar and therefore omitted.

By recalling (A.11) and using Theorem 3, it su�ces to show that

D−1n Ω̃nD
−1
n = Ω2 + oP (1). (A.13)

Indeed, since Qn = D−1n Q̃nD−1n , it follows from (A.11) and (A.13) that

An :=
(
D−1n Q̃nD−1n

)−1
D−1n Ω̃nD

−1
n

(
D−1n Q̃nD−1n

)−1
= Q−12 Ω2Q

−1
2 + oP (1).
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As a consequence, for i = 1, · · · , p and j = i+ p, we have

n

cn

[
Q̃−1n Ω̃nQ̃−1n

]
ii

= (An)ii →P

[
Q−12 Ω2Q

−1
2

]
ii
, (A.14)

n

c3n

[
Q̃−1n Ω̃nQ̃−1n

]
jj

= (An)jj →P

[
Q−12 Ω2Q

−1
2

]
jj
. (A.15)

It follows from Theorem 3 and (A.14) that, under H0 : θi(τ) = η(τ),

t̃i(τ) =

√
n
cn

(
θ̃i(τ)− θi(τ)

)
√

n
cn

[
Q̃−1n Ω̃nQ̃−1n

]
ii

→d N (0, 1) ,

yielding (22) in the main paper. Similarly, it follows from Theorem 3 and (A.15) that, under

H0 : θ
(1)
i (τ) = η(τ)

t̃
(1)
i (τ) =

√
n
c3n

(
θ̃
(1)
i (τ)− θ(1)i (τ)

)
√

n
c3n

[
Q̃−1n Ω̃nQ̃−1n

]
jj

→d N (0, 1) ,

which gives (23) in the main paper, i.e. the second limit result of Theorem 5.

We next prove (A.13). It is readily seen that

D−1n Ω̃nD
−1
n =

[
cn
n

∑n
k=1 ẽ

2
kxk−1x

′
k−1 (0)K

2
kn

cn
n

∑n
k=1 ẽ

2
kxk−1x

′
k−1 (1)K

2
kn

cn
n

∑n
k=1 ẽ

2
kxk−1x

′
k−1 (1)K

2
kn

cn
n

∑n
k=1 ẽ

2
kxk−1x

′
k−1 (2)K

2
kn

]
, (A.16)

where (`)K
2(x) = x`K2(x) and (`)K

2
kn = (`)K

2
[
cn(k/n − τ)

]
, ` = 0, 1, 2 as de�ned in the proof

of Theorem 3. Recalling ẽk = yk − θ̃(τ)′xk−1 and noting

|
[
θ̃(τ)− θ(k/n)

]′
xk−1| ≤ C

[
|τ − k/n|+ oP (1)

]
||xk−1||,

due to Theorem 3 and the smoothing condition on θ(τ), we have

ẽ2k =
{
σkuk −

[
θ̃(τ)− θ(k/n)

]′
xk−1

}2
= σ2ku

2
k + ∆nk, (A.17)

where, uniformly in k = 1, 2, ..., n, and 0 ≤ τ ≤ 1

|∆nk| ≤ C|σkuk|
[
|τ − k/n|+ oP (1)

]
||xk−1||+ C

[
|τ − k/n|+ oP (1)

]2 ||xk−1||2
≤ C

[
|τ − k/n|+ oP (1)

]
σ2ku

2
k + C

[
|τ − k/n|+ oP (1)

]
||xk−1||2

:= ∆1,nk σ
2
ku

2
k + ∆2,nk.

In view of this, it follows from (A.1) with vk = ||xk−1||2 (recalling
∫
|x|3K2 < ∞) that, for

` = 0, 1, 2,

cn
n

n∑
k=1

|∆2,nk| ||xk−1 ||2 |(`)K2
kn|
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≤ C cn
n

n∑
k=1

||xk−1||2
[
oP (1)|(`)K2

kn|+ c−1n | (`+1)K
2
kn|
]

= oP (1), (A.18)

due to cn →∞. Now (A.13) will follow if we prove, for ` ≤ 2 and any α ∈ Rp, that

cn
n

n∑
k=1

σ2ku
2
k

(
α′xk−1

)2
(`)K

2
kn = E

[
σ21 (α′x0)

2
] ∫

x`K2 + oP (1). (A.19)

Indeed, by (A.19), we have

cn
n

n∑
k=1

σ2ku
2
k |∆1,nk| ||xk−1||2|(`)K2

kn|

≤ C
cn
n

n∑
k=1

σ2ku
2
k ||xk−1||2

(
oP (1)|(`)K2

kn|+ c−2n |(`+1)K
2
kn|
)

= oP (1),

for ` = 0, 1, 2. This, together with (A.18), yields that, for ` = 0, 1, 2,

cn
n

n∑
k=1

|∆nk| ||xk−1||2 |(`)K2
kn|

≤ cn
n

n∑
k=1

σ2ku
2
k |∆1,nk| ||xk−1||2 |(`)K2

kn|+
cn
n

n∑
k=1

|∆2,nk| ||xk−1||2|(`)K2
kn|

= oP (1).

