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discussion on the suffi cient conditions for Assumption 3.4 to hold.

B Proofs of Lemmas A.1—A.6

Proof of Lemma A.1. The proof is mainly based on the definitions of MDDo and MDD as

specified in Shao and Zhang (2014) and Su and Zheng (2017), respectively, as well as their properties

as shown in these two papers. Let dZ denote the dimension of Z.

We first prove the first claim. Note that MDDo (W1|Z)2 = 0 if and only if E (W1|Z) = E (W1) ,

which, in turn, implies that for any given constant vector s ∈ RdZ ,

Cov
(
W1, exp

(
is′Z

))
= E

[
W1 exp

(
is′Z

)]
− E [W1]E

[
exp

(
is′Z

)]
= E

[
E (W1|Z) exp

(
is′Z

)]
− E [W1]E

[
exp

(
is′Z

)]
= E [W1]E

[
exp

(
is′Z

)]
− E [W1]E

[
exp

(
is′Z

)]
= 0,

where the second equality follows from the law of iterated expectations. Then by equation (2.4) in

Su and Zheng (2017), we have

MDDo (W2 −W1|Z)2 =

∫
RdZ

[
Cov

(
W2 −W1, exp

(
is′Z

))]2 · q (s) ds

=

∫
RdZ

[
Cov

(
W2, exp

(
is′Z

))
− Cov

(
W1, exp

(
is′Z

))]2 · q (s) ds

=

∫
RdZ

[
Cov

(
W2, exp

(
is′Z

))]2 · q (s) ds

= MDDo (W2|Z)2 , (B.1)

where i ≡
√
−1, q (s) ≡ 1/

[
c |s|(1+dZ)

]
, c ≡ π(1+dZ)/2/Γ

(
1+dZ

2

)
, and Γ (·) is the complete gamma

function: Γ (z) ≡
∫∞

0 t(z−1) exp (−t) dt.
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To proceed, note that for a generic real-valued random variable W ,

MDD (W |Z)2 = MDDo (W |Z)2 + [E (W )]2E
(∣∣∣Z − Z†∣∣∣) (B.2)

which follows directly from the definitions of MDDo and MDD. Also note that MDD (W1|Z)2 = 0

if and only if E (W1|Z) = 0. It follows that MDD (W1|Z)2 = 0 if and only if

MDDo (W1|Z)2 = 0 and E (W1) = 0. (B.3)

This, in conjunction with the given condition that MDD (W1|Z)2 = 0, implies that

MDD (W2 −W1|Z)2 = MDDo (W2 −W1|Z)2 + [E (W2 −W1)]2 E
(∣∣∣Z − Z†∣∣∣)

= MDDo (W2 −W1|Z)2 + [E (W2)]2 E
(∣∣∣Z − Z†∣∣∣)

= MDDo (W2|Z)2 + [E (W2)]2 E
(∣∣∣Z − Z†∣∣∣)

= MDD (W2|Z)2 ,

where the first and last equalities follow from (B.2), the second equality holds by (B.3), and the

third equality holds by (B.1). This proves the first claim.

Now, we prove the second claim. By Su and Zheng (2017),

MDD (W2 −W1|Z)2 = −E
[
(W2 −W1)

(
W †2 −W

†
1

) ∣∣∣Z − Z†∣∣∣]
+ 2E

[
(W2 −W1)

∣∣∣Z − Z†∣∣∣]E [W †2 −W †1]
= −E

[
(W2 −W1)

(
W †2 −W

†
1

) ∣∣∣Z − Z†∣∣∣]
+ 2E

[
W2

∣∣∣Z − Z†∣∣∣]E [W †2]− 2E
[
W1

∣∣∣Z − Z†∣∣∣]E [W †2 −W †1]
− 2E

[
W2

∣∣∣Z − Z†∣∣∣]E [W †1] .
Noting that E (W1|Z) = 0, we have E (W1) = E(W †1 ) = 0 and E

[
W1

∣∣Z − Z†∣∣] = 0 by the law of

iterated expectations and the independence between (W1, Z) and Z†. Then we have

MDD (W2 −W1|Z)2 = −E
[
(W2 −W1)

(
W †2 −W

†
1

) ∣∣∣Z − Z†∣∣∣]+ 2E
[
W2

∣∣∣Z − Z†∣∣∣]E [W †2] . (B.4)
And we also know that

MDD (W2|Z)2 = −E
[
W2W

†
2

∣∣∣Z − Z†∣∣∣]+ 2E
[
W2

∣∣∣Z − Z†∣∣∣]E [W †2] . (B.5)

