
Supplement to “Bounded support in linear random coefficient

models: Identification and variable selection”

Philipp Hermann and Hajo Holzmann∗

Department of Mathematics and Computer Science

Philipps-Universität Marburg

{herm, holzmann}@mathematik.uni-marburg.de

February 26, 2024

Abstract

As supplementary material for the paper ‘Bounded support in linear random coefficient

models: Identification and variable selection’ we provide the proofs of the results in Section

3.1, a primal-dual witness condition of the adaptive LASSO as well as an analysis for

estimating the mean vector with diverging number of parameters.

6 Proofs for Section 3.1

Proof of Proposition 3.1

Proof of Proposition 3.1. From Theorem 2.4, under the assumptions of the proposition the

matrix

S =

[
v
((

1,W>
1

)>)
, . . . , v

((
1,W>

p(p+1)/2

)>)]>
is of full rank with positive probability. Therefore, the random positive semi-definite matrix

1

n

(
Xσn
)>Xσn =

1

n

n∑
i=1

v
((

1,W>
i

)>)
v
((

1,W>
i

)>)>
for n ≥ p(p + 1)/2 is positive definite with positive probability. Hence its expected value,

which equals Cσ, is positive definite.

Proof of Theorem 3.2

Turning to the proof of Theorem 3.2, recall the decomposition

εσn = δn + ζn + ξn (6.1)
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with

δn ..=
(

v
(
X1

)>
vec
(
D1 − Σ∗

)
, . . . , v

(
Xn

)>
vec
(
Dn − Σ∗

))>
, (6.2)

ζn ..=
(

v
(
X1

)>
vec
(
En
)
, . . . , v

(
Xn

)>
vec
(
En
))>

,

ξn ..=
(

v
(
X1

)>
vec
(
Fn,1

)
, . . . , v

(
Xn

)>
vec
(
Fn,n

))>
.

of the error term (3.3).

Lemma 6.1. Under the conditions of Theorem 3.2, we have that

1√
n

(
Xσn
)>(

ζn + ξn
)

= oP (1) .

The proofs of the previous as well as the following lemma are deferred to the end of this

section.

Lemma 6.2. Set Zσ,1n = 1√
n

(
Xσn
)>
δn, then

E
[
Zσ,1n

∣∣Xσn] = 0p(p+1)/2 and Cov
(
Zσ,1n

∣∣Xσn) =
1

n

(
Xσn
)>

Ωσ
nXσn ,

where Ωσ
n is a diagonal matrix with entries v(X1)>Ψ∗ v(X1), . . . , v(Xn)>Ψ∗ v(Xn). In par-

ticular, Cov(Zσ,1n ) = Bσ and Zσ,1n = OP (1).

Proof of Theorem 3.2. We shall use the primal-dual witness characterization of the adaptive

LASSO in Lemma 7.1 in this supplement, Section 7, to prove the sign-consistency (3.7),

and the Lindeberg-Feller central limit theorem for random vectors, see van der Vaart (1998,

Proposition 2.27), to prove the asymptotic normality (3.8). For more details see also the proof

of Theorem 3.5. By Lemmas 6.1 and 6.2, setting

PXσn,Sσ
= In − Xσn,Sσ

((
Xσn,Sσ

)>Xσn,Sσ)−1(Xσn,Sσ)> ,
we have that

1√
n

(
Xσn,Scσ

)>
PXσn,Sσ

εσn = OP (1) .

In addition, the requirements
√
nλσn → 0 and

√
n
(
σ̂ init
n − σ∗

)
= OP (1) in Theorem 3.2 lead

to

0 ≤
√
nλσn∣∣σ̂ init
n,k

∣∣ ≤
√
nλσn∣∣∣∣∣σ∗k∣∣− ∣∣σ̂ init
n,k − σ∗k

∣∣∣∣∣ P→ 0 (6.3)

for all k ∈ Sσ since |σ∗k| > 0 for these k. This implies

√
n

[(
Xσn,Scσ

)>Xσn,Sσ((Xσn,Sσ)>Xσn,Sσ)−1
(
λσn

(
1

|σ̂ init
n,Sσ
|
� sign

(
σ∗Sσ
)))

