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APPENDIX B: The FM-CPR Estimator of Wagner and

Hong (2016)

Wagner and Hong (2016) extend the fully modified OLS (FM-OLS) estimator of Phillips

and Hansen (1990) from the cointegrating linear to the cointegrating polynomial re-

gression (CPR) case. The discussion here focuses on the case considered in the main

text in (1) and thereby defines the estimator referred to as FM-CPR in the main text.

As also discussed in the main text, FM-type estimation entails two modifications. The

modification of the dependent variable is exactly as proposed by Phillips and Hansen

(1990) in the linear cointegration case, with the dependent variable yt replaced by

y+t := yt−∆xtΩ̂
−1
vv Ω̂vu. This transformation dynamically orthogonalizes the limit partial

sum process of the modified errors:

u+t := ut − vtΩ̂
−1
vv Ω̂vu, (B.1)

i. e., Bu·v(r) as defined in Proposition 2.11 below (14) in the main text, from the limiting

process corresponding to xt, i. e., Bv(r). In the case of Gaussian limits, uncorrelatedness

is equivalent to independence. Thus, Bu·v(r) is “automatically” also independent of pow-

ers of Bv(r) that appear in the asymptotic distributions in the CPR case. Consequently,

the modification to orthogonalize regressors and errors need not be changed when con-

sidering FM-OLS estimation in the CPR setting rather than in the linear cointegration

setting; orthogonalization with respect to Bv(r) suffices.

The second modification, correcting for additive bias terms, depends upon the precise

form of the model considered. For the specification given in (1) in the main text the FM-

CPR bias correction term is given by A∗ := ∆̂+
vu[0q×1, T, 2

∑T
t=1 xt, . . . , p

∑T
t=1 x

p−1
t ]′,

with ∆̂+
vu := ∆̂vu − ∆̂vvΩ̂

−1
vv Ω̂vu. Defining y+ := [y+1 , . . . , y

+
T ]

′ and Z := [Z1, . . . , ZT ]
′,

leads to the FM-CPR estimator of θ given by:

θ̂+ := (Z ′Z)−1(Z ′y+ −A∗). (B.2)

Wagner and Hong (2016, Proposition 1) show, under slightly weaker assumptions than

considered in the main text, that:

G−1(θ̂+ − θ) ⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r). (B.3)

2



This is exactly the same asymptotic distribution as derived for the FM-OLS estimator

in Proposition 2.11 in the main text.

Denoting the FM-CPR residuals with u+t := yt−Z ′
tθ̂

+, Wagner and Hong (2016, Propo-

sition 5) provides the limiting distribution of a Shin (1994)-type test of Wagner and

Hong (2016, Proposition 5) test for the null hypothesis of no cointegration defined as:

CT+ :=
1

T ω̂u·v

T∑
t=1

 1

T 1/2

t∑
j=1

û+j

2

. (B.4)

Under the null hypothesis it holds that:

CT+ ⇒
∫ 1

0

(
W JW

u·v (r)
)2

dr, (B.5)

with:

W JW
u·v (r) := Wu·v(r)−

∫ r

0
JW (s)′ds

(∫ 1

0
JW (s)JW (s)′ds

)−1 ∫ 1

0
JW (s)dWu·v(s),

(B.6)

where JW (r) := [D(r)′,Wv(r),W
2
v (r), . . . ,W

p
v (r)]′ and Wu·v(r) and Wv(r) are two stan-

dard Brownian motions independent of each other.

The limiting distribution given in (B.5) and (B.6) is nuisance parameter free since the

single integrated regressor case is, in the words of Vogelsang and Wagner (2014), of full

design, which allows for a bijection between functionals of Brownian motions and stan-

dard Brownian motions and therefore a limiting distribution that can be simulated.

In the multiple integrated regressor CPR case, full design need not necessarily prevail.

In this case the result for both CT+ and CT++ still holds true, however, with a nuisance

parameter dependent limiting distribution given in Wagner and Hong (2016, eq. (22)

and (23)). For this case Wagner and Hong (2016, Proposition 6) propose a sub-sampling

approach to achieve a nuisance parameter free limiting distribution.

APPENDIX C: A Discussion of the Robustness Result

Proposition 2.11 in the main text is based on the underlying kernel-weighted sum limit

result developed in Theorem 2.7 and the functional central limit theorem developed in
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Theorem 2.9, both given in the main text. Some of the results, in particular the structure

of the kernel-weighted sum limits, have a similar structure as arising when considering

(the scaled partial sum) limit processes of the transformed errors u+t , related to the

orthogonalization of normally distributed random variables or Brownian motions. This

subsection discusses these links and thereby highlights the importance of including xt

itself as a regressor for the robustness result of “formal” FM-OLS, i. e., of the asymptotic

equivalence of “formal” FM-OLS and FM-CPR.1

To set the stage, consider the “proper” FM-type modification of the dependent variable,

i. e., the Phillips and Hansen (1990) or Wagner and Hong (2016) modification of the

dependent variable and its centered version already defined in (B.1) in Appendix B:

u+t = ut −∆xtΩ̂
−1
vv Ω̂vu (C.1)

= ut − vtΩ̂
−1
vv Ω̂vu.

When using consistent long-run covariance estimators, the scaled partial sum process of

the transformed errors u+t converges to a Brownian motion independent of the scaled par-

tial sum corresponding to {vt}t∈Z, i. e., 1√
T

∑⌊rT ⌋
t=1 u+t = 1√

T

∑⌊rT ⌋
t=1 ut− 1√

T

∑⌊rT ⌋
t=1 vtΩ̂

−1
vv Ω̂vu

⇒ Bu(r)−Bv(r)Ω
−1
vv Ωvu = Bu·v(r). The above result defines Bu·v(r) to be by construc-

tion independent of Bv(r), however, the result can also be interpreted (or arrived at)

from a different (well-known) perspective. Consider the following population regression

equation for a fixed 0 < r ≤ 1:

Bu(r) = Bv(r)Θ[1](r) +Bu·v(r), (C.2)

The population regression coefficient Θ[1](r) is given by:

Θ[1](r) := (E(Bv(r)Bv(r)))
−1 E(Bv(r)Bu(r)) (C.3)

= (rΩvv)
−1 (rΩvu) = Ω−1

vv Ωvu = Θ[1],

where the notation Θ[1](r) indicates that in the regression only the first power of Bv(r)

is included.2

1Note that the analogies only apply to the orthogonalization of the dependent variable steps of the two
considered estimators and do not extend to the additive bias terms and their removal. The analogy
also does not “explain” Theorems 2.7 and 2.9.