Now, by (A.17) and (A.19), we have

cn
n

n∑
k=1

ẽ2kxk−1x
′
k−1 (`)K

2
kn

=
cn
n

n∑
k=1

σ2ku
2
kxk−1x

′
k−1 (`)K

2
kn +

cn
n

n∑
k=1

∆nk xk−1x
′
k−1 (`)K

2
kn

= Ω

∫
x`K2 + oP (1),

for ` = 0, 1, 2. Taking this result into (A.16), we obtain (A.13).

We �nally prove (A.19). Set vk = σ2ku
2
k[α
′xk−1]

2, where α ∈ Rp and recall that E
(
u2k|Fk−1

)
=

1 and σk are Fk−1 measurable. It is readily seen that A0 := E
(
σ21[α′x0]

2
)

= Evk for each k ≥ 1.

Using Lemma 1, it su�ces showing that

max
m≤j≤n−m

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

vk −A0

∣∣∣∣∣∣ ≤ max
m≤j≤n−m

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

σ2k[α
′xk−1]

2
[
u2k − E

(
u2k|Fk−1

)]∣∣∣∣∣∣
+ max
m≤j≤n−m

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

{
σ2k[α

′xk−1]
2 − E(σ2k[α

′xk−1]
2)
}∣∣∣∣∣∣→ 0.

9



The asymptotic negligibility of the second term on the r.h.s. above follows directly from Lemma

1 -recalling A2. To show the negligibility of the �rst term, �rst suppose that A4 b(i) holds i.e.

supk Eu
4
k < ∞. Set λk = σ2k[α

′xk−1]
2 and Uk = u2k − E

(
u2k|Fk−1

)
. Then for all A > 0 as

m→∞ �rst and then as A→∞,

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

λkUk

∣∣∣∣∣∣ ≤ E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

λkI {λk ≤ A}Uk

∣∣∣∣∣∣+ E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

λkI {λk > A}Uk

∣∣∣∣∣∣
≤ A

 1

m2
E

j+m∑
k=j+1

U2
k


1/2

+
1

m
E

j+m∑
k=j+1

λkI {λk > A}
(
E(u2k | Fk−1) + 1

)
≤ A

{
1

m
sup
k
Eu4k

}1/2

+ 2Eλ1I {λ1 > A} → 0.

Next, suppose that A4 b(ii) holds i.e. Yk = σ2k[α
′xk−1]

2
[
u2k − E

(
u2k|Fk−1

)]
is uniformly inte-

grable. In this case we have

max
m≤j≤n−m

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

Yk

∣∣∣∣∣∣→ 0 as m→∞. (A.20)

To see this note that E (Yk|Fk−1) = 0 and for all A > 0 set

Xk = Yk1 {|Yk| < A} − E (Yk1 {|Yk| < A} |Fk−1)

and

Zk = Yk1 {|Yk| ≥ A} − E (Yk1 {|Yk| ≥ A} |Fk−1) .

It can be easily checked that

Yk = Xk + Zk.

In view of this as m→∞ �rst and then as A→∞ we get

E

 1

m

j+m∑
k=j+1

Xk

2

=
1

m2

j+m∑
k=j+1

EX2
k ≤ A2/m→ 0,

and

E

∣∣∣∣∣∣ 1

m

j+m∑
k=j+1

Zk

∣∣∣∣∣∣ ≤ 2

m
E

j+m∑
k=j+1

|Yk| 1 {|Yk| ≥ A} ≤ 2 max
k∈N

E |Yk| 1 {|Yk| ≥ A} → 0,

as required. The proof of Theorem 5 is now complete. �

A.5 Proofs of Theorems 6 and 7

We only prove Theorem 6. In relation to Theorem 6, the approach taken in the proof of Theorem

7 is similar to that of Theorem 5 and the details are omitted.
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Note that the LLev-IV estimator is of the form

θ̂IV (τ) =

[
n∑
k=1

zkx
′
kKkn

]−1 n∑
k=1

ykzkKkn.

Set Qn = cn
n

∑n
k=1 zkx

′
kKkn and write

θ̂IV (τ)− θ(τ) = Q−1n (Mn +Rn) , (A.21)

whereMn =
√

cn
n

∑n
k=1 ekzkKkn and

Rn :=

√
cn
n

n∑
k=1

θ(k/n)′xkzkKkn −
√
cn
n

n∑
k=1

zkx
′
kθ(τ)Kkn.

Using arguments similar to those used in the proof of Theorem 3 we get

Mn →d N (0,Ω3) , Ω3 = E

(
σ21z1z

′
1

∫
K2

)
.