+
1

n

(
Xσn,Scσ

)>
PXσn,Sσ

εσn

]
= OP (1) oP (1) +OP (1) = OP (1) . (6.4)
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Moreover,
√
n
(
σ̂ init
n − σ∗

)
= OP (1) implies also

√
n σ̂ init

n,k = OP (1) for all k ∈ Scσ since σ∗k = 0

for these k. Thus, by the second requirement nλσn → ∞ on the regularization parameter it

follows that
√
nλσn∣∣σ̂ init
n,k

∣∣ =
nλσn√
n
∣∣σ̂ init
n,k

∣∣ P→∞

for all k ∈ Scσ. Together with (6.4) this implies the first condition (7.1) of Lemma 7.1 with

high probability for a sufficient large number n of observations. Furthermore, let

σ̃n,Sσ = σ∗Sσ +

(
1

n

(
Xσn,Sσ

)>Xσn,Sσ)−1
(

1

n

(
Xσn,Sσ

)>
εσn − λσn

(
1

|σ̂ init
n,Sσ
|
� sign

(
σ∗Sσ
)))

.

Then we obtain

√
n
(
σ̃n,Sσ − σ∗Sσ

)
=

(
1

n

(
Xσn,Sσ

)>Xσn,Sσ)−1 1√
n

(
Xσn,Sσ

)>
εσn + oP (1)

by (6.3). Moreover, with Lemmas 6.1 and 6.2 it follows that

√
n
(
σ̃n,Sσ − σ∗Sσ

)
=

(
1

n

(
Xσn,Sσ

)>Xσn,Sσ)−1 1√
n

(
Xσn,Sσ

)>
δn + oP (1) (6.5)

= OP (1) + oP (1) = OP (1) ,

which leads to σ̃n,Sσ −σ∗Sσ = oP (1) . Therefore the second condition, sign
(
σ̃n,Sσ

)
= sign

(
σ∗Sσ
)
,

of Lemma 7.1 is also satisfied with high probability for large n. Sign-consistency of the

adaptive LASSO and σ̂AL
n,Sσ

= σ̃n,Sσ is the consequence.

Note that for the asymptotic normality (3.8) of the rescaled estimation error only the first

term in (6.5) is crucial. Hence we consider the random vectors

Zσ,1n =
1√
n

(
Xσn
)>
δn =

1√
n

n∑
i=1

(
e>i δn

)
v(Xi) =

1√
n

n∑
i=1

(
v(Xi)

>vec
(
Di − Σ∗

))
v(Xi) ,

where Di =
(
Ai − µ∗

)(
Ai − µ∗

)>
and δn is defined in (6.2). Now we want to apply the

Lindeberg-Feller central limit theorem for the array

Qn,i =
1√
n

(
v(Xi)

>vec
(
Di − Σ∗

))
v(Xi) , i = 1, . . . , n ,

of random vectors. These are independent and identically distributed in each row (for fixed n)

since (X>1 ,A
>
1 )>, . . . , (X>n ,A

>
n )> are independent and identically distributed. Furthermore,

they are centered,

E
[
Qn,i

]
=

1√
n
E
[
E
[
v(Xi)

>vec
(
Di − Σ∗

) ∣∣∣Xσn] v(Xi)

]
=

1√
n
E
[
0 · v(Xi)

]
= 0p(p+1)/2 ,

and for the sum of the covariance matrices

n∑
i=1

Cov
(
Qn,i

)
= Cov

(
n∑
i=1

Qn,i

)
= Cov

(
Zσ,1n

)
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we get by Lemma 6.2

n∑
i=1

Cov
(
Qn,i

)
= Bσ .

Moreover, we obtain for arbitrary δ > 0 the equation

n∑
i=1

E
[
‖Qn,i‖22 1

{
‖Qn,i‖2 > δ

}]
= E

[
v
(
X
)>

vec
(
D − Σ∗

)
v
(
X
)>

vec
(
D − Σ∗

)
v
(
X
)>

v
(
X
)

· 1
{

v(X)>vec(D − Σ∗) v(X)>vec(D − Σ∗) v(X)>v(X) > δ2n
}]
.

