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Appendix D contains proofs for all technical lemmas used in Appendices A and B. Appendix E

offers technical details for Section 5. Additionally, Appendix F presents tables summarizing simula-

tion results for Designs 3–5. It also includes supplementary Monte Carlo experiments (Designs 6–8)

that investigate the impact of serial correlations of xit on our proposed estimation and inference

procedure.

D Proofs for Technical Lemmas

Proof of Lemma A.1. Here we only prove the case τ = s. The derivation for case τ = t is analogous.

First, note that by the law of total probability, we can write for all d1 ∈ {0, 1},

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = d1, α)

=

3∑
j=1

{
P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = d1, α, Es+1,j)

×P (Es+1,j |wT , ys−1 = yt−1, ys+1 = yt+1 = d1, α)
}
. (D.1)

When d1 = 1, (D.1) reduces to

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α, Es+1,1)

× P (Es+1,1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α) (D.2)
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as by definition Es+1,3 ∩ {ys+1 = 1} = ∅ and by Bayes’ theorem1

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α, Es+1,2)

=
P (ys+1 = 1, Es+1,2|wT , ys−1 = yt−1, yt+1 = 1, α, ys = 1)P (ys = 1|wT , ys−1 = yt−1, yt+1 = 1, α)

P (ys+1 = 1, Es+1,2|wT , ys−1 = yt−1, yt+1 = 1, α)

=0,

where the last equality is due to the fact that Es+1,2∩{ys+1 = 1} = Es+1,2∩Es+1,1 = ∅ conditional

on {ys = 1}. Furthermore, under Assumption A(a), we can write

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α, Es+1,1)

=P (ys = 1|wT , ys−1 = yt−1, yt+1 = 1, α, Es+1,1) = P (ys = 1|wT , ys−1, α, Es+1,1)

=P (ys = 1|wT , ys−1, α) = Fϵ|α(ws + γys−1 + α), (D.3)

where the first equality uses the fact that Es+1,1 ⊂ {ys+1 = 1}, the second equality follows from

noticing that ys (depends only on ϵs) is independent of (yt−1, yt+1) (depend only on (ϵs+2, ..., ϵt+1))

conditional on (wT , ys−1, α) and event Es+1,1, and the third equality is because ys ⊥ Es+1,1 condi-

tional on (wT , ys−1, α). Plugging (D.3) into (D.2) yields (A.10).

When d1 = 0, (D.1) reduces to

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)

=

3∑
j=2

{
P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α, Es+1,j)

×P (Es+1,j |wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)
}

(D.4)

as by definition Es+1,1 ∩ {ys+1 = 0} = ∅.

Using Bayes’ theorem and the fact that Es+1,2 ∩ {ys+1 = 0} = Es+1,2 ∩ Es+1,3 = ∅ conditional

on {ys = 0}, we have

P (ys = 0|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α, Es+1,2)

=
P (ys+1 = 0, Es+1,2|wT , ys−1 = yt−1, yt+1 = 0, α, ys = 0)P (ys = 0|wT , ys−1 = yt−1, yt+1 = 0, α)

P (ys+1 = 0, Es+1,2|wT , ys−1 = yt−1, yt+1 = 0, α)

=
P (Es+1,2 ∩ Es+1,3|wT , ys−1 = yt−1, yt+1 = 0, α, ys = 0)P (ys = 0|wT , ys−1 = yt−1, yt+1 = 0, α)

P (ys+1 = 0, Es+1,2|wT , ys−1 = yt−1, yt+1 = 0, α)

=0,

and thus

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α, Es+1,2) = 1. (D.5)

1The Bayes’ theorem is stated mathematically as the following equation

P (A|B,C) = P (B|A,C)P (A|C)/P (B|C)

where A, B and C are events and P (B|C) > 0. Here, we apply Bayes’ theorem by letting A = {ys = 1},
B = {ys+1 = 1, Es+1,2}, and C = {wT , ys−1 = yt−1, yt+1 = 1, α}.
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Applying similar arguments for deriving (D.3) gives

P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α, Es+1,3)

=P (ys = 1|wT , ys−1 = yt−1, yt+1 = 0, α, Es+1,3) = P (ys = 1|wT , ys−1 = d, α,Es+1,3)

=P (ys = 1|wT , ys−1, α) = Fϵ|α(ws + γys−1 + α). (D.6)

Then plugging (D.5) and (D.6) into (D.4) yields (A.11).

Proof of Lemma A.2. Again we only prove the case τ = s as the same arguments can be applied to

derive the case τ = t. Note that for all j = 1, 2, 3, we can use the law of total probability to write

P (Es+1,j |wT , ys−1 = yt−1, ys+1 = yt+1, α)

=P (Es+1,j |wT , ys−1 = yt−1, ys+1 = yt+1, α, ys = 0)P (ys = 0|wT , ys−1 = yt−1, ys+1 = yt+1, α)

+ P (Es+1,j |wT , ys−1 = yt−1, ys+1 = yt+1, α, ys = 1)P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1, α)

=P (Es+1,j |wT , ys−1, ys+1, α, ys = 0)P (ys = 0|wT , ys−1 = yt−1, ys+1 = yt+1, α)

+ P (Es+1,j |wT , ys−1, ys+1, α, ys = 1)P (ys = 1|wT , ys−1 = yt−1, ys+1 = yt+1, α),

where the second equality follows from Es+1,j ⊥ {yt−1, yt+1}|(wT , ys−1, ys, ys+1, α) by Assumption

A(a). Therefore, to prove (A.12)–(A.14), it suffices to verify the following equalities:

(1) P (Es+1,1|wT , ys−1, ys+1 = 1, α, ys = 1) = 1

(2) P (Es+1,1|wT , ys−1, ys+1 = 1, α, ys = 0) =
Fϵ|α(ws+1+γ+α)

Fϵ|α(ws+1+α)

(3) P (Es+1,2|wT , ys−1, ys+1 = 0, α, ys = 1) =
Fϵ|α(ws+1+α)−Fϵ|α(ws+1+γ+α)

1−Fϵ|α(ws+1+γ+α)

(4) P (Es+1,2|wT , ys−1, ys+1 = 0, α, ys = 0) = 0

(5) P (Es+1,3|wT , ys−1, ys+1 = 0, α, ys = 1) =
1−Fϵ|α(ws+1+α)

1−Fϵ|α(ws+1+γ+α)

(6) P (Es+1,3|wT , ys−1, ys+1 = 0, α, ys = 0) = 1

Equalities (1), (4), and (6) can be easily verified using the facts that Es+1,1 = {ys+1 = 1}
conditional on {ys = 1}, Es+1,2 ∩{ys+1 = 0} = ∅ conditional on {ys = 0}, and Es+1,3 = {ys+1 = 0}
conditional on {ys = 0}, respectively.

For equality (2), note that using the conditional probability formula, we have

P (Es+1,1|wT , ys−1, ys+1 = 1, α, ys = 0)

=
P (ys+1 = 1, Es+1,1|wT , ys−1, α, ys = 0)

P (ys+1 = 1|wT , ys−1, α, ys = 0)
=

P (Es+1,1|wT , ys−1, α, ys = 0)

P (Es+1,1 ∪ Es+1,2|wT , ys−1, α, ys = 0)

=
P (Es+1,1|ws+1, α)

P (Es+1,1 ∪ Es+1,2|ws+1, α)
=
Fϵ|α(ws+1 + γ + α)

Fϵ|α(ws+1 + α)
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where the second equality uses the fact that {ys+1 = 1} = Es+1,1 ∪Es+1,2 conditional on {ys = 0},
and the third equality follows by Assumption A(a).

Similar arguments, along with the fact that {ys+1 = 0} = Es+1,2 ∪ Es+1,3 conditional on

{ys = 1}, can be used to verify equalities (3) and (5). Specifically, we can write for equality (3),

P (Es+1,2|wT , ys−1, ys+1 = 0, α, ys = 1)

=
P (ys+1 = 0, Es+1,2|wT , ys−1, α, ys = 1)

P (ys+1 = 0|wT , ys−1, α, ys = 1)
=

P (Es+1,2|wT , ys−1, α, ys = 1)

P (Es+1,2 ∪ Es+1,3|wT , ys−1, α, ys = 1)

=
P (Es+1,2|ws+1, α)

P (Es+1,2 ∪ Es+1,3|ws+1, α)
=
Fϵ|α(ws+1 + α)− Fϵ|α(ws+1 + γ + α)

1− Fϵ|α(ws+1 + γ + α)

and analogously for equality (5),

P (Es+1,3|wT , ys−1, ys+1, α, ys = 1)

=
P (ys+1 = 0, Es+1,3|wT , ys−1, α, ys = 1)

P (ys+1 = 0|wT , ys−1, α, ys = 1)
=

P (Es+1,3|wT , ys−1, α, ys = 1)

P (Es+1,2 ∪ Es+1,3|wT , ys−1, α, ys = 1)

=
P (Es+1,3|ws+1, α)

P (Es+1,2 ∪ Es+1,3|ws+1, α)
=

1− Fϵ|α(ws+1 + α)

1− Fϵ|α(ws+1 + γ + α)
.

Then, the proof is completed.

We then prove Lemma A.3 with a weaker version of Assumption SD. Particularly, Assumption

SD(b) will be replaced by the following stochastic dominance condition: For all v ∈ R and d0, d1 ∈
{0, 1}, if wt ≥ ws, then

Fws+1|ws,wt,ys−1=yt−1=d0,ys+1=yt+1=d1,α(v) ≥ Fwt+1|ws,wt,ys−1=yt−1=d0,ys+1=yt+1=d1,α(v), (D.7)

and if wt ≤ ws, then

Fws+1|ws,wt,ys−1=yt−1=d0,ys+1=yt+1=d1,α(v) ≤ Fwt+1|ws,wt,ys−1=yt−1=d0,ys+1=yt+1=d1,α(v). (D.8)

Inequalities (D.7) and (D.8) say that, conditional on α and the same “initial” and “ending” statuses

(ys−1 = yt−1, ys+1 = yt+1), if the value of wt is higher than that of ws, then wt+1 has a better chance

of taking a large value than ws+1. This restriction rules out the case in which high utility in one

period has negative effects on the utility in the next period. This assumption is more likely to hold

in applications where {wt} represents a positively autocorrelated stochastic process of the “utility”,

“benefits”, or “profits” of a decision. This assumption is of high level, for which a sufficient, but

not necessary, condition is Assumption SD(b), which is formally stated in Lemma D.1 below.

Lemma D.1. Suppose that Assumption A is satisfied. Then inequalities (D.7) and (D.8) hold with

equality, if the joint PDF of wT conditional on α is exchangeable, i.e.,

fwT |α(ω1, ..., ωT ) = fwT |α(ωπ(1), ..., ωπ(T ))

for all permutations {π(1), ..., π(T )} defined on the set T .

4



The proof of Lemma D.1 can be found at the end of this section.

Note that inequalities (D.7) and (D.8) can be thought of as a conditional “first-order stochastic

dominance” condition, which implies that, for any non-decreasing (non-increasing) function u(·),∫
u(v)dFws+1|ws=w,wt=w′,ys−1=yt−1,ys+1=yt+1,α(v) ≤

∫
u(v)dFwt+1|ws=w,wt=w′,ys−1=yt−1,ys+1=yt+1,α(v)

(
∫
u(v)dFws+1|ws=w,wt=w′,ys−1=yt−1,ys+1=yt+1,α(v) ≥

∫
u(v)dFwt+1|ws=w,wt=w′,ys−1=yt−1,ys+1=yt+1,α(v))

whenever w′ ≥ w. This property is needed for establishing the monotonic relation in (2.2) as

demonstrated in the proof of Lemma A.3 below.

Proof of Lemma A.3. Let ϖ denote the sub-vector of wT comprising all its elements other than ws

and wt. Note that for all τ ∈ {s, t},

P (yτ = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1, α)

=

∫
P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1, α)dFϖ|ws,wt,ys−1=yt−1,ys+1=yt+1,α. (D.9)

In what follows, we consider two cases, ys+1 = yt+1 = 1 and ys+1 = yt+1 = 0, in turn.