Further, it follows directly from Lemma 1 that

Qn →P

∫
K Ez1x

′
1 = Q3,

and

‖Rn‖ =

∥∥∥∥∥
√
cn
n

n∑
k=1

θ(k/n)′xkzkKkn −
√
cn
n

n∑
k=1

zkx
′
kθ(τ)Kkn

∥∥∥∥∥
≤

√
cn
n

n∑
k=1

∣∣{θ(k/n)′xk − θ(τ)′xk
}∣∣ ‖zk‖Kkn

≤
√
cn
n

n∑
k=1

∣∣{θ(k/n)′xk − θ(τ)′ ‖xk‖
}∣∣ ‖zk‖Kkn

≤ C

√
cn
n

n∑
k=1

|(k/n− τ) ‖xk‖| ‖zk‖Kkn

= C

√
n

c1+2γ
n

cn
n

n∑
k=1

‖xk‖ ‖zk‖ [cn(k/n− τ)]γ Kkn = OP

(√
n

c1+2γ
n

)
= oP (1),

where we have used condition (e) and the fact that cn
n

∑n
k=1 ‖xk‖ ‖zk‖ [cn(k/n− τ)]γ Kkn →P∫

xγK(x)dxE ‖x1‖ ‖z1‖ (cf. Lemma 1) and n/c1+2γ
n → 0. Taking these facts into (A.21), we

establish (25) of the main paper. �
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B Supporting Results for Section 2

In this section, we provide proofs for the results discussed in Section 2 of the main paper. We

�rst assume model (2), i.e.,

yk = β(k/n)xk−1 + uk,

andAssumption P hold. The following result demonstrates the asymptotic power of OLS based

t-tests for the predictability hypothesis, under neglected time variation in the slope parameter.

Lemma 2. Under Assumption P equations (3) and (4) in main paper hold, i.e.,

β̃OLS →P

∫ 1

0
β(τ)dτ,

and

n−1/2t̃OLS =
n−1/2β̃OLS√

σ̂2u
[∑n

k=1 x
2
k−1
]−1 →P

∫ 1
0 β(τ)dτ√
σ2∗
[
Ex21

]−1 ,
where σ̂2u = 1

n

∑n
k=1

[
yk − β̃OLSxk−1

]2
and σ2∗ is the pseudo-true value

σ2∗ =

[∫ 1

0
β2(τ)dτ −

(∫ 1

0
β(τ)dτ

)2
]
Ex21 + σ2u.

Proof. Note that

β̃OLS =

∑n
k=1 yk xk−1∑n
k=1 x

2
k−1

=

∑n
k=1 β(k/n)x2k−1∑n

k=1 x
2
k−1

+

∑n
k=1 xk−1uk∑n
k=1 x

2
k−1

.

It follows from Remark A.3 that

1

n

n∑
k=1

β(k/n)x2k−1 →P

∫ 1

0
β(τ)dτE

(
x21
)
. (B.1)

Further, under the given conditions, it is readily seen that

E

(
1√
n

n∑
k=1

xk−1uk

)2

= σ2uE
(
x21
)
,

which in turn implies that

1√
n

n∑
k=1

xk−1uk = OP (1). (B.2)

In view of (B.1) and (B.2), and the LLN for strictly stationary ergodic sequences (e.g. Shiryaev

12



(1996); Theorem 3, p. 413) we have

β̃OLS =

∑n
k=1 β(k/n)x2k−1∑n

k=1 x
2
k−1

+

∑n
k=1 xk−1uk∑n
k=1 x

2
k−1

=

∑n
k=1 β(k/n)x2k−1∑n

k=1 x
2
k−1

+OP (n−1/2)→P

∫ 1

0
β(τ)dτ,

as required for (3) in the main paper.

To prove (4) in the main paper, we �rst prove that σ̂2u →P σ
2
∗. Set

σ̂2u = T1n + T2n + T3n

=:
1

n

n∑
k=1

{[
β(k/n)− β̃OLS

]
xk−1

}2
+

2

n

n∑
k=1

{[
β(k/n)− β̃OLS

]
xk−1

}
uk +

1

n

n∑
k=1

u2k.

Notice that Riemann integrability of β on [0, 1] implies Riemann integrability of β2 on the same

set.1 In view of this, a simple binomial expansion of the �rst term above together with Remark

A.3 yields

T1n →P

{∫ 1

0
β(τ)2dτ −

[∫ 1

0
β(τ)dτ

]2}
E
(
x21
)
.

Further, noting that

E

(
1√
n

n∑
k=1

β(k/n)xk−1uk

)2

= σ2uE
(
x21
) 1

n

n∑
k=1

β(k/n)2 = σ2uE
(
x21
) ∫ 1

0
β(τ)2dτ + o(1)

together with (B.2) and the fact that β̃OLS = OP (1) we get

T2n = OP (1).