The expected mean E
[
v(X)>vec(D − Σ∗) v(X)>vec(D − Σ∗) v(X)>v(X)

]
exists because of

Assumption 1 and the Cauchy Schwarz inequality. Thus we get

lim
n→∞

n∑
i=1

E
[
‖Qn,i‖22 1

{
‖Qn,i‖2 > δ

}]
= 0

by Lebesgue’s dominated convergence theorem, which coincides with Lindeberg’s condition,

see van der Vaart (1998, Proposition 2.27). Hence the mentioned proposition implies the

weak convergence

Zσ,1n =
1√
n

(
Xσn
)>
δn =

n∑
i=1

Qn,i
d−→ Q ∼ Np(p+1)/2

(
0p(p+1)/2,B

σ
)
,

respectively

1√
n

(
Xσn,Sσ

)>
δn

d−→ QSσ ∼ Nsσ
(
0sσ ,B

σ
SσSσ

)
.

So all in all a multivariate version of Slutsky’s theorem, see for example van der Vaart (1998,

Theorem 2.7, Lemma 2.8), together with equation (6.5) leads to

√
n
(
σ̂AL
n,Sσ − σ

∗
Sσ

) d−→
(
Cσ
SσSσ

)−1
QSσ .

In addition, it follows that(
Cσ
SσSσ

)−1
QSσ ∼ Nsσ

(
0sσ ,

(
Cσ
SσSσ

)−1
Bσ
SσSσ

(
Cσ
SσSσ

)−1)
by the symmetry of Cσ

SσSσ
and the properties of the multivariate normal distribution, and

hence the asymptotic normality (3.8).

Proof of Lemma 6.1. We prove Lemma 6.1 in two steps. First we show that

1√
n

(
Xσn
)>
ζn = oP (1) . (6.6)

We obtain
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1√
n

(
Xσn
)>
ζn =

1√
n

n∑
i=1

(
e>i ζn

)
v
(
Xi

)
=

1√
n

n∑
i=1

(
v
(
Xi

)>
vec
(
En
))

v
(
Xi

)
=

1√
n

n∑
i=1

( p(p+1)/2∑
q=1

v
(
Xi

)
q
vec
(
En
)
q

)
v
(
Xi

)
=

p(p+1)/2∑
q=1

√
n vec

(
En
)
q

(
1

n

n∑
i=1

v
(
Xi

)
q

v
(
Xi

))
, (6.7)

where

En =
(
µ∗ − µ̂n

)(
µ∗ − µ̂n

)>
.

By the assumption on µ̂n we get e>k En el =
(
µ̂n,k − µ∗k

)(
µ̂n,l − µ∗l

)
= OP (1/n) for k, l ∈

{1 . . . , p}, and hence also

√
n vec

(
En
)
q

= OP

(
1√
n

)
(6.8)

for all q ∈ {1, . . . , p(p + 1)/2}. Furthermore, the random vectors Qqi = v
(
Xi

)
q

v
(
Xi

)
are

independent and identically distributed with

E
[
‖Qqi ‖2

]
≤ E

[
‖Qqi ‖1

]
= E

[∥∥∥v
(
Xi

)
q

v
(
Xi

)∥∥∥
1

]
=

p(p+1)/2∑
r=1

E
[∣∣∣v(Xi

)
r

v
(
Xi

)
q

∣∣∣] <∞ ,

so that by the law of large numbers

1

n

n∑
i=1

v
(
Xi

)
q

v
(
Xi

)
= OP (1) (6.9)

for all q ∈ {1, . . . , p(p+ 1)/2} follows. In summary, (6.7), (6.8) and (6.9) lead to (6.6).