Case 1 (ys+1 = yt+1 = 1) Plug (A.12) into (A.10) to obtain

P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=Fϵ|α(wτ + γyτ−1 + α){P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α)

+
Fϵ|α(wτ+1 + γ + α)

Fϵ|α(wτ+1 + α)
[1− P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α)]}. (D.10)

Let ψ(w) ≡ Fϵ|α(w + γyτ−1 + α) and ϕ1(w) ≡ Fϵ|α(w + γ + α)/Fϵ|α(w + α). Deduce from (D.10)

that

P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=
ψ(wτ )ϕ1(wτ+1)

1− ψ(wτ ) + ψ(wτ )ϕ1(wτ+1)
≡ G1(wτ , wτ+1).

Then, (D.9) reduces to ∫
G1(wτ , w)dFwτ+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w),
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and hence

P (yt = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 1, α)

− P (ys = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=

∫
G1(wt, w)dFwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w)

−
∫
G1(ws, w)dFws+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w)

=

∫
[G1(wt, w)−G1(ws, w)] dFwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w) (D.11)

+

∫
G1(ws, w)d

[
Fwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w)− Fws+1|ws,wt,ys−1=yt−1,ys+1=yt+1=1,α(w)

]
.

It is easy to verify that ψ′(·) > 0, ϕ′1(·) > 0 (by Assumption SD(a)). Therefore, G′
1(·, w) > 0

and G′
1(w, ·) > 0 hold true for all w. The former monotonicity result implies that the first term

in (D.11) is positive if and only if wt ≥ ws. The latter, together with Assumption SD(b), implies

that the second term in (D.11) is positive if and only if wt ≥ ws. Put these results to establish the

desired result.

Case 2 (ys+1 = yt+1 = 0) Plug (A.13) and (A.14) into (A.11) to obtain

P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)

=
Fϵ|α(wτ+1 + α)− Fϵ|α(wτ+1 + γ + α)

1− Fϵ|α(wτ+1 + γ + α)
P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)

+ Fϵ|α(wτ + γyτ−1 + α)[
1− Fϵ|α(wτ+1 + α)

1− Fϵ|α(wτ+1 + γ + α)
P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)

+ 1− P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)]. (D.12)

Let ϕ0(w) ≡ [1− Fϵ|α(w + α)]/[1− Fϵ|α(w + γ + α)]. We deduce from (D.12) that

P (yτ = 1|wT , ys−1 = yt−1, ys+1 = yt+1 = 0, α)

=
ψ(wτ )

ψ(wτ ) + ϕ0(wτ+1)− ψ(wτ )ϕ0(wτ+1)
≡ G0(wτ , wτ+1).

Then, (D.9) reduces to ∫
G0(wτ , w)dFwτ+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w),
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and hence

P (yt = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 0, α)

− P (ys = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 0, α)

=

∫
G0(wt, w)dFwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w)

−
∫
G0(ws, w)dFws+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w)

=

∫
[G0(wt, w)−G0(ws, w)] dFwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w) (D.13)

+

∫
G0(ws, w)d

[
Fwt+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w)− Fws+1|ws,wt,ys−1=yt−1,ys+1=yt+1=0,α(w)

]
.

By Assumption SD(a), ϕ′0(·) < 0. Therefore, G′
0(·, w) > 0 and G′

0(w, ·) > 0 hold true for all w. The

former monotonicity result implies that the first term in (D.13) is positive if and only if wt ≥ ws.

The latter, together with Assumption SD(b), implies that the second term in (D.13) is positive if

and only if wt ≥ ws. The proof is complete.

Proof of Lemma A.4. The proof adopts similar arguments used in the proofs of Lemmas A.1–A.3.

Here, we only outline the proof procedure and omit repetitive technical details for brevity.

First note that, under Assumptions A and SI, we can write for both τ = s and τ = t,

P (yτ = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1, α) = P (yτ = 1|wτ , yτ−1, yτ+1, α). (D.14)

To see this, note that for τ = s and all d0, d1 ∈ {0, 1}

P (ys = 1|ws, wt, ys−1 = yt−1 = d0, ys+1 = yt+1 = d1, α)

=
P (yt−1 = d0, yt+1 = d1|ws, wt, ys−1 = d0, ys = 1, ys+1 = d1, α)

P (yt−1 = d0, yt+1 = d1|ws, wt, ys−1 = d0, ys+1 = d1, α)

× P (ys = 1|ws, wt, ys−1 = d0, ys+1 = d1, α)

=
P (yt−1 = d0, yt+1 = d1|wt, ys+1 = d1, α)P (ys = 1|ws, wt, ys−1 = d0, ys+1 = d1, α)

P (yt−1 = d0, yt+1 = d1|wt, ys+1 = d1, α)

=P (ys = 1|ws, wt, ys−1 = d0, ys+1 = d1, α)

=
P (ys+1 = d1|ws, wt, ys−1 = d0, ys = 1, α)P (ys = 1|ws, wt, ys−1 = d0, α)

P (ys+1 = d1|ws, wt, ys−1 = d0, α)

=
P (ys+1 = d1|ws, ys−1 = d0, ys = 1, α)P (ys = 1|ws, ys−1 = d0, α)

P (ys+1 = d1|ws, ys−1 = d0, α)

=P (ys = 1|ws, ys−1 = d0, ys+1 = d1, α),

where the first, third, fourth, and last equalities use Bayes’ theorem, and the second and fifth equal-

ities follow by Assumptions SI(a) and A(a).2 Using similar arguments yields the same simplification

for τ = t.

2(yt−1, yt+1) ⊥ (ws, ys−1, ys)|(wt, ys+1, α) and (ys, ys+1) ⊥ wt|(ws, ys−1, α).
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For the case with d1 = 1, we uses the same arguments for deriving (A.10) to write

P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)

=P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α, Eτ+1,1)P (Eτ+1,1|wτ , yτ−1, yτ+1 = 1, α)

=Fϵ|α(wτ + γyτ−1 + α)P (Eτ+1,1|wτ , yτ−1, yτ+1 = 1, α), (D.15)

where the last equality follows from Eτ+1,1 ⊂ {yτ+1 = 1}, Assumption SI(a), and Assumption A(a).

Then, we use analogous arguments for proving Lemma A.2 to deduce

P (Eτ+1,1|wτ , yτ−1, yτ+1 = 1, α)

=P (Eτ+1,1|wτ , yτ−1, yτ+1 = 1, α, yτ = 1)P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)

+ P (Eτ+1,1|wτ , yτ−1, yτ+1 = 1, α, yτ = 0)[1− P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)]

=P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)

+
P (Eτ+1,1|wτ , yτ−1, α, yτ = 0)

P (Eτ+1,1 ∪ Eτ+1,2|wτ , yτ−1, α, yτ = 0)
[1− P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)]

=P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)

+
P (Eτ+1,1|α)

P (Eτ+1,1 ∪ Eτ+1,2|α)
[1− P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α)], (D.16)

where the last equality follows from Assumptions SI(a) and A(a).

Combine (D.14), (D.15) and (D.16) to solve

P (yτ = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α) =
ϕ1αψ(wτ )

1− ψ(wτ ) + ϕ1αψ(wτ )
≡ G1(wτ ),

where ϕ1α ≡ P (Eτ+1,1|α)/P (Eτ+1,1 ∪ Eτ+1,2|α) is a positive constant for any given α. The mono-

tonic relation stated in the lemma is then established by verifying the monotonicity of G1(·).

For the case with d1 = 0, using the same arguments for deriving (A.11) yields

P (yτ = 1|wτ , yτ−1, yτ+1 = 0, α)

=P (Eτ+1,2|wτ , yτ−1, yτ+1 = 0, α)

+ P (yτ = 1|wτ , yτ−1, yτ+1 = 0, α, Eτ+1,3)P (Eτ+1,3|wτ , yτ−1, yτ+1 = 0, α)

=P (Eτ+1,2|wτ , yτ−1, yτ+1 = 0, α) + Fϵ|α(wτ + γyτ−1 + α)P (Eτ+1,3|wτ , yτ−1, yτ+1 = 0, α), (D.17)

where the last equality follows by Eτ+1,3 ⊂ {yτ+1 = 0}, Assumption SI(a), and Assumption A(a).

Use analogous arguments for proving Lemma A.2 to obtain

P (Eτ+1,2|wτ , yτ−1, yτ+1 = 0, α)

=
P (Eτ+1,2|α)

P (Eτ+1,2 ∪ Eτ+1,3|α)
P (yτ = 1|wτ , yτ−1, yτ+1 = 0, α), (D.18)
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and

P (Eτ+1,3|wτ , yτ−1, yτ+1 = 0, α)

=1− P (yτ = 1|wτ , yτ−1, yτ+1 = 0, α)

+
P (Eτ+1,3|α)

P (Eτ+1,2 ∪ Eτ+1,3|α)
P (yτ = 1|wτ , yτ−1, yτ+1 = 0, α). (D.19)

Combine (D.14), (D.17), (D.18), and (D.19) to obtain

P (yτ = 1|ws, wt, ys−1 = yt−1, ys+1 = yt+1 = 1, α)

=P (yτ = 1|wτ , yτ−1, yτ+1 = 1, α) =
ψ(wτ )

ψ(wτ ) + ϕ0α − ϕ0αψ(wτ )
≡ G0(wτ ),

where ϕ0α ≡ P (Eτ+1,3|α)/P (Eτ+1,2 ∪ Eτ+1,3|α) is a positive constant for any given α. Note

that G0(wτ ) is an increasing function, from which the monotonic relation stated in the lemma is

established. Putting all these results together completes the proof.

Proof of Lemma B.1. Preparation. Relating to the notations in Seo and Otsu (2018), hn = 1

(in their notations) for our estimator β̂. ξi (b) only takes value −1, 0, and 1, so it is bounded.

Proposition 2.1 shows that β it the unique solution to maxb∈B E (ξi (b)) . The following calculation

can help understand this result.

E (ξi (b)) = E
{
E [1 [yi0 = yi2 = yi4] (yi3 − yi1) |xi1, xi3]

(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
= E {(E [1 [yi0 = yi2 = yi4] (yi3 − yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3)

+E [1 [yi0 = yi2 = yi4] (yi3 − yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3))(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])
}

= E {E [(yi3 − yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3)(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
≡ E

{
E [(yi3 − yi1) |yi0 = yi2 = yi4, xi1, xi3]φ (xi1, xi3)

(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
= E {(E [yi3|yi0 = yi2 = yi4, xi1, xi3]− E [yi1|yi0 = yi2 = yi4, xi1, xi3])

φ (xi1, xi3)
(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
= E {(E [yi3|yi2 = yi4, xi3]− E [yi1|yi0 = yi2, xi1])

φ (xi1, xi3)
(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
,

where in the second equality A denotes the complement of the set A,

φ (xi1, xi3) ≡ P (yi0 = yi2 = yi4|xi1, xi3)

in the fourth equality, and the sixth equality follows the same argument as in the proof of Proposition

2.1.
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By the stationary condition, the following is true

E [yi3|yi2 = yi4, xi3 = x] = E [yi1|yi0 = yi2, xi1 = x] .

Let

ϕ (x) ≡ E [yi3|yi2 = yi4, xi3 = x] = E [yi1|yi0 = yi2, xi1 = x] .

With the introduction of the above notation,

E (ξi (b)) = E
{
φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))

(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
. (D.20)

From the results in the proof of Proposition 2.1, ϕ (xi3)−ϕ (xi1) > 0 if x′i31β > 0, ϕ (xi3)−ϕ (xi1) = 0

if x′i31β = 0, and ϕ (xi3) − ϕ (xi1) < 0 if x′i31β < 0. φ (xi1, xi3) is a conditional probability, so

φ (xi1, xi3) ≥ 0. The above observations imply that E (ξi (b)) is nonpositive and is equal to 0 if

b = β. Assumption A ensures that the solution is unique. To simplify notations, let

κ (xi31) ≡ E [φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1)) |xi31] . (D.21)

It is easy to see that κ defined here is equal to the κ in the body of Lemma B.3. The above

discussion implies κ (xi31) has the same sign as x′i31β.