Finally, a standard argument yields T3n →P σ
2
u. In view of the above, σ̂2u →P σ

2
∗ and hence

n−1/2t̃OLS =
β̃OLS√

σ̂2u
[
1
n

∑n
k=1 x

2
k−1
]−1 →P

∫ 1
0 β(τ)dτ√
σ2∗
[
Ex21

]−1 ,
as required.

We next consider model (5) in the main paper, i.e.,

yk = µ(k/n) + βxk−1 + uk,

together with Assumption S. The following lemma demonstrates the size distortions associated

with OLS t-tests under H0 : β = β0 ∈ R when time variation in the intercept is neglected and

1Riemann integrability of β implies that β is bounded. In view of this and Lebesgue's criterion for Riemann
integrability (e.g. Apostol (1981; Thm 7.48)), it follows that β2 is also Riemann integrable.

13



the predictor is a stationary long memory process.

Lemma 3. Suppose that Assumption S (a)-(d.i) holds.

Then equations (6)-(9) in the main paper hold. Furthermore, under H0 : β = β0 ∈ R we have

n1/2

δn
t̃OLS =

δn

n1/2
β̃OLS − β0√

σ̃2u
[∑n

k=1 x
2
k−1
]−1 →d

[
1,−

∫ 1

0
µ(τ)dτ

]
·N

(
0,

1

σ2+E
(
x21
)Ψ

)
, (B.3)

where δn, Ψ are given as in Section 2 of the main paper, σ̃2u = 1
n

∑n
k=1

[
yk − µ̃OLS − β̃OLSxk−1

]2
and σ2+ is the pseudo-true value

σ2+ =

∫ 1

0
µ2(τ)dτ −

(∫ 1

0
µ(τ)dτ

)2

+ σ2u.

As a consequence, result (10) in the main paper holds true as well.

Proof. We start with the veri�cation of (6) and (7) that appear in the main paper. First note

that [
µ̃OLS

β̃OLS

]
−

[
n−1

∑n
k=1 µ(k/n)

β

]

=

{
n∑
k=1

[
1 xk−1

xk−1 x2k−1

]}−1
×

n∑
k=1

[
1

xk−1

]{
µ(k/n) + βxk−1 + uk −

[
1 xk−1

] [ n−1
∑n

j=1 µ(j/n)

β

]}

=

{
n∑
k=1

[
1 xk−1

xk−1 x2k−1

]}−1
·
n∑
k=1

[
1

xk−1

]µ(k/n) + uk − n−1
n∑
j=1

µ(j/n)


=

{
n∑
k=1

[
1 xk−1

xk−1 x2k−1

]}−1
·
n∑
k=1

[
uk

xk−1

{
uk + µ(k/n)− n−1

∑n
j=1 µ(j/n)

} ] .
Set ∆n := n−1

∑n
k=1

[
xk−1 −

(
n−1

∑n
j=1 xj−1

)]2
. It follows from Birkho�'s ergodic theorem

(cf. Kallenberg (2002), Theorem 10.6) that ∆n →P E(x21) and{
1

n

n∑
k=1

[
1 xk−1

xk−1 x2k−1

]}−1
= ∆−1n

[
n−1

∑n
k=1 x

2
k−1 −n−1

∑n
k=1 xk−1

−n−1
∑n

k=1 xk−1 1

]

→P

[
1 0

0 1/E(x21)

]
.
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In view of these facts, standard arguments show that the intercept estimator µ̃OLS satis�es that

√
n

(
µ̃OLS −

∫ 1

0
µ(τ)dτ

)
= [1 + oP (1)]n−1/2

n∑
k=1

uk →d N(0, σ2u),

where we have used the fact that the Euler sum n−1
∑n

k=1 µ(k/n) −
∫ 1
0 µ(τ)dτ = O(n−1) since

µ(.) is a bounded variation function. This yields (6) in the main paper.

The veri�cation of (7) in the main paper is similar. Indeed, it is readily seen that

n

δn

(
β̃OLS − β

)
= [1 + oP (1)]

[
E(x21)

]−1{
δ−1n

n∑
k=1

xk−1uk + δ−1n

n∑
k=1

µ(k/n)xk−1

−

n−1 n∑
j=1

µ(j/n)

(δ−1n n∑
k=1

xk−1

)
=

[
E(x21)

]−1δ−1n
n∑
k=1

µ(k/n)xk−1 −

n−1 n∑
j=1

µ(j/n)

(δ−1n n∑
k=1

xk−1

)+ oP (1)

→d

(
Ex21

)−1 [
1, −

∫ 1

0
µ(τ)dτ

]
·N (0,Ψ) , (B.4)

where we have used the result:

δ−1n

[
n∑
k=1

µ(k/n)xk−1,
n∑
k=1

xk−1

]
→d N (0,Ψ) . (B.5)

We next show (B.5) under Assumption S (d.i) with the matrix Ψ de�ned in (8) of the main

paper -a similar limit result holds under Assumption S (d.ii) but an explicit proof is omitted

(see also footnote 7 of the main paper). We commence with the proof of (B.5). Recalling that

xk =
∑∞

j=0 φjξk−j , with φj ∼ c0 j−ν , ν = 1− d and 0 < d < 1/2, we have

S′n :=
n∑
k=1

µ (k/n)xk−1 =
n−1∑
k=−∞

n−1∑
s=k∨0

µ ((s+ 1)/n)φs−kξk,

and

S′′n :=

n∑
k=1

xk−1 =

n−1∑
k=−∞

n−1∑
s=k∨0

φs−kξk.