(B.4)—(B.5), in conjunction with the fact that MDD (W2 −W1|Z)2 = MDD (W2|Z)2, implies that

E
[
(W2 −W1)

(
W †2 −W

†
1

) ∣∣∣Z − Z†∣∣∣] = E
[
W2W

†
2

∣∣∣Z − Z†∣∣∣] . �
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Proof of Lemma A.2. Note that for any real-valued random variable W , it holds that

MDD (W |Z)2 = MDDo (W |Z)2 + [E (W )]2E
(∣∣∣Z − Z†∣∣∣) . (B.6)

We prove the first and second inequalities in Parts I and II, respectively.

Part I. We organize Part I into three subparts. In Part I (i), we show the existence of a finite

constant b1 s.t. for any pair {W1,W2} ⊆ W, it holds that∣∣∣MDDo (W1|Z)2 −MDDo (W2|Z)2
∣∣∣ ≤ b1 · [MDDo (W1 −W2|Z)2

]1/2
.

In Part I (ii), we show the existence of a finite constant b2 s.t. for any pair {W1,W2} ⊆ W, it holds
that ∣∣∣E (W1)2 E

(∣∣∣Z − Z†∣∣∣)− E (W2)2 E
(∣∣∣Z − Z†∣∣∣)∣∣∣ ≤ b2 · [E (W1 −W2)2 E

(∣∣∣Z − Z†∣∣∣)]1/2
.

And in Part I (iii), we combine the results from Part I (i) and Part I (ii) via B.6 to prove the first

inequality.

Part I (i). By the definition of W,

sup
W∈W

Var (W ) = sup
W∈W

[
E
(
W 2
)
− E (W )2

]
≤ sup

W∈W
E
(
W 2
)
≡ b3 <∞. (B.7)

Denote by ϕZ (s) ≡ E [exp (is′Z)] , the characteristic function of Z. It holds that∣∣Var
(
exp

(
is′Z

))∣∣ =
∣∣∣E [exp

(
is′Z

)2]− E [exp
(
is′Z

)]2∣∣∣
=

∣∣∣ϕZ (2s)− [ϕZ (s)]2
∣∣∣ ≤ |ϕZ (2s)|+ |ϕZ (s)|2 ≤ 2, (B.8)

where the last inequality follows from the fact that |ϕZ (·)| ≤ 1. By equation (2.4) in Su and Zheng

(2017), we have that for any pair {W1,W2} ⊆ W,∣∣∣MDDo (W1|Z)2 −MDDo (W2|Z)2
∣∣∣

=

∣∣∣∣∫
RdZ

[
Cov

(
W1, exp

(
is′Z

))2 − Cov
(
W2, exp

(
is′Z

))2]
q (s) ds

∣∣∣∣
≤

∫
RdZ

∣∣∣Cov
(
W1, exp

(
is′Z

))2 − Cov
(
W2, exp

(
is′Z

))2∣∣∣ q (s) ds

≤
∫
RdZ

∣∣Cov
(
W1, exp

(
is′Z

))
− Cov

(
W2, exp

(
is′Z

))∣∣
×
[∣∣Cov

(
W1, exp

(
is′Z

))∣∣+
∣∣Cov

(
W2, exp

(
is′Z

))∣∣] q (s) ds

≤
∫
RdZ

∣∣Cov
(
W1, exp

(
is′Z

))
− Cov

(
W2, exp

(
is′Z

))∣∣
×
[∣∣∣Var (W1)1/2 Var

(
exp

(
is′Z

))1/2∣∣∣+
∣∣∣Var (W2)1/2 Var

(
exp

(
is′Z

))1/2∣∣∣] q (s) ds
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≤ 2
√

2b3

∫
RdZ

∣∣Cov
(
W1, exp

(
is′Z

))
− Cov

(
W2, exp

(
is′Z

))∣∣ q (s) ds

= 2
√

2b3

∫
RdZ

∣∣Cov
(
W1 −W2, exp

(
is′Z

))∣∣ q (s) ds

≤ 2
√

2b3

[∫
RdZ

∣∣Cov
(
W1 −W2, exp

(
is′Z

))∣∣2 q (s) ds

]1/2

= 2
√

2b3

[
MDDo (W1 −W2|Z)2

]1/2

where i ≡
√
−1, q (s) is as defined in the proof of Lemma A.1, the fourth inequality follows from

(B.7)-(B.8), and the last inequality follows from the Hölder inequality. Consequently, we have that

for any pair {W1,W2} ⊆ W,∣∣∣MDDo (W1|Z)2 −MDDo (W2|Z)2
∣∣∣ ≤ b1 [MDDo (W1 −W2|Z)2

]1/2
(B.9)

where b1 ≡ 2
√

2b3.