2Of course, the result can also be obtained by considering not only a fixed value 0 < r ≤ 1, but the
interval [0, 1]. In this case the starting point is again (C.2): Pre-multiplying this equation by Bu(r),
integrating from 0 to 1 and taking expectations leads – using independence of Bv(r) and Bu·v(r) – to

Θ[1] =
(
E
(∫ 1

0
B2

v(s)ds
))−1

E
(∫ 1

0
Bv(s)Bu(s)ds

)
=

(
1
2
Ωvv

)−1 ( 1
2
Ωvu

)
= Ω−1

vv Ωvu. This result also
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Consider next in a similar fashion – which can again be done analogously either for fixed

0 < r ≤ 1 or the interval [0, 1] – the population regression equation relating Bu(r) and

Bv(r), B
2
v(r), . . . , B

p
v(r):

Bu(r) =
[
Bv(r), B

2
v(r), . . . , B

p
v(r)

]
Θ[1:p] +Bu·v(r) (C.4)

=
[
Bv(r), B

2
v(r), . . . , B

p
v(r)

] [ Θ[1]

0(p−1)×1

]
+Bu·v(r),

with obvious notation for Θ[1:p]. The second equality follows from Gaussianity, which

implies that Bu·v(r) is not only independent from Bv(r), but also from all powers of

Bv(r). For an early precise discussion of the fact that for two Gaussian processes all

that needs to be achieved by an appropriate transformation to arrive at independence is

zero correlation see, e. g., Phillips (1989, Lemma 3.1). The second equality can also be

established by calculating Θ[1:p] explicitly, analogously to (C.3):

Θ[1:p] :=
(
E(Bv(r)Bv(r)

′)
)−1 E(Bv(r)Bu(r)) (C.5)

=
(
E(Bv(r)Bv(r)

′)
)−1 E(Bv(r)(Bu·v(r) +Bv(r)Ω

−1
vv Ωvu))

=
(
E(Bv(r)Bv(r)

′)
)−1 E(Bv(r)Bv(r))Ω

−1
vv Ωvu

=

[
Ω−1
vv Ωvu

0(p−1)×1

]
=

[
Θ[1]

0(p−1)×1

]
,

using independence of Bv(r) and Bu·v(r) and “partial inversion”.3 Note that for partial

inversion to apply it is necessary that Bv(r) includes Bv(r) as, e. g., first element.

explains the final equality in (C.3), i. e., Θ[1](r) = Θ[1]. Note for completeness that the population
regression coefficient Θ[1] cannot be interpreted as regression coefficient obtained from the continuous
time regression of Bu(r) on Bv(r) over the interval [0, 1]. The corresponding continuous time least

squares regression coefficient is given by Θ̂[1] =
(∫ 1

0
Bv(s)

2ds
)−1 ∫ 1

0
Bv(s)Bu(s)ds, resulting in a

“residual process” of the form B̂u·v(r) = Bu(r)−Bv(r)
(∫ 1

0
Bv(s)

2ds
)−1 ∫ 1

0
Bv(s)Bu(s)ds.

3“Partial inversion” is our label for the obvious fact that for any regular matrix A ∈ Rn×n with columns
A(·,j) it holds that A−1A(·,j) = [0, . . . , 0, 1, 0, . . . , 0]′, with the 1 occurring as j-th entry. Exactly the
same result as shown in (C.5) again also holds for the interval [0, 1] version, similarly as discussed
for Θ[1] in Footnote 2.
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Now consider the “formal” FM-OLS transformed errors from a similar perspective as u+t
in (C.1) above, i. e., consider:

u++
t = ut −∆X ′

tΩ̂
−1
wwΩ̂wu (C.6)

= ut − w′
tΩ̂

−1
wwΩ̂wu

= ut −
[
vt,∆x2t , . . . ,∆xpt

]
Ω̂−1
wwΩ̂wu

≈ ut −

[
vt,

2xtvt − v2t
T 1/2

, . . . ,
pxp−1

t vt − p(p−1)
2 xp−2

t v2t

T
p−1
2

]
Ω̂−1
w̃w̃Ω̂w̃u,

with – and this is a key aspect – vt included only if xt is included in the regression and

where for ∆xjt , j = 2, . . . , p only the two (asymptotically relevant) leading terms are con-

sidered, compare (6) in the main text. Convergence of the corresponding scaled partial

sum process, 1√
T

∑⌊rT ⌋
t=1 u++

t , 0 ≤ r ≤ 1, follows from a combination of several results,

e. g., Liang et al. (2016, Theorem 2.1) or Wagner and Hong (2016, Proposition 1), Itô’s

Lemma (see, e. g., Theorem 3.3., p. 149 in Karatzas and Shreve, 1991) and Theorem 2.7

in the main text, with the limit process given by:4

B++
u·v (r) := Bu(r)−

[
Bv(r), 2

∫ r

0
Bv(s)dBv(s) + rΩvv, . . . , (C.7)

p

∫ r

0
Bp−1

v (s)dBv(s) +
p(p− 1)

2
Ωvv

∫ r

0
Bp−2

v (s)ds

]
Ω−1
w̃w̃Ωw̃u

= Bu(r)−
[
Bv(r), B

2
v(r), . . . , B

p
v(r)

]
Ω−1
w̃w̃Ωw̃u.

Theorem 2.7 shows that Ω̂w̃w̃ ⇒ Ωw̃w̃ = Ωvv

∫ 1
0 Ḃv(r)Ḃv(r)

′dr and that Ω̂w̃u ⇒ Ωw̃u =

Ωvu

∫ 1
0 Ḃv(r)dr. In the case that xt is included (as first element) in Xt, the first element

of Ḃv(r) = 1 and it follows again via partial inversion that:

Ω−1
w̃w̃Ωw̃u =

[
Ω−1
vv Ωvu

0(p−1)×1

]
= Θ[1:p], (C.8)

which in turn immediately implies that B++
u·v (r) = Bu·v(r). Therefore, the robustness re-

sult algebraically critically hinges on the finding that the product Ω−1
w̃w̃Ω̃wu coincides with

4We use (C.6) as starting point as it highlights the relevant quantities for the asymptotic results. If
one is merely interested in the partial sum process and its limit it is easier to directly consider:

1√
T

⌊rT⌋∑
t=1

u++
t =

1√
T

⌊rT⌋∑
t=1

ut −
1√
T
X ′

⌊rT⌋GW Ω̂−1
w̃w̃Ω̂w̃u ⇒ Bu(r)−Bv(r)

′Ω−1
w̃w̃Ωw̃u,

with this approach also relying upon Theorem 2.7 in the main text.
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Θ[1:p], which hinges upon the first element of Ḃv(r) = 1, from which partial inversion

leads to the result. In this case, asymptotically, the transformations of the dependent

variable yt, respectively of the errors ut, undertaken in both FM-OLS and FM-CPR

coincide. However, in finite samples the FM-OLS transformation to y++
t , respectively

u++
t , involves the subtraction of a number of terms that are asymptotically all zero.

These extraneous subtractions are not performed in the FM-CPR transformations to

y+t , respectively u+t . Loosely speaking, thus FM-OLS is affected by asymptotically van-

ishing nuisance parameters in finite samples. To conclude the discussion, note that the

asymptotic equivalence of the additive bias correction terms subtracted in FM-OLS and

FM-CPR follows along similar lines, as detailed in the proof of Proposition 2.11 in the

main text.