For any �xed m ∈ N, de�ne

S′n,m :=
n−1∑

k=−mn

n−1∑
s=k∨0

µ ((s+ 1)/n)φs−kξk, S′′n,m :=
n−1∑

k=−mn

n−1∑
s=k∨0

φs−kξk.
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For λ1, λ2 ∈ R, by applying Lindeberg-Feller CLT (e.g. Kallenberg (2002), Theorem 5.12)2,

λ1δ
−1
n S′n,m + λ2δ

−1
n S′′n,m

converges to a normal distribution that has asymptotic variance determined by the limit of

n−1∑
k=−mn

E

[
λ1δ
−1
n

n−1∑
s=k∨0

µ ((s+ 1)/n)φs−kξk + λ2δ
−1
n

n−1∑
s=k∨0

φs−kξk

]2

= σ2ξ

n−1∑
k=−mn

[
δ−1n

n−1∑
s=k∨0

(λ1µ ((s+ 1)/n) + λ2)φs−k

]2

=
1

nc(d)

n−1∑
k=−mn

[
1

n

n−1∑
s=k∨0

(λ1µ ((s+ 1)/n) + λ2)

(
s− k
n

)−ν]2
+ o(1)

=
1

c(d)

∫ 1

−m

[
λ1

∫ 1

r∨0
µ (s) (s− r)−ν ds+ λ2

∫ 1

r∨0
(s− r)−ν ds

]2
dr + o(1).

Noting that µ(.) is bounded on [0, 1] and applying Fatou's lemma yields that

E
[
λ1δ
−1
n (S′n − S′n,m) + λ2δ

−1
n (S′′n − S′′n,m)

]2
= E

(
lim

m′→∞

[
λ1δ
−1
n (S′n,m′ − S′n,m) + λ2δ

−1
n (S′′n,m′ − S′′n,m)

]2 )
≤ lim

m′→∞
E
[
λ1δ
−1
n (S′n,m′ − S′n,m) + λ2δ

−1
n (S′′n,m′ − S′′n,m)

]2
= σ2ξ

−mn−1∑
k=−∞

E

[
δ−1n

n−1∑
s=0

(λ1µ ((s+ 1)/n) + λ2)φs−k

]2

≤ C(|λ1|max0≤t≤1 |µ(t)|+ |λ2|)2

n

−mn−1∑
k=−∞

[
1

n

n−1∑
s=0

(
s− k
n

)−ν]2

≤ C

∫ −m
−∞

[∫ 1

0
(s− r)−ν ds

]2
dr → 0, m→∞.

Combining the facts above, it follows from Theorem 4.28 of Kallenberg (2002) that

λ1δ
−1
n S′n + λ2δ

−1
n S′′n →d N

(
0, [λ1, λ2] Ψ

[
λ1

λ2

])
2To see this, de�ne

an,k = δ−1
n

n−1∑
s=k∨0

(λ1µ ((s+ 1)/n) + λ2)φs−k, k = −mn, · · · , n− 1,

then an := max
−mn≤k≤n−1

an,k → 0 and hence the Lindeberg condition holds: for any ε > 0

n−1∑
k=−mn

E(a2nkξ
2
kI(ank|ξk| > ε)) ≤ E

(
ξ21I
(
|ξ1| > ε/an

)) n−1∑
k=−mn

a2nk → 0.
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where the matrix Ψ is of the form as in (8) of the main paper under Assumption S (d.i).

Result (B.5) follows from the Cramér-Wold theorem.

We next verify (9) in the main paper. In fact, since ũk are the OLS residuals, the required

result follows from:

1

n

n∑
k=1

ũ2k =
1

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃OLS

)
xk−1 + uk

]2
=

1

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃OLS

)
xk−1

]2
+

1

n

n∑
k=1

u2k

+
2

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃OLS

)
xk−1

]
uk

→P

∫ 1

0
µ(τ)2dτ −

(∫ 1

0
µ(τ)dτ

)2

+ σ2u =: σ2+, (B.6)

where we have used the fact that

1

n

n∑
k=1

[µ(k/n)− µ̃]2 =
1

n

n∑
k=1

µ(k/n)2 − 2µ̃

n

n∑
k=1

µ(k/n) + µ̃2

→P

∫ 1

0
µ(τ)2dτ −

(∫ 1

0
µ(τ)dτ

)2

.

