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This supplementary document contains three parts. Part D contains the proofs of lemmas

collected in Appendix A, Part E provides the verification of the conditions in Lemmas C.1

and C.2, and Part F presents some additional simulation results.

D Proofs of Lemmas in Appendix A

Proof of Lemma A.1. See Lemma B.1 and its proof in Dong et al. (2015).

Proof of Lemma A.2. (1) The convergence is well known in the literature since g is smooth.

The convergence rates for both the weighted super norm and the L2 can be calculated sim-

ilarly as Lemma C.1 in the supplement of Dong et al. (2016). (2) By virtue of Assumption

3.2, supθ∈Θ E|γk(θ′x1)|2 ≤ C‖γk(v)‖2
L2 = o(k−ν).
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Proof of Lemma A.3. (1) The matrix 1
n
Z ′(S)WZ(S) has elements 1

n

∑n
t=1Hp(xt)Hq(xt)w(x̃t),

and it is standard that 1
n

∑n
t=1Hp(xt)Hq(xt)w(x̃t) − E[Hp(x1)Hq(x1)w(x̃1)] = OP (1/

√
n)

uniformly in p and q, due to the uniform boundedness of Hp(·)Hq(·)w(·) over all p and q as

well as the argument involved. See, e.g. Chapter One of Gautschi (2004, p. 27-31) or Szego

(1975, p. 242). The assertion follows immediately.

(2) It holds similarly as (1).

(3) Note that 1
n
Z ′(S)W (Y − Zβ0) = 1

n
Z ′(S)We + 1

n
Z ′(S)Wγ. Here, the s-vector 1

n
Z ′(S)We

has elements 1
n

∑n
t=1Hp(xt)w(x̃t)et and by Assumption 3.1 and uniform boundedness of

Hp(xt)w(x̃t) over all p and t we have 1
n

∑n
t=1Hp(xt)w(x̃t)et = OP (n−1/2) uniformly. Thus,

1
n
Z ′(S)We = OP (

√
s/n).

In addition, from Lemma A.2, ‖ 1
n
Z ′(S)Wγ‖2 ≤ 1

n
‖γ‖2‖ 1

n
Z(S)W

2Z(S)‖ = OP (k−νs).

(4) Observe that after premultiplying the selection matrix, QZ ′(S)W (Y−Zβ0) = QZ ′(S)We+

QZ ′(S)Wγ becomes a vector of dimension s. The assertion follows immediately in view of the

proof of (3).

E Verification of conditions in Lemmas C.1 and C.2

Verification of Conditions in Lemma C.1. Condition (1): Note that, ignoring unimportant

constant, Fn(S0)(β0(S0)) = 1
n
Z ′(S0)W (Y−Z(S0)β0(S0)). It has elements 1

n

∑n
t=1Hp(xt)w(x̃t)[γk(θ

′
0xt)+

et] where p 7→ j and j ∈ S0. Due to the uniform boundedness of Hp(xt)w(x̃t) again over all p

and the argument involved, and by virtue of Assumption 3.1 we can use the exponential-tail

Bernstein inequality to have 1
n
Z ′(S0)We = OP (

√
s0 log(K)/n) similar to Lemma C.2 in Fan

and Liao (2014); and(
1

n

n∑
t=1

Hp(xt)w(x̃t)γk(θ
′
0xt)

)2

≤ 1

n2

n∑
t=1

[Hp(xt)w(x̃t)]
2

n∑
t=1

[γk(θ
′
0xt)]

2

≤C 1

n

n∑
t=1

γ2
k(θ

′
0xt) = OP (‖γ2

k(u)‖2)

=OP (k−ν),

by Assumptions 3.2 and 3.3 as well as Lemma A.2, where we have used the fact that al-

most surely
∑n

t=1[Hp(xt)w(x̃t)]
2 ≤ Cn and E[γk(θ

′
0xt)]

2 ≤ C
∫
γ2
k(u)fθ0(u)du ≤ C‖γk(u)‖2.

Hence, ‖Fn(S0)(β0(S0))‖ = OP (
√
s0 log(K)/n+

√
s0‖γk(u)‖).
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With this order of ‖Fn(S0)(β0(S0))‖, we then may conclude ‖β̂−β0‖ = OP (
√
s0 log(K)/n+

√
s0‖γk(u)‖+

√
s0P

′
n(ζn)) for the β̂ in Lemmas C.1-C.2.

Condition (2) is mostly encountered in the literature. The readers are referred to Theorem

4.1 in Fan and Liao (2014) and Condition A.2 in Belloni et al. (2015).

Verification of Conditions in Lemma C.2. Let β̂ ∈ V be the minimizer of Qn(βS0). We

shall show that there is a neighborhood of β̂ in which for any β 6∈ V , the condition of

(C.1) holds, that is, Ln(βS0) − Ln(β) <
∑

j 6∈S0
Pn(|βj|). This is tantamount to showing

Qn(βS0) < Qn(β).

Note that

Ln(βS0)− Ln(β) =
1

n
[(Y − ZβS0)

′W (Y − ZβS0)− (Y − Zβ)′W (Y − Zβ)]

=− 2
1

n
(βS0 − β)′Z ′W (Y − Zβ) +

1

n
(βS0 − β)′Z ′WZ(βS0 − β).