On Assumption M.i in Seo and Otsu (2018). We now try to get the derivatives of E (ξi (b))

with respect to b. E (ξi (b)) can be rewritten as

E (ξi (b)) = E
{
κ (xi31)

(
1
[
x′i31b > 0

]
− 1

[
x′i31β > 0

])}
.

Following the same idea in Section 5 and Section 6.4 of Kim and Pollard (1990) and Section B.1

of Seo and Otsu (2018), the above expectation can be calculated using the classical differential

geometry. Since the results here are obtained using essentially the same argument, we omit similar

details. Define the following mapping:

Tb =
(
I − ∥b∥−2

2 bb′
) (
I − ββ′

)
+ ∥b∥−2

2 bβ′,

where Tb maps the region {x31 : x′31b > 0} onto {x31 : x′31β > 0} , taking the boundary of {x31 : x′31b > 0}
onto the boundary of {x31 : x′31β > 0} . Equations (5.2) and (5.3) in Kim and Pollard (1990) imply

∂

∂b
E (ξi (b)) = ∥b∥−2

2 b′β
(
I − ∥b∥−2

2 bb′
)∫

1
[
x′31β = 0

]
κ (Tbx31)x31fx31 (Tbx31) dσ0,

where fx31 (x31) is the density function of xi31 and σ0 is the surface measure of the boundary of

{x31 : x′31β > 0} .

∂
∂bE (ξi (b))

∣∣
b=β

= 0, by Tβx31 = x31 and 1 [x′31β = 0]κ (x31) = 0. Consequently, the nonzero

component of the second derivative of E (ξi (b)) only comes from the derivative of κ (Tbx31) . Notice

that ∂
∂bκ (Tbx31)

∣∣
b=β

= −
(
∂κ(x31)
∂x31

′
β
)
x31, we have

∂2E (ξi (b))

∂b∂b′

∣∣∣∣
b=β

= −
∫

1
[
x′31β = 0

](∂κ (x31)
∂x31

′
β

)
fx31 (x31)x31x

′
31dσ0.
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Combining these results on the derivatives of E (ξi (b)) implies that Assumption M.i in Seo and

Otsu (2018) is satisfied with the matrix

V1 ≡ −
∫

1
[
x′31β = 0

](∂κ (x31)
∂x31

′
β

)
fx31 (x31)x31x

′
31dσ0. (D.22)

By definition,
∂κ (x31)

∂x31

′
β

∣∣∣∣
x′
31β=0

= lim
h→0

κ (x31 + hβ)− κ (x31)

h

∣∣∣∣
x′
31β=0

.

Notice that (x31 + hβ)′ β = h ∥β∥ if x′31β = 0. Similar to the discussion under equation (D.20), for

x31 satisfied with x′31β = 0, κ (x31 + hβ) ≥ 0 = κ (x31) if h > 0 and κ (x31 + hβ) ≤ 0 = κ (x31) if

h < 0. Thus, ∂κ(x31)
∂x31

′
β
∣∣∣
x′
31β=0

≥ 0, and V1 is negative semidefinite.

On Assumption M.ii in Seo and Otsu (2018). Note

ξi (b1)− ξi (b2) = 1 [yi0 = yi2 = yi4] (yi3 − yi1)
(
1
[
x′i31b1 > 0

]
− 1

[
x′i31b2 > 0

])
and

(ξi (b1)− ξi (b2))
2 = 1 [yi0 = yi2 = yi4] |yi3 − yi1|

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣ , (D.23)

this condition can be verified by the following calculation,[
E (ξi (b1)− ξi (b2))

2
]1/2

=
[
E
{
E [|φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))| |xi31]

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣}]1/2
≥ E

{
E [|φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))| |xi31]

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣}
≥ c1E

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣
≥ c2 ∥b1 − b2∥2 ,

where the second line holds because the value of the term in that line is smaller than 1, and a

positive c1 and c2 can be guaranteed by Assumption A.

On Assumption M.iii in Seo and Otsu (2018). This condition can be similarly verified by

E

[
sup

b1,b2∈B:∥b1−b2∥<ε
|ξi (b1)− ξi (b2)|2

]

= E

{
sup

b1,b2∈B:∥b1−b2∥<ε
E [|φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))| |xi31]

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣}

≤ c3E

{
sup

b1∈B:∥b1−b2∥<ε

∣∣1 [x′i31b1 > 0
]
− 1

[
x′i31b2 > 0

]∣∣}
≤ c4ε,

where third line holds because φ and ϕ are conditional probability and are bounded, and the last

line holds since the density of x31 is assumed to be bounded in Assumption 3.
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Proof of Lemma B.2. The objective function in this lemma is very similar to the one in HK. The

only difference is that HK put x32 in the kernel Khn (·) while we put x′32b and x
′
43b instead.

Seo and Otsu (2018) verified all the technical conditions needed for the estimator in HK and

derived its asymptotics in Section B.1. Assumptions A and 3–5 can imply the technical conditions

assumed in Section B.1 of Seo and Otsu (2018), and the conclusion follows.

Proof of Lemma B.3. Note that

Zn,1 (s) = n2/3 · n−1
n∑

i=1

ξi

(
β + sn−1/3

)
= n1/6Gn

(
ξi

(
β + sn−1/3

))
+ n2/3E

(
ξi

(
β + sn−1/3

))
,

where Gn

(
ξi
(
β + sn−1/3

))
= n−1/2

∑n
i=1

[
ξi
(
β + sn−1/3

)
− E

(
ξi
(
β + sn−1/3

))]
.

The mean of Zn,1 (s) is n
2/3E

(
ξi
(
β + sn−1/3

))
. With Assumptions A and 3, some calculation

in the proof of Lemma B.1 yields

n2/3E
(
ξi

(
β + sn−1/3

))
= n2/3

{
E (ξi (β)) + n−1/3 ∂E (ξi (b))

∂b

∣∣∣∣′
b=β

s+
1

2
n−2/3s′

∂2E (ξi (b))

∂b∂b′

∣∣∣∣
b=β

s+ o
(
n−2/3

)}
=

1

2
s′V1s+ o (1) ,

where V1 is defined in equation (B.1).

By definition, H1 (s, t) = limα→∞ αE [ξi (β + s/α) ξi (β + t/α)] is the covariance kernel for the

limiting distribution of Zn,1 (s). To obtain H1, define

L1 (s− t) ≡ lim
α→∞

αE
[
(ξi (β + s/α)− ξi (β + t/α))2

]
,

L1 (s) ≡ lim
α→∞

αE
[
(ξi (β + s/α)− ξi (β))

2
]
,

and

L1 (t) ≡ lim
α→∞

αE
[
(ξi (β + t/α)− ξi (β))

2
]
.

Notice that ξi (β) = 0, the relationship between H1 and L1 is

H1 (s, t) =
1

2
[L1 (s) + L1 (t)− L1 (s− t)] . (D.24)

From equations (D.20) and (D.23),

αE
[
(ξi (β + s/α)− ξi (β + t/α))2

]
= αE

{
E [|φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))| |xi31]

∣∣1 [x′i31 (β + s/α) > 0
]
− 1

[
x′i31 (β + t/α) > 0

]∣∣}
≡ αE

{
ψ (xi31)

∣∣1 [x′i31 (β + s/α) > 0
]
− 1

[
x′i31 (β + t/α) > 0

]∣∣} .
where in the third line, we simplify notations by letting

ψ (xi31) ≡ E [|φ (xi1, xi3) (ϕ (xi3)− ϕ (xi1))| |xi31] .
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It is not hard to see that ψ defined here is equal to the ψ in the body of this lemma. Following Kim

and Pollard (1990), we decompose x31 into ϖβ + xβ, with xβ orthogonal to β. The decomposition

leads to

αE
[
(ξi (β + s/α)− ξi (β + t/α))2

]
= αE

{
ψ (xi31)

∣∣1 [x′i31 (β + s/α) > 0
]
− 1

[
x′i31 (β + t/α) > 0

]∣∣}
= α

∫
RK−1

∫
R
ψ (ϖβ + xβ)

∣∣1 [x′βs/α+ϖ +ϖβ′s/α > 0
]
− 1

[
x′βt/α+ϖ +ϖβ′t/α > 0

]∣∣
fx31 (ϖβ + xβ) dϖdxβ

= α

∫
RK−1

∫
R
ψ (ϖβ + xβ) 1

[
−x′βs/α
1 + β′s/α

< ϖ ≤
−x′βt/α
1 + β′t/α

]
fx31 (ϖβ + xβ) dϖdxβ

+ α

∫
RK−1

∫
R
ψ (ϖβ + xβ) 1

[
−x′βt/α
1 + β′t/α

< ϖ ≤
−x′βs/α
1 + β′s/α

]
fx31 (ϖβ + xβ) dϖdxβ

=

∫
RK−1

∫
R
ψ (u/αβ + xβ) 1

[
−x′βs

1 + β′s/α
< u ≤

−x′βt
1 + β′t/α

]
fx31 ((u/α)β + xβ) dudxβ

+

∫
RK−1

∫
R
ψ (u/αβ + xβ) 1

[
−x′βt

1 + β′t/α
< u ≤

−x′βs
1 + β′s/α

]
fx31 ((u/α)β + xβ) dudxβ,

where the fourth equality follows by the change of variables u = αϖ. As α→ ∞,

L1 (s− t) =

∫
RK−1

ψ (xβ)
∣∣x′β (s− t)

∣∣ fx31 (xβ) dxβ,

Similarly,

L1 (s) =

∫
RK−1

ψ (xβ)
∣∣x′βs∣∣ fx31 (xβ) dxβ

and

L1 (t) =

∫
RK−1

ψ (xβ)
∣∣x′βt∣∣ fx31 (xβ) dxβ.

Substituting those L1 into equation (D.24) yields

H1 (s, t) =
1

2

∫
RK−1

ψ (xβ)
[∣∣x′βs∣∣+ ∣∣x′βt∣∣− ∣∣x′β (s− t)

∣∣] fx31 (xβ) dxβ.

Proof of Lemma B.4. Note

Ẑn,2 (s) = (nhn)
2/3 · n−1

n∑
i=1

ςni

(
γ + s (nhn)

−1/3 , β̂
)

= n1/6h2/3n Gn

(
ςni

(
γ + s (nhn)

−1/3 , β̂
))

+ (nhn)
2/3 En

(
ςni

(
γ + s (nhn)

−1/3 , β̂
))

= n1/6h2/3n Gn

(
ςni

(
γ + s (nhn)

−1/3 , β
))

+ (nhn)
2/3 E

(
ςni

(
γ + s (nhn)

−1/3 , β
))

+ n1/6h2/3n Gn

(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))

+ (nhn)
2/3 En

[
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
)]
, (D.25)
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where Gn (ςni (r, b)) = n−1/2
∑n

i=1 (ςni (r, b)− En (ςni (r, b))).

We first deal with the term in the fourth line of equation (D.25). Lemma B.2 verifies the

technical conditions in Seo and Otsu (2018). Thus we can applying the result of Lemma M in Seo

and Otsu (2018) on ς and it yields3

E

{
sup

|s|≤C,∥b−β∥2≤Mn−1/3

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , b
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣}

= n1/6h1/6n E

{
sup

|s|≤C,∥b−β∥2≤Mn−1/3

∣∣∣Gn

[
h1/2n

(
ςni

(
γ + s (nhn)

−1/3 , b
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣}

≤ cn1/6h1/6n n−1/6 = o (1) ,

for some positive c, any positive constants M and C. By Markov’s inequality, the above yields

sup
|s|≤C,∥b−β∥2≤Mn−1/3

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , b
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ = oP (1) .

Since β̂ − β = OP

(
n−1/3

)
, we can take M large enough so that P

(∥∥∥β̂ − β
∥∥∥
2
> Mn−1/3

)
< ε for

any small ε > 0. For any small δ > 0,

P

(
sup
|s|≤C

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ ≥ δ

)

= P

({
sup
|s|≤C

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ ≥ δ

}
∩
{∥∥∥β̂ − β

∥∥∥
2
≤Mn−1/3

})
+ P

({
sup
|s|≤C

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ ≥ δ

}
∩
{∥∥∥β̂ − β

∥∥∥
2
> Mn−1/3

})
≤ P

(
sup

|s|≤C,∥b−β∥2≤Mn−1/3

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , b
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ ≥ δ

)
+ ε.