The above discussion makes clear that the robustness result for “formal” FM-OLS breaks

down when xt itself is not included in the regression. Nevertheless, it may be informative

to see this also explicitly. Consider the simplest example yt = x2tβ + ut, xt = xt−1 + vt.

In this case straightforward (given the results of the paper) derivations show that the

FM-OLS estimator does not converge to – the corresponding case of – the limiting

distribution given in (14) in the main text, but to:5

T 3/2(β̂++ − β) ⇒
(∫ 1

0
B4

v(r)dr

)−1(∫ 1

0
B2

v(r)dBu·v(r) (C.9)

+

∫ 1

0
Bv(r)drΩ

−1
vv Ωvu

[∫ 1

0
B2

v(r)dBv(r)

(∫ 1

0
Bv(r)dr

)−1

−
∫ 1

0
B3

v(r)dBv(r)

(∫ 1

0
B2

v(r)dr

)−1

− Ωvv

2

])
.

The corresponding FM-CPR limit distribution coincides with the expression in the first

line of (C.9). The terms in the second and third line of (C.9) comprise the “or-

thogonalization” error that occurs when Bu(r) is orthogonalized with respect to the

non-Gaussian process B2
v(r) rather than the Gaussian process Bv(r). This step does

not lead to independence between the limit partial sum process of u++
t , given here by

B++
u·v (r) = Bu(r)− 1

2Ω
−1
vv Ωvu

∫ 1
0 Bv(r)dr, and Bv(r), hence the extra terms.

5The relevant terms for the specific example considered are GZ′W̃ ⇒ 2
∫ 1

0
B3

v(r)dBv(r) +

6∆vv

∫ 1

0
B2

v(r)dr − Σvv

∫ 1

0
B2

v(r)dr, Ω̂
−1
w̃w̃Ω̂w̃u ⇒ 1

2
Ω−1

vv Ωvu

(∫ 1

0
B2

v(r)dr
)−1 ∫ 1

0
Bv(r)dr and GA∗∗ ⇒

2∆+
vu

∫ 1

0
Bv(r)dr.
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APPENDIX D: Proofs of Auxiliary Lemmas

Proof of Lemma A.2. Consider f(x) := xq, x ∈ R. The mean value theorem states

that f(y)− f(x) = f ′(ζ)(y− x), i. e., yq − xq = qζq−1(y− x), with x < y and x < ζ < y.

Therefore, it holds that:

(xt+h

T 1/2

)q
−
( xt

T 1/2

)q
= q

(
xht
T 1/2

)q−1
xt+h − xt

T 1/2
=

q

T 1/2

(
xht
T 1/2

)q−1 h∑
m=1

vt+m,

with xht = xt + γt
∑h

m=1 vt+m and some 0 < γt < 1. Using this representation, it follows

that:

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p [(xt+h

T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h

=
q

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
m=1

vtvt+mvt+h.

The assertion is hence equivalent to showing that:

1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
m=1

vtvt+mvt+h = oP(1).

In the course of the proof, it is helpful to resort to strong approximations, obtained

from the Skorohod representation theorem, see Pollard (1984, p. 71–72) or Csörgo

and Horváth (1993, p. 4). For a discussion of this issue in a nonlinear cointegra-

tion context see, e. g., Park and Phillips (1999, Lemma 2.3) and Park and Phillips

(2001). Since we are concerned with weak convergence results in this paper, we can

w.l.o.g. use a distributionally equivalent version of T−1/2x⌊rT ⌋, X
∗
T (r) say, that fulfills

supr∈[0,1] |X∗
T (r)−Bv(r)| = oa.s.(1), with Bv(r) the Brownian motion given in (4) in the

main text. For convenience, we continue to use xt and T−1/2x⌊rT ⌋ also when working

with the distributionally equivalent version. Setting C̃ := supr∈[0,1] |Bv(r)|+1/2, it holds

that:

sup
r∈[0,1]

T−1/2|x⌊rT ⌋| ≤ C̃ + oa.s.(1). (D.1)
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Furthermore, supr∈[0,1] sup0≤h≤MT
T−1/2|

∑h
m=1 v⌊rT ⌋+m| ≤ supr∈[0,1] T

−1/2
∑MT

m=1 |v⌊rT ⌋+m|
and, thus, it follows from Lemma A.1 that:

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|x⌊rT ⌋+h − x⌊rT ⌋| = oa.s.(1). (D.2)

Via the triangular inequality, this implies supr∈[0,1] sup0≤h≤MT
T−1/2|x⌊rT ⌋+h|| ≤ C +

oa.s.(1), with C := supr∈[0,1] |Bv(r)|+ 1 and it also implies that:

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xh⌊rT ⌋| ≤ C + oa.s.(1). (D.3)

Using the triangular inequality and the bounds given in (D.1)–(D.3), the following in-

equalities hold:∣∣∣∣∣ 1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
m=1

vtvt+mvt+h

∣∣∣∣∣ (D.4)

≤
(
M3

T

T

)1/2
1

MT

MT∑
h=0

∣∣∣∣k( h

MT

)∣∣∣∣ 1T
T−h∑
t=1

∣∣∣∣∣( xt

T 1/2

)p( xht
T 1/2

)q−1
∣∣∣∣∣ |vtvt+h|

∣∣∣∣∣ 1

M
1/2
T

h∑
m=1

vt+m

∣∣∣∣∣
≤
(
M3

T

T

)1/2

k(0)Cp+q−1 1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h|

∣∣∣∣∣ 1

M
1/2
T

h∑
m=1

vt+m

∣∣∣∣∣+ oP(1),

with k(0) = supx≥0 |k(x)| as defined in Assumption 2.3 in the main text. Consider next:

E

(
1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h|

∣∣∣∣∣ 1

M
1/2
T

h∑
m=1

vt+m

∣∣∣∣∣
)

=
1

MT

MT∑
h=0

1

T

T−h∑
t=1

E

(
|vtvt+h|

∣∣∣∣∣ 1

M
1/2
T

h∑
m=1

vt+m

∣∣∣∣∣
)

≤ 1

MT

MT∑
h=0

1

T

T−h∑
t=1

E(v4t )1/4E(v4t+h)
1/4E

(M−1/2
T

h∑
m=1

vt+m

)2
1/2

.
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It holds that:

E

(M−1/2
T

h∑
m=1

vt+m

)2
 =

1

MT

h∑
m1=1

h∑
m2=1

E(vt+m1vt+m2)

=
1

MT

h∑
m=1

E(v2t+m) +
2

MT

h∑
m1=1

h∑
m2=m1+1

E(vt+m1vt+m2)

≤ h

MT
Ωvv,

which implies E

(
1

MT

MT∑
h=0

1
T

T−h∑
t=1

|vtvt+h|
∣∣∣∣ 1

M
1/2
T

∑h
m=1 vt+m

∣∣∣∣
)