In a small neighborhood of β̂, O(β̂, rn/K) say, where rn is a sufficient small number deter-

mined later, supβ∈O ‖β − β̂‖1 ≤ rn and

1

n
|(βS0 − β)′Z ′W (Y − Zβ)|+ 1

n
(βS0 − β)′Z ′WZ(βS0 − β)

≤ 1

n
|(βS0 − β)′Z ′WZ(βS0 − β)|+ 1

n
|(βS0 − β)′Z ′(S0)W (Y − Z(S0)β(S0))|

≤‖βS0 − β‖‖Hn(βS0 − β)‖+ ‖βS0 − β‖1‖Fn(S0)(β1)‖∞ + ‖Hn‖max‖β1 − βS0‖1‖β1 − βS0‖

≤‖βS0 − β‖1[Crn + rn‖Fn(S0)(β1)‖+ C1‖β1 − β̂S0‖].

Thus, |Ln(βS0)−Ln(β)| ≤ ‖βS0−β‖1[Crn+rn‖Fn(S0)(β1)‖+C1‖β1−β̂S0‖] in probability

with some constants C and C1.

On the other hand,
∑

j 6∈S0
Pn(|βj|) =

∑
j 6∈S0
|βj|P ′n(ξ|βj|) ≥ P ′n(rn)

∑
j 6∈S0
|βj| where ξ ∈

(0, 1) by the mean value theorem and the monotonicity of P ′n. Let rn be small so that

P ′n(rn) ≥ P ′n(0+)/2. Hence,
∑

j 6∈S0
Pn(|βj|) ≥ (P ′n(0+)/2)‖βS0 −β‖1 in probability. Let rn be

further smaller so that rn < P ′n(0+)/4C. Then the assertion holds in probability approaching

unity for large n.

F Additional simulation results

This subsection provides additional simulation results to compare the performance of the

proposed estimator with the post-processed spline estimator of Radchenko (2015) through
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Table 1: Average absolute estimation errors (with standard errors in parenthesis), average

number of false positives (FP) and average number of false negatives (FN) for DGPs 6 and

7, k = 3.

DGP 6 DGP 7

Method σ n Estimation error FP FN σ n Estimation error FP FN

Spline 0.2 70 0.030 (0.010) 0.73 0.02 0.2 70 0.293 (0.044) 1.48 0.68

Hermite 0.031 (0.005) 0.05 0 0.162 (0.062) 0.34 0

Spline 140 0.010 (0.001) 0.24 0 140 0.098 (0.010) 1.05 0.05

Hermite 0.009 (0.004) 0.02 0 0.127 (0.048) 0.13 0

Spline 1 70 0.163 (0.012) 1.55 0.37 0.4 70 0.662 (0.068) 1.84 1.64

Hermite 0.149 (0.044) 0.24 0.24 0.306 (0.121) 0.69 0

Spline 140 0.061 (0.005) 0.49 0.01 140 0.200 (0.012) 0.85 0.57

Hermite 0.041 (0.028) 0.10 0 0.216 (0.088) 0.50 0

the following two designs as used in his study.

DGP 6 : yt =(x′tθ0)2 + σet,

DGP 7 : yt =sin(x′tθ0π/2) + σet,

where θ0 = (8, 4, 2, 1, 0, . . . , 0)′/
√

85 and xt ∼ N(2
√

17/5, Id), for n = 70, 140 and d = 100.

The error terms et’s are independently and identically generated from the standard normal

distribution, and two choices of σ are considered for each choice of n. Note that the last

nonzero element in the single index coefficient vector is very close to zero, compared to the

other nonzero elements. This serves as a scenario in which the signal strength is a bit weak.

Following the accuracy measures as in Radchenko (2015), we compute the estimation error

(the sum of the absolute differences between the estimated and the true vector) of the index

coefficients, the average number of false positives (number of noise predictors identified as

signal) and the average number of false negatives (number of signal predictors identified as

noise), which are reported in Table 1. The results for the spline estimator are taken directly

from Radchenko (2015). The variable selection results for the Hermite polynomial estimator

are obtained by applying the screening procedure with the BIC selection, followed by the

SCAD penalization. It is observed that our variable selection procedure leads to relatively

lower number of false negatives and false positives, while the estimation errors for the two
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methods are rather comparable for both designs. Overall, the performance of both methods

tends to improve as the sample size increases.

References

Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Some new asymptotic

theory for least squares series: Pointwise and uniform results. Journal of Econometrics,

186:345–366.

Dong, C., Gao, J., and Peng, B. (2015). Semiparametric single-index panel data models with

cross-sectional dependence. Journal of Econometrics, 188:301–312.

Dong, C., Gao, J., and Tjøstheim, D. (2016). Estimation for single-index and partially linear

single-index integrated models. Annals of Statistics, 44:425–453.

Fan, J. and Liao, Y. (2014). Endogeneity in high dimensions. Annals of Statistics, 42:872–917.

Gautschi, W. (2004). Orthogonal Polynomials: Computation and Approximation. Numerical

Mathematics and Scientific Computation. Oxford University Press, Oxford.

Radchenko, P. (2015). High dimensional single index models. Journal of Multivariate Anal-

ysis, 139:266–282.

Szego, G. (1975). Orthogonal Polynomials. Colloquium publications XXIII. American Math-

ematical Association, Providence, Rhode Island.

5


	Proofs of Lemmas in Appendix A
	Verification of conditions in Lemmas C.1 and C.2 
	Additional simulation results