Because the first term in the last line can be arbitrary small as n→ ∞, for n large enough,

P

(
sup
|s|≤C

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ ≥ δ

)
≤ 2ε,

holds for any small δ > 0. This implies

sup
|s|≤C

n1/6h2/3n

∣∣∣Gn

[(
ςni

(
γ + s (nhn)

−1/3 , β̂
)
− ςni

(
γ + s (nhn)

−1/3 , β
))]∣∣∣ = oP (1) . (D.26)

For the fourth term in equation (D.25), with β̂ − β = OP

(
n−1/3

)
and hn → 0, the expansion

in equation (D.31) implies

(nhn)
2/3 En

(
ςni

(
γ + s (nhn)

−1/3 , β̂
))

= (nhn)
2/3 E

(
ςni

(
γ + s (nhn)

−1/3 , β
))

+ oP (1) , (D.27)

3It holds by setting the δ in Lemma M of Seo and Otsu (2018) as n−1/3.
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uniformly over |s| ≤ C. Substituting the results of equations (D.26) and (D.27) into equation

(D.25) yields,

Ẑn,2 (s) = n1/6h2/3n Gn

(
ςni

(
γ + s (nhn)

−1/3 , β
))

+ (nhn)
2/3 E

(
ςni

(
γ + s (nhn)

−1/3 , β
))

+ oP (1)

= Zn,2 (s) + oP (1) ,

where the small order term holds uniformly over |s| ≤ C for any positive C. The claim is proved.

Proof of Lemma B.5. We could prove the first claim in this lemma by the Taylor expansion of

E (ςni (r, β)) with respect to r around γ. We show a more general result instead; we derive the

Taylor expansion of E (ςni (r, b)) with respect to (r, b) around (γ, β) . This more general result is

useful for understanding Lemma B.5 and part of the derivation in Lemma B.4.

Recall that

ςni (r, b) ≡ Khn

(
x′i32b

)
(yi2 − yi1)

(
1
[
x′i21b+ r (yi3 − yi0) > 0

]
− 1

[
x′i21β + γ (yi3 − yi0) > 0

])
+Khn

(
x′i43b

)
(yi3 − yi2)

(
1
[
x′i32b+ r (yi4 − yi1) > 0

]
− 1

[
x′i32β + γ (yi4 − yi1) > 0

])
.

To ease of notations, let

ϑ1 (r, b) ≡ (y2 − y1)
(
1
[
x′21b+ r (y3 − y0) > 0

]
− 1

[
x′21β + γ (y3 − y0) > 0

])
,

ϑ2 (r, b) ≡ (y3 − y2)
(
1
[
x′32b+ r (y4 − y1) > 0

]
− 1

[
x′32β + γ (y4 − y1) > 0

])
.

We deal with the first component in ςni (r, b) first and the second term can be done analogously.

First,

E
[
Khn

(
x′32b

)
ϑ1 (r, b)

]
=

∫
RK

E [ϑ1 (r, b) |x32 = x]Khn

(
x′b
)
fx32 (x) dx

=

∫
RK

E [ϑ1 (r, b) |x32 = x]
1

hn
K
(
x′b

hn

)
fx32 (x) dx.

Decompose x32 into x32 = ϖb+ xb, where xb is orthogonal to b. That yields

E
[
Khn

(
x′32b

)
ϑ1 (r, b)

]
=

∫
RK−1

∫
R
E [ϑ1 (r, b) |x32 = ϖb+ xb]

1

hn
K
(
ϖ

hn

)
fx32 (ϖb+ xb) dϖdxb

(D.28)

=

∫
RK−1

∫
R
E [ϑ1 (r, b) |x32 = uhnb+ xb ]K (u) fx32 (uhnb+ xb) dudxb

=

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb

+
h2n
2

∫
RK−1

∫
R
u2K (u)

∂2 (E [ϑ1 (r, b) |x32 = tb+ xb ] fx32 (tb+ xb))

∂t2

∣∣∣∣
t=tu

du

where in the first line we use the fact ∥b∥2 = 1, the second line holds by the change of variables

u = ϖ
hn

, and last two lines hold by the Taylor expansion and tu is some value between 0 and uhn.
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The bias term is of order h2n by Assumption 3 and the symmetry and boundedness conditions of K
in Assumption 4. By nh4n → 0 in Assumption 5, the bias term is o

(
(nhn)

−2/3
)
and asymptotically

negligible.

Similar results can be obtained for E [Khn (x
′
43b)ϑ2 (r, b)].

To summarize,

E (ςni (r, b)) =

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb (D.29)

+

∫
RK−1

E [ϑ2 (r, b) |x43 = xb ] fx43 (xb) dxb + o
(
(nhn)

−2/3
)
.

As a result, to prove the assertion in the lemma, it is enough to derive the first and second derivatives

of the leading term in the above.

Notice that

ϑ1|(r,b)=(γ,β) = 0.

Consequently, only the derivative of E [ϑ1 (r, b) |x32 = xb ] with respect to b in ϑ1 will appear in

∂

∂b

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb

∣∣∣∣
r=γ,b=β

.

That leads to

∂

∂b

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb

∣∣∣∣
r=γ,b=β

=

∫
RK−1

∂

∂b
E [ϑ1 (r, b) |x32 = xβ ]

∣∣∣∣
(r,b)=(γ,β)

fx32 (xβ) dxβ.

By similar derivation as for the derivatives of E (ξi (b)), we have

∂E [ϑ1 (r, b) |x32 = xβ ]

∂ (r, b′)′

∣∣∣∣
r=γ,b=β

=

∫
1
[
x′21β + γy30 = 0

]
E (y21|x21, y30, x32 = xβ)

(
y30

x21

)
f (x21, y30|x32 = xβ) dσ0,

where σ0 is the surface measure of {(x21, y30) : x′21β + γy30 = 0}.

E (y21|x21, y30, x′32β = 0) = 0 along x′21β + γy30 = 0 by Proposition 2.2. Thus, the derivative

above is equal to 0 and

∂

∂ (r, b′)′

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb

∣∣∣∣
r=γ,b=β

= 0.

The fact E (y21|x21, y30, x′32β = 0) = 0 along x′21β+γy30 = 0 implies that only the second derivatives

of E [ϑ1 (r, b) |x32 = xβ ] contribute to the second derivative. By similar derivation as for the second

16



derivative of E (ξi (b)) ,

∂2E [ϑ1 (r, b) |x32 = xβ ]

∂ (r, b′)′ ∂ (r, b′)

∣∣∣∣
r=γ,b=β

= −
∫

1
[
x′21β + γy30 = 0

](∂E (y21|x21, y30, x32 = xβ)

∂ (y30, x′21)
′

′
(
γ

β

))

f (x21, y30|x32 = xβ)

(
y30

x21

)(
y30 x′21

)
dσ0.

Therefore

∂2

∂ (r, b′)′ ∂ (r, b′)

∫
RK−1

E [ϑ1 (r, b) |x32 = xb ] fx32 (xb) dxb

∣∣∣∣
r=γ,b=β

= −
∫
RK−1

∫
1
[
x′21β + γy30 = 0

](∂E (y21|x21, y30, x32 = xβ)

∂ (y30, x′21)
′

′
(
γ

β

))

f (x21, y30|x32 = xβ)

(
y30

x21

)(
y30 x′21

)
dσ0fx32 (xβ) dxβ

≡ −Ṽ21.

Similarly,

∂2

∂ (r, b′)′ ∂ (r, b′)

∫
RK−1

E [ϑ2 (r, b) |x43 = xb ] fx43 (xb) dxb

∣∣∣∣
r=γ,b=β

= −
∫
RK−1

∫
1
[
x′32β + γy41 = 0

](∂E (y32|x32, y41, x43 = xβ)

∂ (y41, x′32)
′

′
(
γ

β

))

f (x32, y41|x43 = xβ)

(
y41

x32

)(
y41 x′32

)
dσ0fx43 (xβ) dxβ

≡ −Ṽ22.

Let

Ṽ2 ≡ Ṽ21 + Ṽ22. (D.30)

By the Taylor expansion, Assumption 3, and equation (D.29),

E (ςni (r, b)) = −1

2

(
r − γ, (b− β)′

)
Ṽ2

(
r − γ

b− β

)
+ o

∥∥∥∥∥
(
r − γ

b− β

)∥∥∥∥∥
2

2

+ o
(
(nhn)

−2/3
)
. (D.31)

We define V2 as the first diagonal of Ṽ2, that is

V2 ≡ e′1Ṽ2e1,
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where e1 is a (K + 1)× 1 vector with the first element as 1 and the rest as 0. Not hard to see that

V2 = −
∫
RK−1

∫
1
[
x′21β + γy30 = 0

](∂E (y21|x21, y30, x32 = xβ)

∂ (y30, x′21)
′

′
(
γ

β

))
(D.32)

f (x21, y30|x32 = xβ) |y30| dσ0fx32 (xβ) dxβ

−
∫
RK−1

∫
1
[
x′32β + γy41 = 0

](∂E (y32|x32, y41, x43 = xβ)

∂ (y41, x′32)
′

′
(
γ

β

))
f (x32, y41|x43 = xβ) |y41| dσ0fx43 (xβ) dxβ.

Note that V2 is a scalar.

∂E (y21|x21, y30, x32 = xβ)

∂ (y30, x′21)
′

′
(
γ

β

)
≥ 0 and

∂E (y32|x32, y41, x43 = β)

∂ (y41, x′32)
′

′
(
γ

β

)
≥ 0

hold for the same reason as in the discussion under equation (D.22). Thus, V2 ≤ 0

Using equation (D.31),

lim
n→∞

(nhn)
2/3 En

(
ςni

(
γ + s (nhn)

−1/3 , β
))

=
1

2
V2s

2.

Now, we turn to the covariance kernel. Note

H2 (s, t) = lim
n→∞

(nhn)
1/3 E

(
hnςni

(
γ + s (nhn)

−1/3 , β
)
ςni

(
γ + t (nhn)

−1/3 , β
))

.

Similar for the calculation of H1 in Lemma B.1, define

L2 (s− t) ≡ lim
n→∞

(nhn)
1/3 E

[
hn

(
ςni

(
γ + s (nhn)

−1/3 , β
)
− ςni

(
γ + t (nhn)

−1/3 , β
))2]

,

L2 (s) ≡ lim
n→∞

(nhn)
1/3 E

[
hn

(
ςni

(
γ + s (nhn)

−1/3 , β
)
− ςni (γ, β)

)2]
,

L2 (t) ≡ lim
n→∞

(nhn)
1/3 E

[
hn

(
ςni

(
γ + t (nhn)

−1/3 , β
)
− ςni (γ, β)

)2]
.

Since ςni (γ, β) = 0, H2 (s, t) =
1
2 [L2 (s) + L2 (t)− L2 (s− t)] .

The following calculation is useful for L2 (s− t) .

E
[
hn (ςni (r1, β)− ςni (r2, β))

2
]

= E
{
hn
[
Khn

(
x′i32β

)
(ϑ1 (r1, β)− ϑ1 (r2, β)) +Khn

(
x′i43β

)
(ϑ2 (r1, β)− ϑ2 (r2, β))

]2}
= E

{
hnKhn

(
x′i32β

)2 |ϑ1 (r1, β)− ϑ1 (r2, β)|+ hnKhn

(
x′i43β

)2 |ϑ2 (r1, β)− ϑ2 (r2, β)|

+2hnKhn

(
x′i32β

)
Khn

(
x′i43β

)
(ϑ1 (r1, β)− ϑ1 (r2, β)) (ϑ2 (r1, β)− ϑ2 (r2, β))

}
≡ E

{
hnKhn

(
x′i32β

)2 |ϑ1 (r1, β)− ϑ1 (r2, β)|+ hnKhn

(
x′i43β

)2 |ϑ2 (r1, β)− ϑ2 (r2, β)|
}
+Rn.
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where Rn denotes the term in the fourth line and will be shown to be asymptotic negligible.