= O(1). The assertion is

now an immediate consequence of M3
T /T → 0 by Assumption 2.4 in the main text and

the remaining terms contained in the expression in (D.4) being OP(1). ■

Proof of Lemma A.3. The proof of Lemma A1(iv) in Kasparis (2008) shows that:∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p h∑
m=1

(vtvt+m − E[vtvt+m])

∣∣∣∣∣ = oP(1)

by showing that:

sup
0≤h≤MT

∣∣∣∣∣ 1T
T−h∑
t=1

( xt

T 1/2

)p h∑
m=1

(vtvt+m − E[vtvt+m])

∣∣∣∣∣ = oP(1). (D.5)

The left-hand side of (A.3) can be written as:∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ .
Using similar arguments as Kasparis (2008, p. 1394–1396) to show (D.5), corresponding

to his Equation (A.7), it follows that:

sup
0≤h≤MT

∣∣∣∣∣ 1T
T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1),

which implies the claim of this lemma. Since we rely upon arguments of Kasparis (2008),

we need the same moment and bandwidth assumptions that are, therefore, incorporated

in our Assumptions 2.2 to 2.4 in the main text. ■
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APPENDIX E: Multiple Integrated Regressors and Their

Powers

This appendix sketches how the underlying main results, i. e., Theorems 2.7 and 2.9

in the main text, can be extended to thereby also extend the robustness result, i. e.,

Proposition 2.11 in the main text to the case of multiple integrated regressor CPRs as

considered in Wagner and Hong (2016). The results hold – with full details available upon

request – under exactly the same assumptions as in the main text, with Assumption 2.2

modified to a multivariate version, compare also Wagner and Hong (2016, Assumption 1).

Notation is as in the main text with the additionally defined Khatri-Rao product: Let

⊗ denote the Kronecker product, let the matrix A = (Aij) be partitioned with Aij

denoting its (i, j)-th block sub-matrix and let B = (Bij) be analogously partitioned in

block sub-matrices Bij , for some i, j = 1, 2, . . .. Then the Khatri-Rao product is defined

and denoted as A⊙B := (Aij ⊗Bij)ij .

The setting is given by:

yt = D′
tδ + x′tβ +

m∑
j=1

X ′
jtβXj + ut, for t = 1, . . . , T, (E.1)

= D′
tδ +X ′

tβX + ut

= Z ′
tθ + ut

xt = xt−1 + vt,

where yt is a scalar process, Dt ∈ Rq, xt := [x1t, . . . , xmt]
′, Xjt := [x2jt, . . . , x

pj
jt ]

′, Xt :=

[x′t, X
′
1t, . . . , X

′
mt]

′, Zt := [D′
t, X

′
t]
′ ∈ Rq+p∗ , βX := [β′, β′

X1
, . . . , β′

Xm
]′ and θ := [δ′, β′

X ]′ ∈
Rq+p∗ with p∗ :=

∑m
j=1 pj . Up to a different ordering of the regressors in Xt – grouping

all first powers of the integrated regressors on top of the vector – this setting is similar

to Wagner and Hong (2016, eq. (1), p. 1292). This reordering is done to, e. g., collect

the components of ∆̂w̃w̃ that correspond to long-run covariance estimation proper in

the upper left blocks (which consequently leads to a similar structure as in the single

integrated regressor case as considered in the main text). Note also that we only consider,

as we focus here on highlighting the necessary steps to establish asymptotic equivalence

of FM-OLS and FM-CPR, the case where all m-elements of xt are included as regressors.

There are no restrictions on the presence or absence of higher order powers of any of

the integrated regressors, compare again Wagner and Hong (2016), but for notational

11



brevity we discuss the case where the full sets of powers of the integrated regressors up

to degrees pj , j = 1, . . . ,m are included.

The limiting distribution of the FM-CPR estimator of the above equation (E.1) follows –

with the reordering already taken into account below in (E.2) – from the corresponding

result given in Wagner and Hong (2016, eq. (6), p. 1296), i. e.,:

G−1(θ̂+ − θ) ⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (E.2)

withG := diag
(
GD, T

−1Im, diag
(
T−3/2, . . . , T−(p1+1)/2

)
, . . . ,diag

(
T−3/2, . . . , T−(pm+1)/2

))
,

J(r) := [D(r)′, Bv(r)
′,B∗

v(r)
′]′, withBv(r) := [Bv1(r), . . . , Bvm(r)]

′,B∗
v(r) := [B∗

v1(r)
′, . . . ,

B∗
vm(r)

′]′ = [B2
v1(r), . . . , B

p1
v1 (r), B

2
v2(r), . . . , B

pm
vm (r)]′ andBu·v(r) := Bu(r)−Bv(r)

′Ω−1
vv Ωvu,

with Bv(r) now m-dimensional. In the considered setting, with the described up-

front collection of all first powers, the multiple integrated regressor version of wt :=

∆Xt is given by wt :=
[
v1t, . . . , vmt,∆x21t, . . . ,∆xp11t , . . . ,∆x2mt, . . . ,∆xpmmt

]′
, with the

corresponding scaling matrix GW to arrive at w̃t := GWwt now given by GW :=

diag
(
Im, diag

(
T−1/2, . . . , T−(p1−1)/2

)
, . . . ,diag

(
T−1/2, . . . , T−(pm−1)/2

))
. Using similar

arguments as in the proofs given in the appendices of the main text, Theorem 2.7 can

be generalized to the multiple integrated regressor case. The key difference is the occur-

rence of cross-products of (first differences of) powers of different integrated regressors.

This necessitates to establish the corresponding limits, using similar arguments as in

the proof of Theorem 2.7 in the main text, to such cross-products. This is tedious but

entails no fundamental additional complexities. Using similar notation as in the main

text, i. e., {ξt}t∈Z := {[ut, v′t]′}t∈Z and η̂t := [ût, w̃
′
t]
′ it can be shown that:

∆̂ηη ⇒

[
∆ξξ ∆ξv ⊙

∫ 1
0 Ḃ∗

v(r)
′dr

∆vξ ⊙
∫ 1
0 Ḃ∗

v(r)dr ∆vv ⊙
∫ 1
0 Ḃ∗

v(r)Ḃ
∗
v(r)

′dr

]
, (E.3)

with Ḃ∗
v(r) := [Ḃ∗

v1(r)
′, . . . , Ḃ∗

vm(r)
′]′ = [2Bv1(r), . . . , p1B

p1−1
v1 (r), 2Bv2(r), . . . , pmBpm−1

vm (r)]′,

where the Khatri-Rao product is used for a partitioning according to the rows ∆viξ, the

columns ∆ξvi , the (scalar) elements of ∆vv and the blocks Ḃ∗
vi(r), i = 1, . . . ,m.

As in the single integrated regressor case, Σ̂ηη := 1
T

T∑
t=1

η̂tη̂
′
t ⇒ Σηη, with Σηη of similar

structure as ∆ηη given above in (E.3). Combining the two results implies that Ω̂ηη ⇒
Ωηη; of similar structure as ∆ηη in (E.3).