In the second step, consider

1√
n

(
Xσn
)>
ξn =

1√
n

n∑
i=1

( p(p+1)/2∑
q=1

v
(
Xi

)
q
vec
(
Fn,i

)
q

)
v
(
Xi

)
,

where Fn,i =
(
Ai − µ∗

)(
µ∗ − µ̂n

)>
+
(
µ∗ − µ̂n

)(
Ai − µ∗

)>
. Then we obtain analogously

1√
n

(
Xσn
)>
ξn =

p∑
k,l=1

√
n
(
µ̂n,k − µ∗k

)(
− 2

n

n∑
i=1

Xi,kXi,l

(
Ai,l − µ∗l

)
v
(
Xi

))
= OP (1) oP (1) = oP (1),

since

E
[
X1,kX1,l

(
A1,l − µ∗l

)
v
(
X1

)]
= 0

by the independence of X1 and A1.
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Proof of Lemma 6.2. We obtain by simple calculation E
[
δn
∣∣Xσn] = 0n and Cov

(
δn
∣∣Xσn) =

Ωσ
n, hence

E
[
Zσ,1n

∣∣Xσn] =
1√
n

(
Xσn
)>E[δn ∣∣Xσn] = 0p(p+1)/2

and

Cov
(
Zσ,1n

∣∣Xσn) =
1

n

(
Xσn
)>Cov

(
δn
∣∣Xσn)Xσn =

1

n

(
Xσn
)>

Ωσ
nXσn .

For random variables Q1, Q2 and Q3 the law of total covariance implies the decomposition

Cov
(
Q1, Q2

)
= E

[
Cov

(
Q1, Q2

∣∣Q3

)]
+ Cov

(
E
[
Q1

∣∣Q3

]
,E
[
Q2

∣∣Q3

])
.

This can be extended to random vectors and covariance matrices and hence we obtain

Cov
(
Zσ,1n

)
= E

[
Cov

(
Zσ,1n

∣∣Xσn)]+ Cov
(
E
[
Zσ,1n

∣∣Xσn])
= E

[
1

n

(
Xσn
)>

Ωσ
nXσn

]
= Bσ .

Boundedness in probability follows since by the law of large numbers,

1

n

(
Xσn
)>

Ωσ
nXσn =

1

n

n∑
i=1

(
v
(
Xi

)>
Ψ∗ v

(
Xi

))
v
(
Xi

)
v
(
Xi

)> → Bσ .

7 The adaptive LASSO

We look for a fixed number n ∈ N of observations at the ordinary linear regression model

Yn = Xn β∗ + εn ,

where Yn ∈ Rn is the vector of the response variables, Xn ∈ Rn×p the deterministic design

matrix, β∗ ∈ Rp the unknown coefficient vector and εn ∈ Rn represents additive noise.

Moreover, we allow the coefficients β∗ to be sparse, in other words it is s ≤ p for

S = supp
(
β∗
)

=
{
k ∈ {1, . . . , p}

∣∣β∗k 6= 0
}
, s = |S| .

In addition, let Sc = {1, . . . , p} \ S be the relative complement of S. Because of the sparsity

of the coefficients the linear regression model can also be expressed by

Yn = Xn,S β∗S + εn .

Consider the adaptive LASSO estimator with regularization parameter λn > 0, given by

β̂ AL
n ∈ ρAL

n,λn
..= arg min

β∈Rp

(
1

n
‖Yn − Xn β‖22 + 2λn

p∑
k=1

|βk|∣∣β̂ init
n,k

∣∣
)
,

where β̂ init
n ∈ Rp is an initial estimator of β∗. If β̂ init

n,k = 0, we require βk = 0 in the above

definition.

6



Lemma 7.1 (Primal-dual witness characterization of the adaptive LASSO). Assume s ≤ n

and rank(Xn,S) = s. If∣∣∣∣∣X>n,ScXn,S(X>n,SXn,S)−1λn
(

1∣∣β̂ init
n,S

∣∣ � sign
(
β∗S
))

+
1

n
X>n,ScPX⊥n,S

εn

∣∣∣∣∣ < λn∣∣β̂ init
n,Sc

∣∣ (7.1)

with

PX⊥n,S
..= In − Xn,S

(
X>n,SXn,S

)−1
X>n,S

holds, and

β̃n,S = β∗S +

(
1

n
X>n,SXn,S

)−1( 1

n
X>n,S εn − λn

(
1∣∣β̂ init
n,S

∣∣ � sign
(
β∗S
)))

satisfies sign
(
β̃n,S

)
= sign

(
β∗S
)
, then the unique adaptive LASSO solution ρAL

n,λn
=
{
β̂ AL
n

}
satisfies

sign
(
β̂ AL
n

)
= sign

(
β∗
)
, β̂ AL

n,S = β̃n,S and β̂ AL
n,Sc = 0|Sc| .