The first term in the above can be calculated as follows,

E
{
hnKhn

(
x′i32β

)2 |ϑ1 (r1, β)− ϑ1 (r2, β)|
}

=

∫
RK

E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = x]
1

hn
K
(
x′β

hn

)2

fx32 (x) dx.

Decompose x32 into x32 = ϖβ + xβ, where xβ is orthogonal to β. Continue the expression in the

above with this decomposition,

E
{
hnKhn

(
x′32β

)2 |ϑ1 (r1, β)− ϑ1 (r2, β)|
}

=

∫
RK−1

∫
R
E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = ϖβ + xβ]

1

hn
K
(
ϖ

hn

)2

fx32 (ϖβ + xβ) dϖdxβ

=

∫
RK−1

∫
R
E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = uhnβ + xβ]K (u)2 fx32 (uhnβ + xβ) dudxβ

= K̄2

∫
RK−1

E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = xβ] fx32 (xβ) dxβ +O
(
h2n
)

where in the third line we substitute u = ϖ/hn, in the fourth line we do Taylor expansion around

hn = 0, the bias term is of order h2n for the same reason as in equation (D.28), and K̄2 =
∫
RK (u)2 du.

Using Assumption 5, (nhn)
2/3 h2n → 0, so the bias term is negligible. The rate of the above term

can be seen from

E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = xβ]

=

∫
R
E
[
|y21| |x′21β = ϖ, y30 ̸= 0, x32 = xβ

]
|1 [ϖ + r1 (y3 − y0) > 0]− 1 [ϖ + r2 (y3 − y0) > 0]|

P
(
y30 ̸= 0|x32 = xβ, x

′
21β = ϖ

)
f
(
x′21β = ϖ|x32 = xβ

)
dϖ

=

∣∣∣∣∫ −r2

−r1

E
[
|y21| |x′21β = ϖ, y30 = 1, x32 = xβ

]
P
(
y30 = 1|x32 = xβ, x

′
21β = ϖ

)
f
(
x′21β = ϖ|x32 = xβ

)
dϖ

∣∣∣∣
+

∣∣∣∣∫ r2

r1

E
[
|y21| |x′21β = ϖ, y30 = −1, x32 = xβ

]
P
(
y30 = −1|x32 = xβ, x

′
21β = ϖ

)
f
(
x′21β = ϖ|x32 = xβ

)
dϖ

∣∣∣∣
∝ |r2 − r1| .

If r1 = γ + s (nhn)
−1/3 and r2 = γ + t (nhn)

−1/3 , E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = xβ] ∝ (nhn)
−1/3

and

lim
n→∞

(nhn)
1/3 E [|ϑ1 (r1, β)− ϑ1 (r2, β)| |x32 = xβ]

=
{
E
[
|y21| |x′21β = −γ, y30 = 1, x32 = xβ

]
P
(
y30 = 1|x32 = xβ, x

′
21β = −γ

)
f
(
x′21β = −γ|x32 = xβ

)
+ E

[
|y21| |x′21β = γ, y30 = −1, x32 = xβ

]
P
(
y30 = −1|x32 = xβ, x

′
21β = γ

)
f
(
x′21β = γ|x32 = xβ

)}
· |s− t|

=
{
E
[
|y21| |x′21β = −γ, y30 = 1, x32 = xβ

]
f
(
y30 = 1, x′21β = −γ|x32 = xβ

)
+E

[
|y21| |x′21β = γ, y30 = −1, x32 = xβ

]
f
(
y30 = −1, x′21β = γ|x32 = xβ

)}
|s− t|

19



Therefore

lim
n→∞

(nhn)
1/3 E

{
hnKhn

(
x′i32β

)2 ∣∣∣ϑ1 (γ + s (nhn)
−1/3 , β

)
− ϑ1

(
γ + t (nhn)

−1/3 , β
)∣∣∣}

= |s− t| K̄2

∫
RK−1

{
E
[
|y21| |x′21β = −γ, y30 = 1, x32 = xβ

]
f
(
y30 = 1, x′21β = −γ|x32 = xβ

)
+ E

[
|y21| |x′21β = γ, y30 = −1, x32 = xβ

]
f
(
y30 = −1, x′21β = γ|x32 = xβ

)}
fx32 (xβ) dxβ.

For the same reason,

lim
n→∞

(nhn)
1/3 E

{
hnKhn

(
x′i43β

)2 ∣∣∣ϑ2 (γ + s (nhn)
−1/3 , β

)
− ϑ2

(
γ + t (nhn)

−1/3 , β
)∣∣∣}

= |s− t| K̄2

∫
RK−1

{
E
[
|y32| |x′32β = −γ, y41 = 1, x43 = xβ

]
f
(
y41 = 1, x′32β = −γ|x43 = xβ

)
+E

[
|y32| |x′32β = γ, y41 = −1, x43 = xβ

]
f
(
y41 = −1, x′32β = γ|x43 = xβ

)}
fx43 (xβ) dxβ.

Similar derivation onRn = 2hnE [Khn (x
′
i32β)Khn (x

′
i43β) (ϑ1 (r1, β)− ϑ1 (r2, β)) (ϑ2 (r1, β)− ϑ2 (r2, β))]

can show that Rn ∝ (nhn)
−2/3 hn when r1 = γ + s (nhn)

−1/3 and r2 = γ + t (nhn)
−1/3 . So

(nhn)
1/3Rn → 0, as n→ ∞.

The results on L2 (s− t) lead to

L2 (s− t)

= |s− t| K̄2

∫
RK−1

{
E
[
|y21| |x′21β = −γ, y30 = 1, x32 = xβ

]
f
(
y30 = 1, x′21β = −γ|x32 = xβ

)
+ E

[
|y21| |x′21β = γ, y30 = −1, x32 = xβ

]
f
(
y30 = −1, x′21β = γ|x32 = xβ

)}
fx32 (xβ) dxβ

+ |s− t| K̄2

∫
RK−1

{
E
[
|y32| |x′32β = −γ, y41 = 1, x43 = xβ

]
f
(
y41 = 1, x′32β = −γ|x43 = xβ

)
+E

[
|y32| |x′32β = γ, y41 = −1, x43 = xβ

]
f
(
y41 = −1, x′32β = γ|x43 = xβ

)}
fx43 (xβ) dxβ.

L2 (s) and L2 (t) can be obtained by

L2 (s) = L2 (s− 0) ,

L2 (t) = L2 (t− 0) .

As a result

H2 (s, t) =
1

2
[L2 (s) + L2 (t)− L2 (s− t)] ,

which can be written as in equation (B.4).

Proof of Lemma D.1. For the sake of brevity, we only prove the case ys−1 = ys+1 = yt−1 = yt+1 = 1.

The proofs for the other cases are similar. Denote

C = {y0 = d0, y1 = d1, ..., ys−1 = 1, ys = ds, ys+1 = 1, ..., yt−1 = 1, yt = dt, yt+1 = 1, ..., yT = dT }
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and ϖ = (w1, ...ws−1, ws+2, ..., wt−1, wt+2, ..., wT ). Then, by model (2.1) and Assumption A(a)

P (C|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω
′
0, ω

′
1), α)

=

∫
P (C|ϖ, (ws, ws+1, wt, wt+1) = (ω0, ω1, ω

′
0, ω

′
1), α)dFϖ|(ws,ws+1,wt,wt+1)=(ω0,ω1,ω′

0,ω
′
1),α

=

∫
p0(w

T , α)d0(1− p0(w
T , α))1−d0 × Fϵ|α(w1 + γd0 + α)d1(1− Fϵ|α(w1 + γd0 + α))1−d1 × · · ·

× Fϵ|α(ωs−1 + γds−2 + α)Fϵ|α(ω0 + γ + α)ds(1− Fϵ|α(ω0 + γ + α))1−dsFϵ|α(ω1 + γds + α)× · · ·

× Fϵ|α(ωt−1 + γdt−2 + α)Fϵ|α(ω
′
0 + γ + α)dt(1− Fϵ|α(ω

′
0 + γ + α))1−dtFϵ|α(ω

′
1 + γdt + α)× · · ·

× Fϵ|α(wT + γdT−1 + α)dT (1− Fϵ|α(wT + γdT−1 + α))1−dT dFϖ|(ws,ws+1,wt,wt+1)=(ω0,ω1,ω′
0,ω

′
1),α

.

Given the exchangeability assumption, If ds = dt, we have

P (C|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω
′
0, ω

′
1), α) = P (C|(ws, ws+1, wt, wt+1) = (ω′

0, ω
′
1, ω0, ω1), α),

and if ds ̸= dt, we have

P (C|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω
′
0, ω

′
1), α) = P (C̃|(ws, ws+1, wt, wt+1) = (ω′

0, ω
′
1, ω0, ω1), α),

where C̃ = {y0 = d0, y1 = d1, ..., ys−1 = 1, ys = dt, ys+1 = 1, ..., yt−1 = 1, yt = ds, yt+1 = 1, ..., yT =

dT }. Then, adding up P (C|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω
′
0, ω

′
1), α) across all possible events C

and C̃ yields

P (ys−1 = yt−1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω
′
0, ω

′
1), α)

=P (ys−1 = yt−1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (ω′
0, ω

′
1, ω0, ω1), α). (D.33)

Invoke Bayes’ theorem to deduce

fws,ws+1,wt,wt+1|ys−1=yt−1=1,ys+1=yt+1=1,α(ω0, ω1, ω
′
0, ω

′
1)

=
P (ys−1 = yt−1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (ω0, ω1, ω

′
0, ω

′
1), α)

P (ys−1 = yt−1 = 1, ys+1 = yt+1 = 1|α)
× fws,ws+1,wt,wt+1|α(ω0, ω1, ω

′
0, ω

′
1)

=
P (ys−1 = yt−1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (ω′

0, ω
′
1, ω0, ω1), α)

P (ys+1 = yt+1 = 1|ys−1 = 1, α)

× fws,ws+1,wt,wt+1|α(ω
′
0, ω

′
1, ω0, ω1)

=fws,ws+1,wt,wt+1|ys−1=yt−1=1,ys+1=yt+1=1,α(ω
′
0, ω

′
1, ω0, ω1), (D.34)

where the second equality follows from (D.33) and the exchangeability assumption.

Applying similar arguments to obtain

fws,wt|ys−1=yt−1=1,ys+1=yt+1=1,α(ω0, ω
′
0) = fws,wt|ys−1=yt−1=1,ys+1=yt+1=1,α(ω

′
0, ω0). (D.35)

Combine (D.34) and (D.35) to deduce

fws+1,wt+1|(ws,wt)=(ω0,ω′
0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω1, ω

′
1)

=fws+1,wt+1|(ws,wt)=(ω′
0,ω0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω

′
1, ω1).
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Then, the desired result follows from

fws+1|(ws,wt)=(ω0,ω′
0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω1)

=

∫
fws+1,wt+1|(ws,wt)=(ω0,ω′

0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω1, ω
′
1)dω

′
1

=

∫
fws+1,wt+1|(ws,wt)=(ω′

0,ω0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω
′
1, ω1)dω

′
1

=fwt+1|(ws,wt)=(ω′
0,ω0),ys−1=yt−1=1,ys+1=yt+1=1,α(ω1).

E Some Technical Details for Section 5

E.1 Numerical Bootstrap

If εn = n−1, the numerical bootstrap is reduced to the classic bootstrap. Numerical bootstrap

excludes the case εn = n−1 and requires nεn → ∞. The idea of numerical bootstrap is similar to

the m-out-of-n bootstrap; ε−1
n plays a similar role as m. As was shown in Hong and Li (2020),

this procedure is less general than the m-out-of-n procedure. However, once it works, it has better

finite sample performance than the m-out-of-n bootstrap. We refer to Hong and Li (2020) for the

details.

Below is a heuristic illustration of why numerical bootstrap works for β̂. ε
−1/3
n

(
β̂∗ − β

)
can be

shown to be OP (1) similarly as in Section E.3. Note that

ε−1/3
n

(
β̂∗ − β̂

)
= ε−1/3

n

(
β̂∗ − β

)
− ε−1/3

n

(
β̂ − β

)
= ε−1/3

n

(
β̂∗ − β

)
+ oP (1) (E.1)

by nεn → ∞. Thus, the asymptotic distribution ε
−1/3
n

(
β̂∗ − β̂

)
is the same as that of ε

−1/3
n

(
β̂∗ − β

)
.