12



Parallelling the structure of the proof in Appendix A in the main text one important

step is to derive a block-column version of (A.17), which follows from:

Ωw̃w̃ =

[
Ωvv Ωvv ⊙

∫ 1
0 Ḃ∗

v(r)
′dr

Ωvv ⊙
∫ 1
0 Ḃ∗

v(r)dr Ωvv ⊙
∫ 1
0 Ḃ∗

v(r)Ḃ
∗
v(r)

′dr

]
, (E.4)

Ωw̃u =

[
Ωvu

Ωvu ⊙
∫ 1
0 Ḃ∗

v(r)dr

]
,

and from using again partial inversion in conjunction with the properties of the Khatri-

Rao product:6

Ω̂−1
w̃w̃Ω̂w̃u

P→

[
Ω−1
vv Ωvu

0(p∗−m)×1

]
. (E.5)

The extension of Theorem 2.9 in the main text to the multiple integrated regressor

case works using similar arguments as the derivation of Theorem 2.9 in Appendix A in

the main text, by deriving the limits for cross-products of powers of xit times the first

differences of powers of xjt for i, j = 1, . . . ,m and i ̸= j, with details available upon

request:

GZ ′W̃ ⇒
∫ 1

0
J(r)dB∗

v(r)
′ +

 0q×m 0q×(p∗−m)

∆vv ∆vv ⊙
∫ 1
0 Ḃ∗

v(r)
′dr

∆vv ⊙
∫ 1
0 Ḃ∗

v(r)dr ∆vv ⊙
∫ 1
0 Ḃ∗

v(r)Ḃ
∗
v(r)

′dr

 , (E.6)

which implies the multiple integrated regressors version of (A.18):

GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u ⇒

∫ 1

0
J(r)dBv(r)

′Ω−1
vv Ωvu +

 0q×1

∆vvΩ
−1
vv Ωvu

∆vvΩ
−1
vv Ωvu ⊙

∫ 1
0 Ḃ∗

v(r)dr

 , (E.7)

with partitioning according to the rows ∆vivΩ
−1
vv Ωvu, i = 1, . . . ,m. It now only remains

to consider the structure of (the limit of):

GA∗∗ =

[
0q×1

∆̂+
w̃u

]
=

[
0q×1

∆̂w̃u − ∆̂w̃w̃Ω̂
−1
w̃w̃Ω̂w̃u

]
⇒

[
0q×1

∆w̃u −∆w̃w̃Ω
−1
w̃w̃Ωw̃u

]
. (E.8)

6With the Khatri-Rao product being effectively an efficient notation for using the Kronecker product
for matrices with block structure, the result stems from the properties of the inverse of a Kronecker
product and the product rule for Kronecker products of matrices, in the case all elements of xt are
included in the CPR model.
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(E.3) implies:

∆w̃w̃ =

[
∆vv ∆vv ⊙

∫ 1
0 Ḃ∗

v(r)
′dr

∆vv ⊙
∫ 1
0 Ḃ∗

v(r)dr ∆vv ⊙
∫ 1
0 Ḃ∗

v(r)Ḃ
∗
v(r)

′dr

]
, (E.9)

∆w̃u =

[
∆vu

∆vu ⊙
∫ 1
0 Ḃ∗

v(r)dr

]
.

Combining (E.9) with (E.5) yields:

∆+
w̃u =

[
∆vu

∆vu ⊙
∫ 1
0 Ḃ∗

v(r)dr

]
−

[
∆vv ∆vv ⊙

∫ 1
0 Ḃ∗

v(r)
′dr

∆vv ⊙
∫ 1
0 Ḃ∗

v(r)dr ∆vv ⊙
∫ 1
0 Ḃ∗

v(r)Ḃ
∗
v(r)

′dr

][
Ω−1
vv Ωvu

0(p∗−m)×1

]

=

[
∆vu

∆vu ⊙
∫ 1
0 Ḃ∗

v(r)dr

]
−

[
∆vvΩ

−1
vv Ωvu

∆vvΩ
−1
vv Ωvu ⊙

∫ 1
0 Ḃ∗

v(r)dr

]

=

[
∆+

vu

∆+
vu ⊙

∫ 1
0 Ḃ∗

v(r)dr

]
.

Combining the above results allows to establish the limit of of GZ ′u++ −GA∗∗:

GZ ′u−GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u −GA∗∗ (E.10)

⇒
∫ 1

0
J(r)dBu(r) +

 0q×1

∆vu

∆vu ⊙
∫ 1
0 Ḃ∗

v(r)dr



−
∫ 1

0
J(r)dBv(r)

′Ω−1
vv Ωvu −

 0q×1

∆vvΩ
−1
vv Ωvu

∆vvΩ
−1
vv Ωvu ⊙

∫ 1
0 Ḃ∗

v(r)dr

−

 0q×1

∆+
vu

∆+
vu ⊙

∫ 1
0 Ḃ∗

v(r)dr


=

∫ 1

0
J(r)dBu·v(r),

with the last line following from the definition of Bu·v(r).

APPENDIX F: Finite Sample Performance

The most voluminous empirical literature using cointegrating polynomial regression

(CPR) models is the environmental Kuznets curve (EKC) literature, typically relying

upon quadratic or cubic CPR specifications. As discussed in the introduction of the main

text, this growing literature continues to use, when applying cointegration techniques,

14



to a surprisingly large extent estimators designed for linear cointegrating relationships,

i. e., this empirical literature ignores the impacts that polynomial transformations of

integrated processes entail for estimation and inference (see, e. g., from a large list of

contributions Baek, 2015; Esteve and Tamarit, 2012; Fosten et al., 2012; Friedl and Get-

zner, 2003; Galeotti et al., 2006; He and Richard, 2010; Jalil and Mahmud, 2009; Lind-

mark, 2002; Özcan and Öztürk, 2019). This happens despite the fact that some papers

such as, e. g., Bradford et al. (2005), Müller-Fürstenberger and Wagner (2007), Wag-

ner (2008) or Wagner (2015), have discussed and highlighted the implied issues and

complications for a long time.

Given that the paper shows asymptotic equivalence of “formal” FM-OLS to FM-CPR,

with the need to be careful with the choice of correct values in cointegration testing,

this section assesses the finite sample “price” that a user of “formal” FM-OLS has

to pay compared to using, e. g., FM-CPR. This is done for a prototypical EKC-type

specification inspired by Wagner (2015) used also for the finite sample performance

assessment in Wagner and Hong (2016, Section 3). More specifically, the simulations

use data generated from the following quadratic cointegrating polynomial regression

model yt = c + δt + β1xt + β2x
2
t + ut, with the errors ut and vt = ∆xt generated as

ut = ρ1ut−1 + εt + ρ2et, u0 = 0 and vt = et + 0.5et−1, where (εt, et)
′ ∼ N (0, I2). The

parameter ρ1 controls the level of serial correlation in the errors ut and ρ2 controls the

extent of regressor endogeneity. The parameter values are set to c = δ = 1, β1 = 5

and β2 = −0.3. The values for β1 and β2 are based on coefficient estimates obtained

by applying the FM-CPR estimator to GDP and CO2 emissions data for Austria (see

Wagner, 2015). We present simulation results for T ∈ {50, 100, 200, 500, 1000} and for

ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.8}. The number of replications is 10,000 throughout and all tests

are carried out at the nominal 5% level.