We �nally prove (B.3) and then complete the proof of Lemma 3. This is simple since,

by (B.4), (B.6) and the fact that n−1
∑n

k=1 xk →P 0, the OLS based t-statistic for the null

hypothesis H0 : β = β0, β0 ∈ R satis�es

√
n

δn
t̃OLS =

√
n

δn

β̃OLS − β0√(
1
n

∑n
k=1 ũ

2
k

) [∑n
k=1 x

2
k − n−1 (

∑n
k=1 xk)

2
]−1

=

√
n

δn

√
n
(
β̃OLS − β0

)
√(

1
n

∑n
k=1 ũ

2
k

) [
n−1

∑n
k=1 x

2
k − (n−1

∑n
k=1 xk)

2
]−1

= [1 + oP (1)]

n
δn

(
β̃OLS − β0

)
√(

1
n

∑n
k=1 ũ

2
k

) [
n−1

∑n
k=1 x

2
k

]−1
→d

1√
σ2+E

(
x21
) [1,−∫ 1

0
µ(τ)dτ

]
·N

(
0,

1

σ2+E
(
x21
)Ψ

)

as required.
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C Simulation Study

We explore the �nite sample properties of the proposed nonparametric estimators and related

test statistics with the aid of a simulation study. In particular, we consider predictive TVP

regressions of the form

yk = µ(k/n) + β(k/n)xk−1 + ek, (C.1)

and the following test hypotheses

H0 : β(τ) = 0 vs H1 : β(τ) 6= 0,

and

H0 : ∂µ(τ)/∂τ = 0 vs H1 : ∂µ(τ)/∂τ 6= 0,

with τ ∈ T ⊂ (0, 1). Note that the latter is a time invariance hypothesis about the intercept

term. The theoretical results of Section 2 demonstrate that neglecting time variability in the

intercept results in power loss and severe size distortions. These �ndings are corroborated by

the simulations.

In all cases the signi�cance level is set at 5% and the number of replication paths is 10,000.

For the purposes of this experiment the following vector of innovations is generated[
ξk

uk

]
∼ i.d.N

(
0,

[
1 δ

δ 1

])
,

δ ∈ (−1, 1). The predictor is a type II fractional process (e.g. Robinson and Hualde, 2003) of

the form

(I − L)d xk = ξk1 {k ≥ 1} . (C.2)

The regression error is

ek = σkuk,

with either

σ2k = 1,

or

σ2k = 0.01 + 0.45σ2k−1 + 0.45e2k−1, σ
2
0 = 0.01, (C.3)

which makes the regression error a strong GARCH(1,1).

We consider the following values for the memory parameter d = {0.25, 0.35, 0.45, 0.55}. The
value d = 0.55 is slightly above the nonstationarity threshold (d = 0.5) that determines the

maximal value of the memory parameter for which the limit distribution of the tests is N(0, 1).3

For nonstationary predictors, the nonparametric estimators under consideration do not possess

mixed Gaussian limit distribution and therefore some size distortion is likely. It is reasonable to

3As mentioned before, some preliminary theoretical results suggest that the proposed methods are also valid
for weakly nonstationary predictors i.e. long memory with d = 0.5 or mildly integrated processes.
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expect size distortions become more severe for larger values of the memory and the endogeneity

parameters. In certain data sets, some predictors (e.g. realised variance, in�ation) appear to

be long memory with memory parameter close to 0.5. We therefore consider the value d = 0.55

in order to assess the robustness of the proposed methods when predictors are close to the

nonstationarity threshold.

The e�ects of bandwidth choice on the bias and the MSE of the LLev and LLin slope param-

eter estimators are illustrated in Figure 5 and Figure 6 respectively. The memory order has very

little e�ect on bias, whilst bandwidth choice has a profound e�ect with substantial bias reduction

when under-smoothing is employed. Further, the LLin estimator exhibits superior performance,

relative to the LLev estimator for cn = n0.3. Higher memory order is associated with higher

MSE, particularly for the LLev estimator. Under-smoothing results in substantial MSE gains

for both estimators. Finally, LLin exhibits a better MSE performance relatively to that of the

LLev estimator, particularly for smaller sample sizes.

Figure 5: Bias of TVP Slope Estimators (plotted against τ)

19



Figure 6: MSE of TVP Slope Estimators (plotted against τ)

Next, we report results for the �nite sample performance of non parametric t-tests in the

context of predictive regressions as per (28) in the main paper. As mentioned above, we consider

two hypotheses. First, the no predictability hypothesis H0 : β(τ) = 0, τ ∈ (0, 1) against

H1 : β(τ) 6= 0. Under H1 we choose β(.) to be either a periodic function, capable of reproducing

periodic episodic predictability events, or a smooth transition function that is more relevant when

predictability is related to some regime switching event. For this kind of hypothesis we consider

both LLev and LLin tests. Second, we test the time invariance hypothesis for the intercept

H0 : ∂µ(τ)/∂τ = 0, τ ∈ (0, 1) against H1 : ∂µ(τ)/∂τ 6= 0 using the LLin based test. We consider

two possibilities for the exponent of the bandwidth parameter cn = nq. In particular,

q =

{
0.3, 0.4, Local Level

0.3, 0.35, Local Linear
.