Let

L∗
n,1 (b) ≡ n−1

n∑
i=1

ξi (b) + (nεn)
1/2 · n−1

n∑
j=1

(
ξ∗j (b)− n−1

n∑
i=1

ξi (b)

)
.

Then β̂∗ = argmaxb∈B Ln,1 (b). By equation (E.1), the asymptotic distribution of ε
−1/3
n

(
β̂∗ − β̂

)
can be established if we can show the limiting distribution of ε

−2/3
n L∗

n,1

(
β + sε

1/3
n

)
.

The previous results suggest that

ε−2/3
n · n−1

n∑
i=1

ξi

(
β + sε1/3n

)
= ε−2/3

n E
(
ξi

(
β + sε1/3n

))
+ ε−2/3

n · n−1
n∑

i=1

[
ξi

(
β + sε1/3n

)
− E

(
ξi

(
β + sε1/3n

))]
= ε−2/3

n E
(
ξi

(
β + sε1/3n

))
+ oP (1)

P→ 1

2
s′V1s
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over a compact set of s, where the second equality holds by nεn → ∞. The following holds by the

i.i.d. sampling:

ε−2/3
n · (nεn)1/2 · n−1

n∑
j=1

(
ξ∗j

(
β + sε1/3n

)
− n−1

n∑
i=1

ξi

(
β + sε1/3n

))
⇝W ∗

1 (s) ,

where W ∗
1 (s) is an independent copy of W1 (s) . As a result,

ε−2/3
n L∗

n,1

(
β + sε1/3n

)
⇝

1

2
s′V1s+W ∗

1 (s) ,

as desired.

γ̂ does not directly fit into the theoretical framework of Hong and Li (2020). More specifically,

condition (vi) in Theorem 4.1 in Hong and Li (2020) is not satisfied. The previous results suggest

that everything in Hong and Li (2020) can go through by modifying condition (vi) to that

Σ (s, t) = lim
n→∞

(nhn)
1/3 E

(
hnςni

(
γ + s (nhn)

−1/3 , β
)
ςni

(
γ + t (nhn)

−1/3 , β
))

exists for each s, t in R. This is true by Lemma B.2. In what follows, we illustrate why numerical

bootstrap works for γ̂.

To concentrate on the key intuition, here we suppose that the effect of the first step estimator

β̂ has been handled, and it does not affect the asymptotics of γ̂∗. Let

L∗
n,2 (r) ≡ n−1

n∑
i=1

ςni (r, β) + (nεn)
1/2 · n−1

n∑
j=1

(
ς∗nj (r, β)− n−1

n∑
i=1

ςni (r, β)

)
,

where we use the same hn in ςni (r, β) and ς
∗
nj (r, β). The convergence rate of γ̂∗n to γ can be shown

to be
(
ε−1
n hn

)1/3
. Thus, we only need to show the limit of

(
ε−1
n hn

)2/3 L∗
n,2

(
γ + s

(
ε−1
n hn

)−1/3
)
.

Previous results suggest that(
ε−1
n hn

)2/3 · n−1
n∑

i=1

ςni

(
γ + s

(
ε−1
n hn

)−1/3
, β
)

=
(
ε−1
n hn

)2/3 E(ςni (γ + s
(
ε−1
n hn

)−1/3
, β
))

+
(
ε−1
n hn

)2/3 · n−1
n∑

i=1

(
ςni

(
γ + s

(
ε−1
n hn

)−1/3
, β
)
− E

(
ςni

(
γ + s

(
ε−1
n hn

)−1/3
, β
)))

=
(
ε−1
n hn

)2/3 E(ςni (γ + s
(
ε−1
n hn

)−1/3
, β
))

+ oP (1)

P→ 1

2
V2s

2,

and(
ε−1
n hn

)2/3 · (nεn)1/2 · n−1
n∑

j=1

(
ς∗nj

(
γ + s

(
ε−1
n hn

)−1/3
, β
)
− n−1

n∑
i=1

ςni

(
γ + s

(
ε−1
n hn

)−1/3
, β
))

⇝W ∗
2 (s) (E.2)

by i.i.d. and the Central Limit Theorem, where W ∗
2 (s) is an independent copy of W2 (s) . To let

equation (E.2) hold, it additionally requires ε−1
n hn → ∞ and ε−1

n h4n → 0, similar to the additional

restriction on m.
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E.2 Classic Bootstrap

The classic bootstrap estimators for β̂ and γ̂, denoted as β̂∗ and γ̂∗, are constructed from

β̂∗ = argmax
b∈B

n−1
n∑

j=1

ξ∗j (b) , and γ̂
∗ = argmax

r∈R
n−1

n∑
j=1

ς∗nj

(
r, β̂
)
.

Based on the proof in Abrevaya and Huang (2005), we have

n1/3
(
β̂∗ − β

)
d→ arg max

s∈RK

(
1

2
s′V1s+W1 (s) +W ∗

1 (s)

)
and

(nhn)
1/3 (γ̂∗ − γ)

d→ argmax
s∈R

(
1

2
V2s

2 +W2 (s) +W ∗
2 (s)

)
,

where W1 (s) and W ∗
1 (s) are identical and independent Gaussian processes with zero mean and

covariance kernel H1, andW2 (s) andW
∗
2 (s) are identical and independent Gaussian processes with

zero mean and covariance kernel H2. V1, V2, H1 and H2 are the same as in Theorem 4.1.

Therefore

n1/3
(
β̂∗ − β̂

)
= n1/3

(
β̂∗ − β

)
− n1/3

(
β̂ − β

)
d→ arg max

s∈RK

(
1

2
s′V1s+W1 (s) +W ∗

1 (s)

)
− arg max

s∈RK

(
1

2
s′V1s+W1 (s)

)
,

and

(nhn)
1/3 (γ̂∗ − γ̂) = (nhn)

1/3 (γ̂∗ − γ)− (nhn)
1/3 (γ̂ − γ)

d→ argmax
s∈R

(
1

2
V2s

2 +W2 (s) +W ∗
2 (s)

)
− argmax

s∈R

(
1

2
V2s

2 +W2 (s)

)
.

Here, we provide a sketch showing the inconsistency of the classic bootstrap.

By similar arguments of Lemma 3 in Abrevaya and Huang (2005), the convergence rate of β̂∗

to β and γ̂∗ to γ can be shown be at n−1/3 and (nhn)
−1/3 respectively.

Define

Z∗
n,1 (s) ≡ n2/3 · n−1

n∑
j=1

ξ∗j

(
β + sn−1/3

)
.

Similar to Theorem 1 in Abrevaya and Huang (2005), one can show

Z∗
n,1 (s)⇝

1

2
s′V1s+W1 (s) +W ∗

1 (s) , (E.3)
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where W1 (s) and W
∗
1 (s) are independent and identical Gaussian processes. The intuition of this

result can be seen from the following decomposition of Z∗
n,1 (s) :

Z∗
n,1 (s) = n2/3 · n−1

n∑
i=1

ξi

(
β + sn−1/3

)
+ n2/3 · n−1

n∑
j=1

(
ξ∗j

(
β + sn−1/3

)
− n−1

n∑
i=1

ξi

(
β + sn−1/3

))

= Zn,1 (s) + n2/3 · n−1
n∑

j=1

(
ξ∗j

(
β + sn−1/3

)
− n−1

n∑
i=1

ξi

(
β + sn−1/3

))
,

where the first term weakly converges to 1
2s

′V1s +W1 (s) , and the second term weakly converges

to W ∗
1 (s).

Since the convergence rate of β̂∗ to β is n−1/3, (E.3) implies that

n1/3
(
β̂∗ − β

)
d→ arg max

s∈RK

(
1

2
s′V1s+W1 (s) +W ∗

1 (s)

)
,

and

n1/3
(
β̂∗ − β̂

)
= n−1/3

(
β̂∗ − β

)
− n−1/3

(
β̂ − β

)
d→ arg max

s∈RK

(
1

2
s′V1s+W1 (s) +W ∗

1 (s)

)
− arg max

s∈RK

(
1

2
s′V1s+W1 (s)

)
.

For γ̂∗, let

Ẑ∗
n,2 (s) ≡ (nhn)

2/3 · n−1
n∑

j=1

ς∗nj

(
γ + s (nhn)

−1/3 , β̂
)
, and

Z∗
n,2 (s) ≡ (nhn)

2/3 · n−1
n∑

j=1

ς∗nj

(
γ + s (nhn)

−1/3 , β
)
.

The equicontinuity of (nhn)
2/3 · n−1

∑n
j=1 ς

∗
nj (r, b) can be proved using similar arguments as in

Theorem 1 of Abrevaya and Huang (2005). By that,

Ẑ∗
n,2 (s) = Z∗

n,2 (s) + oP (1) ,

holds uniformly over a compact set of s. Thus we only need to establish the asymptotics of Z∗
n,2 (s) .

To that end, decompose Z∗
n,2 (s) as

Z∗
n,2 (s) = Zn,2 (s) + Z∗

n,2 (s)− Zn,2 (s)

= Zn,2 (s) + (nhn)
2/3 · n−1

n∑
j=1

(
ς∗nj

(
γ + s (nhn)

−1/3 , β
)
− n−1

n∑
i=1

ςni

(
γ + s (nhn)

−1/3 , β
))

= Zn,2 (s) + (nhn)
2/3 · n−1

n∑
j=1

(
ς∗nj

(
γ + s (nhn)

−1/3 , β
)
− n−1

n∑
i=1

ςni

(
γ + s (nhn)

−1/3 , β
))

.

Using the facts that the re-sampling is i.i.d. and n−1
∑n

j=1 ς
∗
nj (r, b) is equicontinuous in r, it

holds that
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(nhn)
2/3 · n−1

n∑
j=1

(
ς∗nj

(
γ + s (nhn)

−1/3 , β
)
− n−1

n∑
i=1

ςni

(
γ + s (nhn)

−1/3 , β
))
⇝W ∗

2 (s) ,

where W ∗
2 (s) is identically distributed as W2 (s) .

Lemmas B.2 and B.4 imply that

Zn,2 (s)⇝
1

2
V2s

2 +W2 (s) .

The independence of W2 (s) and W ∗
2 (s) can be shown using the same arguments in the proof of

Theorem 1 in Abrevaya and Huang (2005).

Combing above results implies

Ẑ∗
n,2 (s)⇝

1

2
V2s

2 +W2 (s) +W ∗
2 (s) .

Thus,

(nhn)
1/3 (γ̂∗ − γ)

d→ argmax
s∈R

(
1

2
V2s

2 +W2 (s) +W ∗
2 (s)

)
,

and

(nhn)
1/3 (γ̂∗ − γ̂) = (nhn)

1/3 (γ̂∗ − γ)− (nhn)
1/3 (γ̂ − γ)

d→ argmax
s∈R

(
1

2
V2s

2 +W2 (s) +W ∗
2 (s)

)
− argmax

s∈R

(
1

2
V2s

2 +W2 (s)

)
.

E.3 m-out-of-n Bootstrap

Here m→ ∞ as n→ ∞, but m/n→ 0 as n→ ∞. This procedure is as follows. Draw (yT∗
j , xT∗′

j )′,

j = 1, ...,m, independently from the collection of the sample values
(
yT1 , x

T ′
1

)′
,
(
yT2 , x

T ′
2

)′
, ...,(

yTn , x
T ′
n

)′
with replacement. Let β̂∗ and γ̂∗ be the estimator from the sampling observations, that

is

β̂∗ = argmax
b∈B

m−1
m∑
j=1

ξ∗j (b) and γ̂∗ = argmax
r∈R

m−1
m∑
j=1

ς∗nj

(
r, β̂
)
, (E.4)

where the bandwidth used in ς∗nj is hn, for simplicity. As the name suggests, this procedure

only samples a small portion (m observations) from the data (n observations), with the hope of

“correcting” the inconsistency of the classic bootstrap. Lee and Pun (2006) proved the consistency

of m-out-of-n bootstrap for non-standard M-estimators under mild conditions. After proving the

general result, they applied it to the maximum score estimator by verifying the required technical

conditions. We claim that these technical conditions can be similarly verified for our estimator and

m1/3
(
β̂∗ − β̂

)
d→ arg max

s∈RK

(
1

2
s′V1s+W1 (s)

)
and

(mhn)
1/3 (γ̂∗ − γ̂)

d→ argmax
s∈R

(
1

2
V2s

2 +W2 (s)

)
. (E.5)
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To make equation (E.5) hold, we additionally require mhn → ∞, mh4n → 0, analogous to the

conditions in Assumption 5. Because of the length limitations of the paper, the details are not

pursued here. Instead, we have provided a heuristic illustration.