Proof. Cf. Lemma 12.1 in Zhou et al. (2009) with ~w =
(
1/|β̂ init

n,1 |, . . . , 1/|β̂ init
n,p |

)> ∈ Rp.

8 Estimating the means with diverging number p of parame-

ters

The model is given in vector-matrix form by

Yµn = Xµn µ∗ + εµn ,

where

Yµn ..=
(
Y1, . . . , Yn

)>
, Xµn ..=

[
X1, . . . ,Xn

]>
, εµn

..=
(
X>1
(
A1 − µ∗

)
, . . . ,X>n

(
An − µ∗

))>
.

Then the adaptive LASSO estimator with regularization parameter λµn > 0 is given by

µ̂AL
n ∈ ρAL

µ,n,λµn
..= arg min

β∈Rp

(
1

n
‖Yµn − Xµn β‖

2
2 + 2λµn

p∑
k=1

|βk|∣∣µ̂ init
n,k

∣∣
)
, (8.1)

where µ̂ init
n ∈ Rp is an initial estimator of µ∗. Note that if µ̂ init

n,k = 0, we require again βk = 0.

Further, let

Cµ ..= E
[
XX>

]
, Bµ ..= E

[(
X>Σ∗X

)
XX>

]
,

and we denote by

Sµ ..= supp(µ∗) =
{
k ∈ {1, . . . , p}

∣∣µ∗k 6= 0
}
, sµ ..= |Sµ| ,

the support of the mean vector µ∗. Scµ
..= {1, . . . , p} \ Sµ is again the corresponding relative

complement.
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Assumption 3 (Growing p). We assume that (X>i ,A
>
i )>, i = 1, . . . , n, are identically dis-

tributed, and that

(A9) the random coefficients A have finite second moments,

(A10) the covariate vector X is sub-Gaussian,

(A11) cCµ,l ≤ λmin

(
Cµ
)
≤ λmax

(
Cµ
)
≤ cCµ,u for some positive constants 0 < cCµ,l ≤ cCµ,u <

∞, where λmin(A) and λmax(A) denote the minimal and maximal eigenvalues of a

symmetric matrix A,

(A12) λmax

(
Bµ
)
≤ cBµ,u for some positive constant cBµ,u > 0,

(A13) limn→∞ p/n = 0.

Theorem 8.1 (Variable selection for growing p). Let Assumption 3 be satisfied, and assume

that for the initial estimator µ̂ init
n in the adaptive LASSO µ̂AL

n in (8.1) we have√
n/p

∥∥µ̂ init
n − µ∗

∥∥
2

= OP (1). Moreover, if the regularization parameter is chosen as λµn → 0,

√
sµ nλ

µ
n /(µ

∗
min

√
p)→ 0 ,

√
p/(µ∗min

√
n)→ 0 , n λµn/p→∞

with µ∗min
..= mink∈Sµ |µ∗k|, then it follows that µ̂AL

n is sign-consistent,

P
(

sign
(
µ̂AL
n

)
= sign

(
µ∗
))
→ 1 . (8.2)

For the proof of Theorem 8.1 we need the following auxiliary lemma.

Lemma 8.2. Set Zµn = 1
n

(
Xµn
)>
εµn, then ‖Zµn‖2 = OP

(√
p/n

)
.