We only report results for the Bartlett kernel, and merely note that the results for the

Quadratic Spectral kernel, available upon request in supplementary material, are qual-

itatively very similar. With respect to bandwidth choice we report results for three

bandwidth selection rules. These are the data-dependent rules of Andrews (1991), la-

belled And, Newey and West (1994), labelled NW, as well as a “simplified” sample size

dependent version of the latter, i. e., MT = ⌊4(T/100)2/9⌋, labelled NWT, that is widely-

used.7 The parameter hypothesis test results are “benchmarked” against OLS-based

7The usage of these bandwidth rules is purely pragmatic given that these are implemented in many
software packages. However, there is no optimality theory available for the situation considered in
this paper. Furthermore, from an asymptotic perspective the following has to be taken into account:

The chosen data-dependent bandwidths are of the form M̂T = γ̂T
1

1+2r , where γ̂ is a parameter
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ρ1, ρ2 Bias Ratio RMSE Ratio

And NW NWT And NW NWT

Panel A: T = 50

0.0 0.6475 1.9067 0.4405 0.9798 0.9920 0.9953
0.3 0.9575 1.1808 0.9847 1.0177 1.0207 1.0332
0.6 0.9838 1.0960 1.0272 1.0566 1.0662 1.0787
0.8 0.9952 1.0466 1.0245 1.0666 1.0715 1.0893

Panel B: T = 100

0.0 1.1342 1.1153 1.0193 1.0143 1.0123 1.0149
0.3 1.0410 1.1959 1.0245 1.0466 1.0382 1.0475
0.6 1.0159 1.0756 1.0396 1.0754 1.0689 1.0876
0.8 1.0226 1.0749 1.0268 1.0826 1.0773 1.0940

Panel C: T = 200

0.0 1.8361 1.9520 1.7630 1.0287 1.0226 1.0223
0.3 1.1629 1.3829 1.1087 1.0495 1.0399 1.0405
0.6 1.0504 1.1447 1.0424 1.0741 1.0699 1.0664
0.8 1.0920 1.1718 1.0253 1.0939 1.1044 1.0707

Panel D: T = 500

0.0 -13.7188 35.9936 17.6654 1.0251 1.0150 1.0133
0.3 1.1604 1.3262 1.1487 1.0351 1.0224 1.0208
0.6 1.0829 1.2659 1.0326 1.0500 1.0438 1.0359
0.8 1.2211 1.3725 1.0183 1.0811 1.1060 1.0442

Panel E: T = 1000

0.0 1.0984 1.1024 1.1868 1.0221 1.0153 1.0109
0.3 1.1090 1.2001 1.0678 1.0286 1.0216 1.0164
0.6 1.0979 1.3687 1.0221 1.0369 1.0357 1.0262
0.8 1.3381 1.5752 1.0134 1.0726 1.1110 1.0320

Table 1: Bias and RMSE ratios, FM-OLS/FM-CPR, for β1.

test results. We use textbook OLS inference ignoring serial correlation and endogeneity

altogether, labelled OLS, which is asymptotically invalid in the presence of serial cor-

relation and endogeneity. Rejections for the Wald-type parameter tests are carried out

using the chi-squared distribution.8

We start the discussion of the results by comparing bias and RMSE of the two estimators.

Table 1 presents the results for β1 in the form of ratios, with the FM-OLS results divided

related to the shape of the spectral density at the origin and r is the characteristic exponent of
the kernel function. For the Bartlett kernel r = 1 (see, e. g., Section 5 of Parzen, 1957) and thus
M̂T = OP(T

1/3). This, at face value, violates the rate restriction given in Assumption 2.4 in the main
text, but has no immediate effect on finite sample performance.

8A large variety of additional results – as mentioned also for the Quadratic Spectral kernel – including
results for the other coefficients or t-tests also for the cubic and quartic specifications are contained
in supplementary material available upon request.
One important additional result from the simulations is that ω̂u·v (based on FM-CPR) exhibits
in many circumstances better performance – meaning smaller bias and RMSE – than ω̂u·w (based
on FM-OLS). These differences are, in addition to the different performance of the estimators, an
important ingredient for the different performance of parameter hypothesis as well as cointegration
tests based on the two estimators.
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by the FM-CPR results, since we are primarily interested in the comparison of the two

estimators in this paper. The results are very similar also for δ and β2. By definition,

numbers larger than one (in absolute value) indicate that FM-CPR outperforms FM-

OLS and with very few exceptions, when T = 50 and the Andrews (1991) bandwidth is

used, this is what happens.

Before turning to the relative performance of FM-OLS and FM-CPR in more detail

some brief comments on absolute performance are in order. The bias resulting from

NWT is often larger than when using the data-dependent bandwidth rules, especially

for the larger values of T and ρ1, ρ2. The Andrews (1991) and Newey and West (1994)

bandwidth rules lead to very similar biases. For RMSE the differences are very small

for all three bandwidth rules with no clear ranking. These observations hold for both

FM-OLS and FM-CPR. Given the – to be expected – absolute disadvantage of NWT,

especially in the presence of error serial correlation and regressor endogeneity, we focus

below on the two data-dependent rules.

With respect to the bias ratio one key observation is that the performance advantage of

FM-CPR over FM-OLS increases with increasing sample size for large values of ρ1, ρ2.

For small values of ρ1, ρ2 the differences tend to get smaller with increasing T .9 The

RMSE ratios increase throughout for any given T with increasing ρ1, ρ2. The variability

of the RMSE results is, however, less pronounced than for bias. Roughly speaking, the

performance disadvantage of FM-OLS relative to FM-CPR is less severe when using the

Andrews (1991) bandwidth than when using the Newey and West (1994) bandwidth.