Note β̂∗ and γ̂∗ in this section are obtained from expression (E.4). Let

Z∗
m,1 (s) ≡ m2/3 ·m−1

m∑
j=1

ξ∗j

(
β + sm−1/3

)
.

Rewrite Z∗
m,1 (s) as

Z∗
m,1 (s) = m2/3 ·m−1

m∑
j=1

(
ξ∗j

(
β + sm−1/3

)
− n−1

n∑
i=1

ξi

(
β + sm−1/3

))
+m2/3 · n−1

n∑
i=1

ξi

(
β + sm−1/3

)

= m2/3 ·m−1
m∑
j=1

(
ξ∗j

(
β + sm−1/3

)
− n−1

n∑
i=1

ξi

(
β + sm−1/3

))

+m2/3E
(
ξi

(
β + sm−1/3

))
+m2/3 · n−1

n∑
i=1

[
ξi

(
β + sm−1/3

)
− E

(
ξi

(
β + sm−1/3

))]
.

Intuitively, the first term in the above equation weakly converges to W ∗
1 (s), the second term

converges to 1
2s

′V1s, and the last term converges to zero in probability. One can similarly show

β̂∗ − β = OP

(
m−1/3

)
.

Therefore,

m1/3
(
β̂∗ − β

)
d→ arg max

s∈RK

1

2
s′V1s+W ∗

1 (s) .

Finally,

m1/3
(
β̂∗ − β̂

)
= m1/3

(
β̂∗ − β

)
−m1/3

(
β̂ − β

)
= m1/3

(
β̂∗ − β

)
+ oP (1)

d→ arg max
s∈RK

1

2
s′V1s+W ∗

1 (s) .

Note that the distribution of W ∗
1 (s) is the same as that of W1 (s) , and the claim is proved for β̂∗.

The asymptotic distribution of (mhn)
1/3 (γ̂∗ − γ̂) can be similarly established.
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F Additional Simulation Results

F.1 Simulation Results of Designs 3–5

Table 3A: Design 3, Performance of β̂ and γ̂

n = 2500 n = 5000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

OY BIAS 0.7% −0.1% 1.5% 0.5% −0.5% 0.8%

STD 15.0% 14.9% 26.5% 11.7% 11.2% 20.8%

MAD 12.0% 11.9% 21.2% 9.3% 8.9% 16.7%

RMSE 15.0% 14.9% 26.5% 11.7% 11.2% 20.8%

HK1 BIAS −0.7% −0.5% 5.1% −0.3% −0.1% 3.6%

STD 10.2% 9.8% 21.4% 7.7% 7.9% 17.4%

MAD 8.1% 7.8% 17.6% 6.3% 6.3% 14.4%

RMSE 10.2% 9.8% 22.0% 7.7% 7.9% 17.8%

HK2 BIAS −0.1% −0.1% 6.3% 0.1% 0.7% 4.6%

STD 17.2% 17.1% 37.3% 14.3% 14.9% 32.2%

MAD 13.9% 13.7% 30.4% 11.6% 12.1% 26.1%

RMSE 17.2% 17.1% 37.8% 14.3% 14.9% 32.5%

n = 10000 n = 20000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

OY BIAS 0.5% 0.1% 1.3% −0.1% 0.1% 1.5%

STD 9.4% 9.6% 17.5% 7.3% 7.1% 14.0%

MAD 7.6% 7.6% 14.1% 5.9% 5.6% 11.1%

RMSE 9.4% 9.6% 17.5% 7.3% 7.1% 14.0%

HK1 BIAS −0.4% −0.1% 3.5% −0.0% −0.3% 3.6%

STD 6.3% 6.3% 13.6% 5.0% 5.0% 11.2%

MAD 5.1% 5.0% 11.3% 4.0% 4.0% 9.5%

RMSE 6.3% 6.3% 14.0% 5.0% 5.0% 11.7%

HK2 BIAS 0.4% −0.0% 3.8% −0.0% 0.1% 2.5%

STD 12.6% 12.2% 26.9% 11.1% 10.5% 23.5%

MAD 10.2% 9.9% 21.8% 9.0% 8.4% 18.5%

RMSE 12.6% 12.2% 27.2% 11.1% 10.5% 23.7%
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Table 3B: Design 3, Numerical Bootstrap

n = 2500 n = 5000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

c = 0.8 COV 89.7% 89.3% 86.8% 93.9% 94.5% 91.1%

LEN 106.7% 106.7% 107.5% 90.2% 90.3% 92.1%

c = 0.9 COV 89.4% 88.9% 86.4% 93.7% 94.4% 91.1%

LEN 104.0% 103.9% 104.5% 88.3% 88.1% 90.2%

c = 1.0 COV 88.9% 88.5% 85.9% 94.1% 93.9% 90.7%

LEN 101.2% 101.5% 102.1% 86.6% 86.5% 88.6%

c = 1.1 COV 87.6% 88.0% 85.0% 93.9% 93.9% 90.1%

LEN 99.3% 99.2% 99.8% 85.2% 85.1% 87.0%

c = 1.2 COV 87.6% 87.1% 84.6% 93.4% 93.7% 90.0%

LEN 97.1% 97.1% 97.5% 83.7% 83.9% 85.5%

n = 10000 n = 20000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

c = 0.8 COV 94.3% 92.8% 91.5% 94.1% 95.0% 90.5%

LEN 75.8% 75.3% 77.6% 62.7% 62.5% 63.7%

c = 0.9 COV 94.2% 92.6% 90.6% 94.9% 95.0% 91.4%

LEN 74.5% 74.0% 76.9% 61.7% 61.8% 63.7%

c = 1.0 COV 94.2% 92.9% 90.7% 94.6% 95.4% 91.3%

LEN 73.3% 73.0% 75.9% 60.9% 60.9% 63.4%

c = 1.1 COV 94.0% 93.4% 91.0% 94.8% 96.1% 92.0%

LEN 72.4% 72.0% 74.9% 60.0% 60.1% 63.1%

c = 1.2 COV 93.8% 93.3% 91.1% 95.0% 95.6% 91.5%

LEN 71.5% 71.2% 74.1% 59.3% 59.5% 62.7%
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Table 4A: Design 4, Performance of β̂ and γ̂

n = 2500 n = 5000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

OY BIAS 0.3% −0.2% 0.0% 1.7% 0.1% −0.1% −0.9% 0.4%

STD 16.5% 17.1% 16.8% 29.3% 13.7% 13.6% 13.8% 24.3%

MAD 13.2% 13.6% 13.4% 23.2% 10.9% 10.8% 11.1% 19.6%

RMSE 16.5% 17.1% 16.7% 29.3% 13.7% 13.6% 13.8% 24.3%

HK1 BIAS −1.0% −0.9% −1.5% 10.4% −0.5% −1.1% −0.5% 8.7%

STD 14.1% 14.1% 14.3% 29.5% 11.4% 11.4% 11.3% 23.5%

MAD 11.1% 11.2% 11.4% 24.9% 9.1% 9.1% 8.9% 20.2%

RMSE 14.1% 14.1% 14.3% 31.2% 11.4% 11.4% 11.3% 25.0%

HK2 BIAS 0.4% −1.5% −0.3% 11.2% 0.6% −0.5% 0.1% 6.7%

STD 20.5% 21.9% 21.8% 43.6% 18.9% 18.6% 18.6% 38.7%

MAD 16.4% 17.7% 17.3% 35.9% 15.0% 14.9% 14.8% 31.2%

RMSE 20.5% 21.9% 21.8% 45.0% 18.9% 18.6% 18.6% 39.2%

n = 10000 n = 20000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

OY BIAS −0.7% 0.6% 0.2% 2.1% −0.3% −0.2% 0.2% −0.2%

STD 10.4% 10.1% 10.3% 19.8% 8.3% 8.0% 8.1% 15.5%

MAD 8.3% 8.1% 8.3% 16.1% 6.8% 6.5% 6.4% 12.4%

RMSE 10.4% 10.1% 10.3% 19.9% 8.3% 8.0% 8.1% 15.5%

HK1 BIAS −0.3% −0.7% −0.1% 6.7% 0.1% −0.8% −0.4% 5.4%

STD 8.9% 9.4% 9.4% 18.7% 7.7% 7.6% 7.4% 15.3%

MAD 7.1% 7.6% 7.6% 15.9% 6.1% 6.1% 5.9% 12.8%

RMSE 8.9% 9.5% 9.4% 19.9% 7.7% 7.6% 7.4% 16.3%

HK2 BIAS 0.6% 0.8% 0.2% 7.6% 0.6% −0.2% −0.0% 5.0%

STD 16.1% 16.4% 16.5% 32.4% 14.2% 14.2% 14.1% 28.7%

MAD 13.0% 13.2% 13.1% 26.4% 11.4% 11.4% 11.3% 23.1%

RMSE 16.1% 16.4% 16.4% 33.2% 14.2% 14.2% 14.1% 29.1%
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Table 4B: Design 4, Numerical Bootstrap

n = 2500 n = 5000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

c = 0.8 COV 89.1% 90.5% 89.3% 85.2% 93.2% 94.0% 92.1% 88.1%

LEN 111.6% 111.6% 111.7% 111.2% 95.9% 95.9% 96.0% 97.0%

c = 0.9 COV 88.3% 88.7% 88.7% 84.1% 92.9% 93.1% 92.6% 86.0%

LEN 108.1% 108.0% 108.0% 108.0% 93.7% 93.6% 93.6% 94.5%

c = 1.0 COV 86.7% 87.9% 87.9% 83.0% 92.0% 93.3% 91.5% 86.2%

LEN 104.9% 104.9% 105.0% 104.9% 91.2% 91.4% 91.2% 92.3%

c = 1.1 COV 85.8% 87.6% 87.2% 81.9% 92.3% 93.0% 91.5% 85.0%

LEN 102.1% 102.2% 102.3% 102.1% 89.3% 89.4% 89.3% 90.0%

c = 1.2 COV 86.0% 86.5% 86.4% 81.6% 91.4% 91.8% 91.0% 84.4%

LEN 99.7% 99.6% 99.6% 99.6% 87.4% 87.3% 87.6% 88.2%

n = 10000 n = 20000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

c = 0.8 COV 95.7% 96.0% 96.0% 88.7% 94.6% 95.9% 96.6% 92.0%

LEN 81.1% 80.9% 81.2% 83.4% 67.3% 67.4% 67.3% 70.7%

c = 0.9 COV 95.2% 95.8% 96.3% 88.1% 95.9% 95.7% 95.9% 92.1%

LEN 79.5% 79.6% 79.8% 81.9% 66.3% 66.4% 66.5% 69.8%

c = 1.0 COV 95.2% 95.7% 95.1% 88.5% 96.1% 96.0% 96.0% 91.8%

LEN 78.4% 78.3% 78.4% 80.5% 65.7% 65.7% 65.7% 68.9%

c = 1.1 COV 95.0% 95.6% 95.1% 87.9% 96.4% 96.5% 96.1% 91.5%

LEN 76.9% 77.2% 77.0% 79.1% 64.6% 64.8% 64.7% 68.1%

c = 1.2 COV 95.0% 95.4% 94.7% 86.8% 95.8% 95.5% 95.8% 91.2%

LEN 75.7% 75.9% 75.7% 77.4% 64.0% 64.1% 64.1% 66.9%
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Table 5A: Design 5, Performance of β̂ and γ̂