As mentioned before, larger values of for cn (under-smoothing) provide better size control while

smaller values (over-smoothing) result in better power. In preliminary simulations we have also

considered additional possibilities for cn (i.e. q = {0.1, 0.2}), however we only report results for

bandwidth values that appear to yield superior size-power trade-o�.

We next specify the intercept and slope parameter functions µ(τ) and β(τ) utilised for the

predictability hypothesis. Under both the null and the alternative hypothesis the intercept is

given by

µ(τ) = 0.025 · sin(2πτ).
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On the other hand the slope parameter is

β(τ) =


0, under H0

b · cos(2πτ), or

b · {1 + exp [−30 (τ − 0.5)]}−1

}
under H1

,

with b = {0.033, 0.066, 0.099}. It should be emphasised that contrary to the �xed parameter case,

the estimators under consideration are not numerically invariant to the value of the intercept

when the latter is time varying. Therefore, the shape of the intercept function has an impact

on the �nite sample performance of the tests. Intercept functions that exhibit more abrupt

variation are likely to result in more severe size distortions because of larger nonlinearity induced

asymptotic bias (see Remark 2 in the main paper). On the other hand smaller variability in the

intercept function is associated with smaller asymptotic bias (cf. condition (e) of Theorems

2 and 3 in the main paper. We therefore employ a time varying intercept in order to assess

the performance of the proposed tests in situations when there is �nite sample bias due to

time variation in the intercept estimator. In particular, we choose a sinusoidal function that

has period one over (0, 1) i.e. the domain of the TVPs. The maximal value of the intercept

function in the simulation experiment, for the non predictability hypothesis, is relevant to the

empirical application, where we consider TVP predictive regressions with the realised variance

as a predictor. We �nd that the maximal estimates for the intercept are approximately 0.01, 0.02

and 0.05 for monthly, quarterly and annual data respectively. Therefore, 0.025 is a mid-range

value. The choice for the slope parameter function is also relevant to our empirical application.

In our empirical application, the maximal estimates for the slope parameter of realised variance

are approximately, 1.25, 2 and 6 for monthly, quarterly and annual data respectively. Therefore,

the particular choice for β(τ) (and b) is likely to give conservative asymptotic power results under

the alternative hypothesis.

Figures 7-8 report the empirical size of the LLev and LLin based tests for the non pre-

dictability hypothesis for sample sizes n = {500, 1000}, and d = {0.35, 0.45, 0.55}. We consider

two endogeneity scenarios. First, moderate endogeneity with δ = −0.55 and then very strong

endogeneity with δ = −0.95. Size (vertical axis) is plotted against various values of τ ∈ (0, 1)

(horizontal axis). In general, higher values for the memory parameter and strong endogeneity

lead to size distortions. It can be seen that size control is reasonably good even when d = 0.55

(i.e. slightly above the stationarity boundary) with small oversizing when δ = −0.55 and mod-

erate oversizing when δ = −0.95. Additional simulations, not reported here, show that when

the intercept is �xed over time, size is slightly better than that in Figures 9 and 10. Moreover,

for smaller values of d and |δ| preliminary simulations show that empirical size is closer to the

nominal one. Finally, as mentioned above abrupt changes in the intercept parameter may cause

size distortions. It seems however the tests perform reasonably well in this respect, in particular

when under-smoothing is employed (see also Figure 16 and the discussion below).
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Figure 7: Empirical Size of t-tests against τ : H0 : β(τ) = 0
(5% nominal size; n = 500; δ = −0.55; fractional regressor, GARCH(1,1) regression errors)

Figure 8: Empirical Size of t-tests against τ : H0 : β(τ) = 0
(5% nominal size; n = 1000; δ = −0.55; fractional regressor, GARCH(1,1) regression errors)
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Figure 9: Empirical Size of t-tests against τ : H0 : β(τ) = 0
(5% nominal size; n = 500; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)

Figure 10: Empirical Size of t-tests: H0 : β(τ) = 0
(5% nominal size; n = 1000; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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The empirical power of both tests is reported in Figures 11 and 12, for d = 0.45. Un-

der the alternative, for β(τ) = b · cos(2πτ), power peaks at τ = 0, 0.5, 1, approximately.

These locations correspond to the extrema of the cosine slope parameter function. There

are small di�erences between the LLev and LLin tests, and the two bandwidth choices. For

β(τ) = b · {1 + exp [−30 (τ − 0.5)]}−1, it seems that the LLev performs better than the LLin

test, particularly at boundary points. Note that the LLin test exhibits some power drop for τ

close to one. In all cases power improves when sample increases, as expected.