From the estimator results the empirical null rejection results of the Wald-type tests

for the null hypothesis H0 : β1 = 5, β2 = −0.3 can to a certain extent already be

guessed, see Table 2 and Figure 1 that contain the same information presented in two

different ways. For any given bandwidth choice, size distortions are smaller for the test

statistics computed from the FM-CPR estimates compared to those calculated from the

FM-OLS estimates. Again the differences are sizeable even for T = 1000 for the larger

values of ρ1, ρ2. The table and figure also illustrate the well-known result that OLS

based test statistics do not lead to asymptotic chi-squared distributions in the case of

regressor endogeneity and/or error serial correlation, see, e. g., Hong and Phillips (2010,

Theorem 2). In our setting mostly the Andrews (1991) rule leads to slightly better

results than the Newey and West (1994) rule. The sample-size dependent bandwidth

9The large negative values for the bias ratio for T = 500 and ρ1, ρ2 = 0 are driven by “base-effects”,
i. e., both the numerator and the denominator are very small, with the denominator by one order
smaller.
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ρ1, ρ2 OLS FM-OLS FM-CPR

And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0757 0.1944 0.2139 0.1638 0.1777 0.1762 0.1472
0.3 0.2184 0.2686 0.2918 0.2397 0.2241 0.2396 0.2036
0.6 0.5141 0.4171 0.4462 0.4037 0.3399 0.3684 0.3418
0.8 0.7853 0.6396 0.6734 0.6468 0.5569 0.5816 0.5927

Panel B: T = 100

0.0 0.0597 0.1370 0.1222 0.1183 0.1231 0.1018 0.1063
0.3 0.2066 0.1807 0.1868 0.1686 0.1545 0.1588 0.1434
0.6 0.5352 0.3067 0.3444 0.3075 0.2436 0.2645 0.2563
0.8 0.8164 0.5353 0.6049 0.5634 0.4272 0.4587 0.5120

Panel C: T = 200

0.0 0.0572 0.1070 0.0987 0.0859 0.0940 0.0836 0.0777
0.3 0.2045 0.1385 0.1450 0.1265 0.1176 0.1255 0.1136
0.6 0.5449 0.2224 0.2663 0.2497 0.1748 0.1941 0.2201
0.8 0.8279 0.4234 0.5102 0.5166 0.2974 0.3253 0.4854

Panel D: T = 500

0.0 0.0517 0.0848 0.0766 0.0673 0.0744 0.0663 0.0630
0.3 0.2022 0.1046 0.1123 0.0985 0.0886 0.0980 0.0882
0.6 0.5498 0.1469 0.1965 0.1803 0.1151 0.1248 0.1649
0.8 0.8380 0.2952 0.4016 0.4175 0.1787 0.1913 0.3974

Panel E: T = 1000

0.0 0.0520 0.0711 0.0641 0.0612 0.0645 0.0600 0.0587
0.3 0.2046 0.0840 0.0911 0.0839 0.0747 0.0866 0.0788
0.6 0.5560 0.1131 0.1611 0.1438 0.0904 0.0962 0.1363
0.8 0.8439 0.2166 0.3340 0.3464 0.1286 0.1400 0.3341

Table 2: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 =
−0.3.
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Figure 1: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 =
−0.3.
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Figure 2: Size-corrected power of Wald-type tests for H0 : β1 = 5, β2 = −0.3 for
T = 100. The two left graphs correspond to ρ1 = ρ2 = 0.3 and the two right graphs
to ρ1 = ρ2 = 0.6. Within these pairs the left graph corresponds to the Andrews (1991)
bandwidth and the right graph to the Newey and West (1994) bandwidth.

NWT performs – as expected – especially poorly in the case of large serial correlation

(and large sample sizes). Large correlation cannot be adequately taken into account with

the – in such cases – “too small” NWT bandwidth that is independent of the second

moment structure.
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We now turn briefly to size-corrected power of the Wald-type test just considered under

the null by considering size-corrected power for a grid of (including the null) 21 points.

The values for β1 are chosen from the interval [5, 5.2] on an equidistant grid with mesh

0.01 and the values for β2 from the interval [−0.3,−0.28] on an equidistant grid with

mesh 0.001. Figure 2 displays results for T = 100 for ρ1, ρ2 = 0.3 in the left two graphs

and for ρ1, ρ2 = 0.6 in the right two graphs. Within these two graphs, the left graph

corresponds to the Andrews (1991) bandwidth and the right graph to the Newey and

West (1994) bandwidth.

Figure 2 shows some very typical findings: First, size-corrected power is slightly higher

for OLS, which, however, has the highest size distortions under the null and leads to

invalid inference for ρ1, ρ2 ̸= 0 even asymptotically. Second, size-corrected power is vir-

tually identical for FM-OLS and FM-CPR. Third, the Andrews (1991) bandwidth leads

to marginally lower size-corrected power than the Newey and West (1994) bandwidth,

which has to be seen, however, in conjunction with the lower size distortions resulting

from using the Andrews (1991) bandwidth. Overall, the bandwidth rule of Andrews

(1991) leads to the best performance for parameter hypothesis testing.

Let us now turn briefly to cointegration testing. We report in Table 3 the null rejection

probabilities for the test variants discussed at the end of Section 2 in the main text.

The three-block columns correspond to the following variants: The first column, CT++
Shin,

corresponds to the widespread empirical practice of using the FM-OLS residuals in con-

junction with the (inappropriate) Shin (1994) critical values. The second column, CT++,

is a “hybrid” version, with the test statistic calculated from the FM-OLS residuals and

the test decisions based on the asymptotically correct critical values. The third column,

CT+, reports the results obtained using the FM-CPR residuals and the critical values

corresponding to the limiting distribution given in (B.5) and (B.6); tabulated in Wagner

(2023, Table 4); with the critical values required for our setting also available in Table 1

in the main text.

The null performance of the different cointegration test versions can be summarized

as follows: The CT++
Shin-test typically exhibits the largest over-rejections. These over-

rejections, that stay substantial even for T = 1000, reflect the usage of wrong critical

values. The hybrid CT++-test exhibits a very similar performance as the CT++
Shin-test.

This is partly not surprising, since the same test statistic is used and the critical val-

ues only differ by little in the considered specification (compare Table 1). Thus, the

results cannot differ too much either. Another reason for the poor performance of CT++
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ρ1, ρ2 CT++
Shin CT++ CT+

And NW NWT And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0332 0.1050 0.0321 0.0319 0.1015 0.0303 0.0389 0.0769 0.0400
0.3 0.0640 0.1368 0.0614 0.0614 0.1336 0.0589 0.0600 0.1139 0.0722
0.6 0.1368 0.2265 0.1419 0.1334 0.2210 0.1372 0.0792 0.1928 0.1660
0.8 0.2270 0.3745 0.3249 0.2198 0.3669 0.3178 0.1135 0.2849 0.3734

Panel B: T = 100

0.0 0.0411 0.0518 0.0442 0.0368 0.0447 0.0379 0.0421 0.0472 0.0450
0.3 0.0646 0.0955 0.0717 0.0577 0.0876 0.0646 0.0630 0.0965 0.0728
0.6 0.1280 0.2415 0.1529 0.1151 0.2248 0.1399 0.0768 0.1568 0.1556
0.8 0.2892 0.4932 0.4031 0.2687 0.4756 0.3812 0.0867 0.2449 0.4181

Panel C: T = 200

0.0 0.0480 0.0517 0.0534 0.0413 0.0441 0.0437 0.0465 0.0480 0.0485
0.3 0.0677 0.0968 0.0878 0.0581 0.0865 0.0784 0.0654 0.0926 0.0815
0.6 0.1198 0.2282 0.2073 0.1078 0.2129 0.1886 0.0752 0.1267 0.1952
0.8 0.2928 0.4755 0.5467 0.2673 0.4518 0.5152 0.0712 0.1715 0.5323