n = 2500 n = 5000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

OY BIAS −0.3% 0.4% −0.5% 0.4% 1.9% 0.4% −0.2% 0.3% 0.4% 0.3%

STD 18.5% 18.5% 18.1% 18.9% 36.4% 14.5% 14.1% 14.7% 14.8% 28.6%

MAD 14.8% 14.9% 14.6% 14.9% 28.9% 11.7% 11.2% 11.7% 11.7% 23.0%

RMSE 18.5% 18.5% 18.1% 18.9% 36.5% 14.5% 14.1% 14.7% 14.8% 28.5%

HK1 BIAS −1.3% −1.7% −2.2% −1.3% 12.6% −1.7% −0.6% −1.1% −1.1% 12.1%

STD 16.9% 17.5% 18.2% 18.0% 34.4% 14.4% 14.7% 14.6% 14.7% 29.0%

MAD 13.5% 14.1% 14.4% 14.2% 29.2% 11.6% 11.8% 11.8% 11.8% 25.1%

RMSE 17.0% 17.6% 18.4% 18.0% 36.6% 14.5% 14.7% 14.6% 14.8% 31.4%

HK2 BIAS −0.5% −0.8% −1.5% 0.8% 14.2% −0.7% 0.7% −0.9% 0.3% 11.8%

STD 23.3% 24.7% 24.7% 25.2% 47.7% 22.0% 22.2% 21.8% 21.4% 42.5%

MAD 18.3% 19.7% 19.9% 20.1% 39.5% 17.8% 17.7% 17.4% 17.0% 35.7%

RMSE 23.2% 24.7% 24.7% 25.2% 49.8% 22.0% 22.2% 21.8% 21.4% 44.1%

n = 10000 n = 20000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

OY BIAS 0.6% 0.1% −0.0% −0.0% 0.8% −0.0% −0.5% 0.5% 0.1% 0.5%

STD 11.2% 11.2% 12.0% 11.5% 22.2% 9.5% 9.3% 9.3% 9.1% 18.1%

MAD 9.0% 9.1% 9.7% 9.2% 17.9% 7.5% 7.4% 7.4% 7.4% 14.5%

RMSE 11.2% 11.2% 12.0% 11.4% 22.3% 9.5% 9.3% 9.3% 9.1% 18.1%

HK1 BIAS −0.4% −0.7% −0.6% −0.9% 10.7% −0.9% −0.5% −0.1% −0.3% 9.2%

STD 12.2% 12.3% 12.5% 12.2% 24.2% 9.9% 10.1% 9.9% 10.6% 20.4%

MAD 9.8% 10.0% 9.9% 9.7% 21.2% 7.9% 8.0% 7.9% 8.4% 17.7%

RMSE 12.2% 12.3% 12.5% 12.2% 26.4% 10.0% 10.1% 9.9% 10.6% 22.4%

HK2 BIAS 0.7% −0.2% 0.1% 1.0% 8.3% −0.6% 0.3% 0.8% 2.1% 9.3%

STD 19.1% 19.3% 20.1% 19.4% 38.9% 17.1% 16.8% 16.6% 17.6% 34.6%

MAD 15.4% 15.6% 16.0% 15.4% 32.0% 13.7% 13.4% 13.3% 14.0% 28.6%

RMSE 19.1% 19.3% 20.1% 19.4% 39.8% 17.1% 16.8% 16.6% 17.7% 35.8%
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Table 5B: Design 5, Numerical Bootstrap

n = 2500 n = 5000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

c = 0.8 COV 86.0% 85.0% 86.3% 84.8% 77.0% 90.0% 90.2% 91.0% 89.2% 81.9%

LEN 113.7% 113.9% 113.8% 113.7% 113.6% 99.9% 99.7% 99.8% 99.8% 100.4%

c = 0.9 COV 85.0% 84.2% 85.3% 83.9% 75.8% 89.5% 89.7% 90.0% 88.4% 81.5%

LEN 109.7% 109.6% 109.7% 109.7% 109.8% 96.8% 96.5% 96.9% 96.8% 97.3%

c = 1.0 COV 83.6% 83.2% 85.0% 83.1% 74.8% 89.1% 89.2% 89.0% 87.7% 80.2%

LEN 106.3% 106.2% 106.3% 106.2% 106.6% 93.9% 93.9% 93.9% 93.9% 94.6%

c = 1.1 COV 83.3% 83.1% 84.2% 82.5% 73.9% 87.4% 88.8% 88.4% 87.4% 79.3%

LEN 103.2% 103.2% 103.3% 103.3% 103.4% 91.6% 91.6% 91.7% 91.6% 92.2%

c = 1.2 COV 82.2% 82.0% 83.9% 81.7% 73.1% 86.6% 87.4% 87.9% 86.6% 77.8%

LEN 100.3% 100.3% 100.4% 100.4% 100.7% 89.2% 89.3% 89.1% 89.2% 90.0%

n = 10000 n = 20000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

c = 0.8 COV 94.6% 95.2% 94.6% 94.9% 86.9% 96.0% 97.3% 97.0% 97.2% 90.0%

LEN 85.7% 85.8% 85.8% 85.9% 88.0% 71.8% 71.9% 72.0% 71.9% 75.8%

c = 0.9 COV 94.3% 94.6% 94.2% 94.5% 86.7% 97.0% 97.1% 97.2% 96.4% 88.8%

LEN 83.7% 83.7% 83.8% 83.6% 85.6% 70.7% 70.7% 70.9% 70.7% 74.4%

c = 1.0 COV 93.8% 93.5% 93.9% 94.4% 86.2% 96.3% 96.7% 97.2% 96.8% 89.3%

LEN 81.9% 81.9% 81.9% 81.8% 83.6% 69.6% 69.5% 69.7% 69.6% 72.9%

c = 1.1 COV 93.2% 92.8% 93.6% 93.8% 86.1% 95.6% 96.8% 96.7% 96.5% 88.7%

LEN 80.1% 80.1% 80.0% 80.0% 81.6% 68.6% 68.4% 68.6% 68.3% 71.3%

c = 1.2 COV 92.7% 92.4% 93.2% 93.1% 84.8% 95.6% 96.4% 96.1% 96.3% 88.8%

LEN 78.4% 78.3% 78.4% 78.4% 79.8% 67.6% 67.5% 67.4% 67.4% 70.2%

F.2 Additional Monte Carlo Experiments: Designs 6–8

To investigate the impact of serial correlations of xit on our estimator and the proposed inference

procedure, we conduct additional simulations for several designs. These designs are the same as in

Designs 3–5, except that we allow for x to be auto-correlated, similar to Design 2, as opposed to

Design 1.

We consider Designs 6–8, which employ the same models as those in Designs 3–5, respectively,

but with serially dependent xit. More specifically:

xi0,j =

√
15

4
uit,j +

1

4
uit,k+1, j = 1, 2, ..., k and

xit,j = 0.25xit−1,j +
√

1− 0.252

(√
15

4
uit,j +

1

4
uit,k+1

)
, j = 1, 2, ..., k for all t ≥ 1,

with (uit,1, uit,2, ..., uit,k+1) distributed as N
(
0(k+1)×1, I(k+1)×(k+1)

)
, and (uit,1, uit,2, ..., uit,k+1) be-

ing i.i.d. across i and t. The parameter k is set to be 3, 4, or 5 in Designs 6 through 8, respectively.
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To conserve space, we only report the inference results for c = 1. We report the BIAS, STD,

MAD, RMSE, COV, and LEN for our estimators. All results are collected into one table for each

design. The tables are numbered corresponding to the names of the designs. For instance, results

for Design 6 are presented in Table 6.

A brief summary of our findings is as follows: Our estimation results seem to remain relatively

unchanged with serially correlated x. Importantly, they are not significantly biased. The infer-

ence procedure performs well, maintaining the same level of performance as designs with serially

independent xit.

Table 6: Design 6

n = 2500 n = 5000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

OY BIAS −0.8% 0.5% 2.5% 0.8% −0.4% 2.1%

STD 15.4% 15.1% 25.2% 11.2% 11.6% 20.3%

MAD 12.4% 12.2% 20.0% 9.0% 9.4% 16.3%

RMSE 15.4% 15.1% 25.3% 11.2% 11.6% 20.4%

COV 90.7% 89.8% 87.4% 93.0% 92.5% 90.7%

LEN 100.9% 101.3% 100.6% 86.5% 86.3% 87.1%

n = 10000 n = 20000

β̂2 β̂3 γ̂ β̂2 β̂3 γ̂

OY BIAS 0.4% −0.5% 2.8% −0.2% −0.1% 1.1%

STD 9.4% 9.9% 16.5% 7.6% 7.6% 13.2%

MAD 7.4% 8.0% 13.4% 6.1% 6.1% 10.5%

RMSE 9.4% 9.9% 16.7% 7.6% 7.6% 13.2%

COV 95.7% 92.9% 92.7% 93.3% 93.6% 92.1%

LEN 73.0% 72.7% 74.0% 60.6% 60.7% 61.2%
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Table 7: Design 7

n = 2500 n = 5000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

OY BIAS 0.2% −0.6% 0.6% 3.1% −0.5% −0.1% 0.3% 1.7%

STD 16.1% 16.3% 16.9% 29.8% 13.4% 13.6% 13.5% 23.5%

MAD 13.2% 13.1% 13.5% 23.9% 10.7% 10.9% 10.9% 19.1%

RMSE 16.1% 16.3% 16.9% 29.9% 13.4% 13.6% 13.5% 23.6%

COV 87.0% 87.7% 86.7% 80.5% 90.8% 90.5% 90.9% 85.8%

LEN 104.7% 104.8% 104.7% 104.2% 91.3% 91.3% 91.3% 91.4%

n = 10000 n = 20000

β̂2 β̂3 β̂4 γ̂ β̂2 β̂3 β̂4 γ̂

OY BIAS −0.1% −0.1% −0.1% 2.8% −0.5% 0.5% 0.1% 2.1%

STD 10.9% 10.7% 10.6% 19.2% 8.4% 8.2% 8.5% 15.0%

MAD 8.8% 8.5% 8.4% 15.6% 6.8% 6.6% 6.9% 12.0%

RMSE 10.9% 10.7% 10.6% 19.4% 8.5% 8.3% 8.5% 15.1%

COV 94.3% 93.5% 94.4% 89.8% 95.7% 95.9% 96.1% 91.9%

LEN 78.5% 78.1% 78.2% 79.0% 65.4% 65.7% 65.6% 67.3%

Table 8: Design 8

n = 2500 n = 5000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

OY BIAS −1.7% 1.1% 0.1% −0.1% 6.4% 0.1% −0.0% 0.3% −0.2% 2.2%

STD 18.8% 18.6% 18.0% 18.1% 32.8% 14.7% 15.2% 14.6% 15.1% 27.3%

MAD 15.0% 15.2% 14.2% 14.5% 26.4% 11.8% 12.1% 11.6% 12.2% 22.2%

RMSE 18.8% 18.6% 18.0% 18.1% 33.4% 14.7% 15.2% 14.6% 15.1% 27.4%

COV 84.1% 82.5% 83.3% 83.8% 78.1% 88.5% 89.4% 89.6% 89.2% 83.0%

LEN 106.2% 106.2% 106.0% 106.2% 106.0% 93.6% 93.7% 93.7% 93.7% 94.0%

n = 10000 n = 20000

β̂2 β̂3 β̂4 β̂5 γ̂ β̂2 β̂3 β̂4 β̂5 γ̂

OY BIAS 0.3% −0.2% 0.3% −0.2% 2.9% −0.2% −0.1% −0.2% 0.6% 1.3%

STD 11.5% 11.7% 11.5% 11.8% 21.1% 9.4% 9.3% 8.9% 9.0% 16.2%

MAD 9.2% 9.3% 9.1% 9.4% 16.9% 7.5% 7.4% 7.2% 7.2% 13.1%

RMSE 11.5% 11.6% 11.5% 11.8% 21.3% 9.4% 9.3% 8.9% 9.0% 16.3%

COV 93.4% 94.6% 93.8% 92.3% 87.4% 95.7% 96.3% 96.8% 96.4% 92.2%

LEN 81.8% 81.8% 81.6% 81.7% 82.5% 69.6% 69.5% 69.5% 69.5% 71.8%
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