Proof of Lemma 8.2. It is

E
[
‖Zµn‖

2
2

]
=

1

n2
E
[
(εµn)>Xµn (Xµn)>εµn

]
=

1

n2
E
[
trace

(
(Xµn)>εµn (εµn)>Xµn

)]
=

1

n2
E
[
trace

(
(Xµn)>E

[
εµn (εµn)>

∣∣Xµn]Xµn)]
=

1

n
trace

(
E
[

1

n
(Xµn)>Ωµ

nXµn
])

,

where Ωµ
n = Cov

(
εµn
∣∣Xµn) is a diagonal matrix with entries X>1 Σ∗X>1 , . . . ,X

>
nΣ∗X>n . It is

obvious that

E
[

1

n
(Xµn)>Ωµ

nXµn
]

= Bµ ,

and hence we obtain by Assumption (A12) the estimate

E
[
‖Zµn‖

2
2

]
=

trace
(
Bµ
)

n
≤
λmax

(
Bµ
)
p

n
≤
cBµ,u p

n
.

Markov’s inequality implies the assertion.
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Proof of Theorem 8.1. We shall use the primal-dual witness characterization of the adap-

tive LASSO in Lemma 7.1 in Section 7 to prove the sign-consistency (8.2). We obtain by

Assumption (A10) and Wainwright (2019, Theorem 6.5) that∥∥∥∥ 1

n
(Xµn)>Xµn − Cµ

∥∥∥∥
M,2

= OP

(√
p/n

)
,

which implies together with the Assumptions (A11) and (A13) the invertibility of the Gram

matrix for large n, and hence by Loh and Wainwright (2017, Lemma 11) we get also∥∥∥∥∥
(

1

n
(Xµn)>Xµn

)−1
−
(
Cµ
)−1∥∥∥∥∥

M,2

= OP

(√
p/n

)
.

Furthermore, basic properties of the `2 operator norm lead to∥∥∥∥(Xµn,Scµ)>Xµn,Sµ((Xµn,Sµ)>Xµn,Sµ)−1 − Cµ
ScµSµ

(
Cµ
SµSµ

)−1∥∥∥∥
M,2

= OP

(√
p/n

)
.

In particular, this implies∥∥∥∥∥
(

1

n
(Xµn)>Xµn

)−1∥∥∥∥∥
M,2

= OP (1) ,

∥∥∥∥(Xµn,Scµ)>Xµn,Sµ((Xµn,Sµ)>Xµn,Sµ)−1
∥∥∥∥
M,2

= OP (1) .

(8.3)

Moreover, let µ̂ init
n,min

..= mink∈Sµ |µ̂ init
n,k |, then∣∣∣∣ µ̂ init

n,min − µ∗min

µ∗min

∣∣∣∣ ≤ 1

µ∗min

∥∥µ̂ init
n − µ∗

∥∥
2

= OP

( √
p

µ∗min

√
n

)
= oP (1)

since
√
n/p

∥∥µ̂ init
n − µ∗

∥∥
2

= OP (1) and
√
p/(µ∗min

√
n)→ 0. This implies(

1 +
µ̂ init
n,min − µ∗min

µ∗min

)−1
= OP (1) ,

and hence we obtain√
n

p

∥∥∥∥∥λµn
(

1

|µ̂ init
n,Sµ
|
� sign

(
µ∗Sµ
))∥∥∥∥∥

2

≤
√
nλµn√
p

∥∥∥∥∥ 1

|µ̂ init
n,Sµ
|

∥∥∥∥∥
2

≤
√
sµ nλ

µ
n

√
p

∥∥∥∥∥ 1

|µ̂ init
n,Sµ
|

∥∥∥∥∥
∞

=

√
sµ nλ

µ
n

√
p

(
µ̂ init
n,min

)−1
=

√
sµ nλ

µ
n

√
p

(
µ∗min

)−1(
1 +

µ̂ init
n,min − µ∗min

µ∗min

)−1
=

√
sµ nλ

µ
n

µ∗min

√
p
OP (1)

= oP (1) (8.4)
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since
√
sµ nλ

µ
n/(µ∗min

√
p)→ 0 by assumption. It follows that√

n

p

∥∥∥∥∥(Xµn,Scµ)>Xµn,Sµ((Xµn,Sµ)>Xµn,Sµ)−1
(
λµn

(
1

|µ̂ init
n,Sµ
|
� sign

(
µ∗Sµ
)))