Figure 11: Empirical Power of t-tests: H1 : β(τ) = b · cos(2πτ)
(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 12: Empirical Power of t-tests: H1 : β(τ) = b · {1 + exp [−30 (τ − 0.5)]}−1
(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)

We next consider the �nite sample performance of the LLin test for the hypotheses H0 :

∂µ(τ)/∂τ = 0 i.e. the regression intercept is invariant with respect to time. The test statistic in

this case relies on the estimator for the derivative of µ(τ) which attains a slower convergence rate

(i.e.
√
n/c3n) than that of the regression parameters µ(τ) and β(τ). Therefore, it is reasonable

to expect that the power of the time invariance test is inferior to that for the no predictability

hypothesis considered earlier.

To assess the size of the test under the null hypothesis, we generate data from (28) in the main

paper with µ(τ) = 0.025 and β(τ) = 0.66 · cos(2πτ). Note that the slope parameter is chosen

to be time varying. Time variation in the slope parameter induces nonlinearity asymptotic bias

(see Remark 2 in the main paper) which is likely to result in some size distortions. Figure 13

reports the empirical size of the test for various values of the memory parameter and di�erent

sample sizes. As before, the exponent of the bandwidth term is q = {0.3, 0.35}. Size is in

general close to the nominal one with somewhat more substantial over-sizing when the predictor
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is nonstationary. It is worth noting that some variation in empirical size with respect to time is

evident that appears to resemble the time variation in the slope parameter. This is likely to be

due to nonlinearity induced asymptotic bias in slope parameter estimates.

Figure 13: Empirical Size of t-tests: H0 : ∂µ(τ)/∂τ = 0
(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)

Figure 14 reports the rejection frequency of the latter test under the alternative hypothesis.

In particular, the regression parameters are µ(τ) = b · sin(2πτ) with b = {0.01, 0.025, 0.05},
and β(τ) = 0.066 · cos(2πτ). The memory of the predictor is d = 0.45 and as before we

consider two sample sizes. The time invariance test is less powerful than the predictability

test considered earlier. Notably, there is a substantial power drop at boundary points. Note that

under H1 : ∂µ(τ)/∂τ = 2πb · cos(2πτ). Therefore, the derivative function assumes its maximum

values at τ = {0, 0.5, 1}. At boundary points power is very poor. This is likely due to asymptotic

bias in derivative estimation at boundary points (cf. Figure 1 in main paper). Hence, the test

appears to be quite conservative in terms of power, when there is substantial variation in the

parameter at boundary points. However, this test can be easily implemented in conjunction

with the predictability test. Better performance could be possibly achieved with the utilisation

of higher order kernels (e.g. local quadratic estimation) that may result in further bias reduction.

Tests for time variation in the parameters of predictive regressions is an important topic on its

own. We therefore leave further developments in this area for future work.
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Figure 14: Empirical Power of t-tests: H1 : ∂µ(τ)/∂τ = 2πb · cos(2πτ)
(5% nominal size; δ = −0.95; d = 0.45, GARCH(1,1) regression errors)

We conclude this section with some results for OLS based t-tests for the predictability hy-

pothesis when time variability in regression parameters is neglected. We �rst consider the size

of OLS based t-tests for the hypothesis H0 : β(τ) = 0, when µ(τ) = 0.25 · sin(2πτ) i.e. there

is neglected variation in the regression intercept. We compare the size of the OLS based test

with that based on the LLev estimator. It has been demonstrated in Section 2 that the conven-

tional t-statistic is divergent in this case when the memory parameter is strictly greater than

zero. Further, divergence rates are faster when memory is longer. These theoretical �ndings are

con�rmed by the empirical size reported in Figure 16. It is worth noting that the LLev exhibits

some oversizing for d = 0.45 when over-smoothing is employed. Note that in this case the in-

tercept parameter is more volatile than the one considered in Figures 7-8. It seems that long

memory, in conjunction with high variation in the slope parameter, exacerbates �nite sample

bias. Nevertheless, when under-smoothing is employed (i.e. q = 0.4) empirical size is close the

nominal one. Finally, Figure 15 reports asymptotic power when the slope parameter is either

a sinusoid or a smooth transition function (µ (τ) as above). Notice that in almost all cases the

LLev test outperforms the OLS test by a substantial margin.
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Figure 15: Empirical Power of OLS and LLev t-tests.
upper panel: H1 : β(τ) = 0.2 · cos(2πτ)
lower panel: H1 : β(τ) = 0.15 · {1 + exp [−30 (τ − 0.5)]}−1
(5% nominal size; δ = −0.95; d = 0.35, i.d.N(0, 1) regression errors)

Figure 16: Empirical Size of OLS and LLev based t-tests: τ : H0 : β(τ) = 0
(5% nominal size; δ = −0.95; i.d.N(0, 1) regression errors)
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