Panel D: T = 500

0.0 0.0535 0.0537 0.0570 0.0461 0.0459 0.0487 0.0492 0.0487 0.0493
0.3 0.0679 0.0917 0.0850 0.0581 0.0782 0.0753 0.0625 0.0845 0.0763
0.6 0.1012 0.2035 0.1773 0.0870 0.1842 0.1548 0.0666 0.0850 0.1590
0.8 0.2282 0.4392 0.4859 0.2042 0.4169 0.4530 0.0597 0.1105 0.4597

Panel E: T = 1000

0.0 0.0582 0.0602 0.0604 0.0488 0.0511 0.0514 0.0518 0.0507 0.0530
0.3 0.0705 0.0914 0.0857 0.0599 0.0786 0.0740 0.0621 0.0809 0.0748
0.6 0.0957 0.1847 0.1576 0.0814 0.1669 0.1384 0.0648 0.0760 0.1401
0.8 0.1856 0.3882 0.4258 0.1637 0.3628 0.3905 0.0582 0.0866 0.3959

Table 3: Empirical null rejection probabilities of cointegration tests. The block-column
CT++

Shin reports the results from using the test statistic (16) and the Shin (1994) critical
values. The block-columns CT++ and CT+ report the results from using (16) based on
either the FM-OLS residuals or the FM-CPR residuals and the corresponding critical
value tabulated in Wagner (2023, Table 6, p. 17–18). For the considered specification
the 5% critical values are 0.101 (Shin) and 0.106 (Wagner) respectively, compare also
Table 1.
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compared to CT+ is that it suffers from the poor performance of the estimator ω̂u·w

mentioned in Footnote 8. This leads to poor performance even when comparing the

statistic with the correct critical values. The performance of the CT+-test is substan-

tially better, with a performance advantage that grows for the large values of ρ1, ρ2.

In these comparisons as before the sample size dependent bandwidth NWT has to be

considered separately, with again poor performance in the case of large ρ1, ρ2 and all

values of T . From the two data-dependent bandwidths the Andrews (1991) bandwidth

leads to – partly substantially – better results.

We close this section by considering the power performance of the cointegration test

variants, considering the following three alternative DGPs:

(I) : yt = 1 + t+ 5xt − 0.3x2t + 0.01x3t + ut

(II) : yt = 1 + t+ 5xt − 0.3x2t + et, with unobserved et ∼ I(1) independent of xt

(III) : yt, xt are two independent I(1) variables

In (I) the regressor xt and error ut are generated as described above (with the same

values of ρ1, ρ2). Also in case (II), xt is generated as before and et =
∑t

j=1 εj , with εj ∼
N (0, 1) independent of xt. Finally, in case (III) yt and xt are generated independently

of each other, exactly as et in case (II). These three DGPs cover some main alternatives

of interest. Case (I) covers misspecification of the polynomial degree, alternative (II)

corresponds to the case of no cointegration because of a missing integrated regressor,

and alternative (III) corresponds to a spurious regression alternative.

Size-corrected power of all variants of the CT-tests depends strongly upon alternatives

considered. In particular, size-corrected power is much larger for alternatives (II) and

(III) than for alternative (I), especially when considering large values of ρ1, ρ2. For

alternatives (II) and (III) using the Andrews (1991) bandwidth leads to size-corrected

power that decreases with the sample size. Note that Lee (1996) and Xiao and Phillips

(2002) report potential problems with the power of stationarity and cointegration tests

respectively, when such tests are used in combination with data-dependent bandwidths.

The higher size-corrected power often observed with the Newey and West (1994) band-

width compared to the Andrews (1991) bandwidth has to be seen in conjunction with

the larger size distortions obtained when using the Newey and West (1994) bandwidth.

This effect is even more pronounced when using the sample-size dependent NWT band-

width, especially for the larger sample sizes. For alternative (I) size corrected power is

higher for CT+ than for the two variants of the CT++ test, whereas this ordering is,
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ρ1, ρ2 CT++
Shin & CT++ CT+

And NW NWT And NW NWT

Panel A: T = 50

(I) 0.0 0.1336 0.0302 0.1995 0.1237 0.0934 0.2122
0.3 0.0705 0.0206 0.1255 0.0901 0.0576 0.1309
0.6 0.0334 0.0094 0.0385 0.0716 0.0270 0.0417
0.8 0.0223 0.0035 0.0032 0.0535 0.0168 0.0024

(II) - 0.3923 0.2938 0.5680 0.2615 0.3206 0.5985
(III) - 0.5126 0.3247 0.5934 0.2864 0.3223 0.6295

Panel B: T = 100

(I) 0.0 0.1407 0.1587 0.3549 0.1554 0.1964 0.3699
0.3 0.0912 0.0713 0.2742 0.1105 0.0892 0.2871
0.6 0.0465 0.0027 0.1467 0.0943 0.0360 0.1471
0.8 0.0280 0.0000 0.0246 0.0866 0.0150 0.0238

(II) - 0.5157 0.7670 0.7822 0.3071 0.5856 0.8040
(III) - 0.4769 0.7533 0.7848 0.2935 0.5806 0.8087

Panel C: T = 200

(I) 0.0 0.1333 0.2465 0.6864 0.1499 0.2828 0.6871
0.3 0.0964 0.1263 0.5856 0.1072 0.1581 0.5958
0.6 0.0559 0.0106 0.3868 0.0918 0.1065 0.3972
0.8 0.0310 0.0000 0.1289 0.1028 0.0749 0.1313

(II) - 0.5652 0.8913 0.9640 0.2960 0.6906 0.9660
(III) - 0.3841 0.8862 0.9649 0.2892 0.7001 0.9689

Panel D: T = 500

(I) 0.0 0.1224 0.4333 0.9182 0.1533 0.4562 0.9193
0.3 0.0941 0.3205 0.8781 0.1152 0.3404 0.8780
0.6 0.0626 0.1167 0.7777 0.1098 0.3378 0.7791
0.8 0.0376 0.0002 0.4985 0.1277 0.2965 0.5030

(II) - 0.4650 0.9803 0.9982 0.2929 0.8586 0.9981
(III) - 0.2603 0.9797 0.9979 0.2750 0.8624 0.9981

Panel E: T = 1000

(I) 0.0 0.1134 0.5740 0.9814 0.1404 0.5969 0.9817
0.3 0.0931 0.4722 0.9711 0.1133 0.4960 0.9714
0.6 0.0715 0.2644 0.9382 0.1073 0.5087 0.9398
0.8 0.0428 0.0272 0.8015 0.1269 0.4839 0.8031

(II) - 0.3605 0.9979 0.9999 0.2734 0.9395 0.9999
(III) - 0.2085 0.9949 0.9999 0.2505 0.9381 0.9999

Table 4: Size-corrected power of cointegration tests. Size correction using the empirical
distribution leads by construction to identical results for CT++

Shin and CT++.
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surprisingly, mostly reversed for alternatives (II) and (III). However, again, this higher

size-corrected power has to be seen in conjunction with the partly substantially larger

size distortions under the null.
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