+
1

n

(
Xµn,Scµ

)>
PXµn,Sµ

εµn

∥∥∥∥∥
2

≤
∥∥∥∥(Xµn,Scµ)>Xµn,Sµ((Xµn,Sµ)>Xµn,Sµ)−1

∥∥∥∥
M,2

√
n

p

∥∥∥∥∥λµn
(

1

|µ̂ init
n,Sµ
|
� sign

(
µ∗Sµ
))∥∥∥∥∥

2

+

√
n

p

∥∥∥∥ 1

n

(
Xµn,Scµ

)>
εµn

∥∥∥∥
2

+

∥∥∥∥(Xµn,Scµ)>Xµn,Sµ((Xµn,Sµ)>Xµn,Sµ)−1
∥∥∥∥
M,2

√
n

p

∥∥∥∥ 1

n

(
Xµn,Sµ

)>
εµn

∥∥∥∥
2

= OP (1) oP (1) +OP (1) +OP (1)

= OP (1) (8.5)

by Lemma 8.2 and (8.3), where

PXµn,Sµ
= In − Xµn,Sµ

((
Xµn,Sµ

)>Xµn,Sµ)−1(Xµn,Sµ)> .
Furthermore, it is∣∣µ̂ init

n,k

∣∣
λµn

≤

∥∥µ̂ init
n,Scµ

∥∥
2

λµn
=

∥∥µ̂ init
n,Scµ
− µ∗Scµ

∥∥
2

λµn
≤
∥∥µ̂ init

n − µ∗
∥∥
2

λµn
=

√
n/p

∥∥µ̂ init
n − µ∗

∥∥
2√

n/p λµn

for all k ∈ Sc. The condition
√
n/p

∥∥µ̂ init
n − µ∗

∥∥
2

= OP (1) together with nλµn/p→∞ implies

the convergence ∣∣µ̂ init
n,k

∣∣√
n/p λµn

=
1

nλµn/p
OP (1) = oP (1) .

Hence it follows by (8.5) that the first condition (7.1) of Lemma 7.1 is satisfied with high

probability for a sufficient large sample size n. Furthermore, let

µ̃n,Sµ = µ∗Sµ +

(
1

n

(
Xµn,Sµ

)>Xµn,Sµ)−1
(

1

n

(
Xµn,Sµ

)>
εµn − λµn

(
1

|µ̂ init
n,Sµ
|
� sign

(
µ∗Sµ
)))

.

Then we obtain√
n

p

∥∥∥µ̃n,Sµ − µ∗Sµ∥∥∥2 ≤
∥∥∥∥∥
(

1

n

(
Xµn,Sµ

)>Xµn,Sµ)−1
∥∥∥∥∥
M,2

(√
n

p

∥∥∥∥ 1

n

(
Xµn,Sµ

)>
εµn

∥∥∥∥
2

+

√
n

p

∥∥∥∥∥λµn
(

1

|µ̂ init
n,Sµ
|
� sign

(
µ∗Sµ
))∥∥∥∥∥

2

)
= OP (1)

(
OP (1) + oP (1)

)
= OP (1)

by (8.3), (8.4) and Lemma 8.2. In particular, this implies∥∥∥µ̃n,Sµ − µ∗Sµ∥∥∥2 = OP

(√
p/n

)
= oP (1)

by Assumption (A13), and hence the second condition, sign
(
µ̃n,Sµ

)
= sign

(
µ∗Sµ
)
, of Lemma

7.1 is also satisfied with high probability for large sample sizes n. Sign-consistency of the

adaptive LASSO and µ̂AL
n,Sµ

= µ̃n,Sµ is the consequence.
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Zhou, S., S. van de Geer, and P. Bühlmann (2009). Adaptive lasso for high dimensional

regression and Gaussian graphical modeling. arXiv preprint arXiv:0903.2515 .

11


	Proofs for Section 3.1
	The adaptive LASSO
	Estimating the means with diverging number p of parameters