Part I (ii). By Jensen inequality and (B.7), we have

sup
W∈W

E |W | ≤ sup
W∈W

[
E
(
W 2
)]1/2

=
√
b3. (B.10)

For any pair {W1,W2} ⊆ W,∣∣∣[E (W1)]2 E
∣∣∣Z − Z†∣∣∣− [E (W2)]2 E

∣∣∣Z − Z†∣∣∣∣∣∣
=

∣∣∣∣E (W1 +W2)E
∣∣∣Z − Z†∣∣∣1/2∣∣∣∣ ∣∣∣∣E (W1 −W2)

(
E
∣∣∣Z − Z†∣∣∣)1/2

∣∣∣∣
≤ [E |W1|+ E |W2|]

(
E
∣∣∣Z − Z†∣∣∣)1/2 [

[E (W1 −W2)]2 E
∣∣∣Z − Z†∣∣∣]1/2

≤ 2
√
b3

(
E
∣∣∣Z − Z†∣∣∣)1/2 [

[E (W1 −W2)]2 E
∣∣∣Z − Z†∣∣∣]1/2

= b2

[
[E (W1 −W2)]2 E

∣∣∣Z − Z†∣∣∣]1/2
(B.11)

where the last inequality follows from (B.9), and b2 ≡ 2
√
b3 ·E

(∣∣Z − Z†∣∣)1/2 <∞ by the condition

that E
∣∣Z − Z†∣∣ <∞ and the fact that b3 <∞.

Part I (iii). For any pair {W1,W2} ⊆ W, it holds that∣∣∣MDD (W1|Z)2 −MDD (W2|Z)2
∣∣∣

≤
∣∣∣MDDo (W1|Z)2 −MDDo (W2|Z)2

∣∣∣+
∣∣∣{[E (W1)]2 − [E (W2)]2

}
E
(∣∣∣Z − Z†∣∣∣)∣∣∣

≤ b1

[
MDDo (W1 −W2|Z)2

]1/2
+ b2

[
[E (W1 −W2)]2 E

∣∣∣Z − Z†∣∣∣]1/2

≤ max {b1, b2}
{[

MDDo (W1 −W2|Z)2
]1/2

+
[
[E (W1 −W2)]2 E

∣∣∣Z − Z†∣∣∣]1/2
}

≤
√

2 max {b1, b2}
{

MDDo (W1 −W2|Z)2 + [E (W1 −W2)]2 E
∣∣∣Z − Z†∣∣∣}1/2
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= b
[
MDD (W1 −W2|Z)2

]1/2
,

where b ≡
√

2 max {b1, b2} < ∞, the first inequality follows from the triangle inequality, and the

second inequality holds by (B.9) and (B.11).

Part II. It is easy to see that

E (W1 −W2)2 E
∣∣∣Z − Z†∣∣∣ ≤ 2

[
E (W1)2 E

∣∣∣Z − Z†∣∣∣+ E (W2)2 E
∣∣∣Z − Z†∣∣∣] . (B.12)

Next, note that

MDDo (W1 −W2|Z)2

=

∫
RdZ

Cov
(
W1 −W2, exp

(
is′Z

))2
q (s) ds

=

∫
RdZ

[
Cov

(
W1, exp

(
is′Z

))
− Cov

(
W2, exp

(
is′Z

))]2
q (s) ds

≤ 2

∫
RdZ

Cov
(
W1, exp

(
is′Z

))2
q (s) ds+ 2

∫
RdZ

Cov
(
W2, exp

(
is′Z

))2
q (s) ds

= 2
[
MDDo (W1|Z)2 + MDDo (W2|Z)2

]
. (B.13)

Combining (B.6), (B.12) and (B.13) yieldsMDD (W1 −W2|Z)2 ≤ 2
[
MDD (W1|Z)2 + MDD (W2|Z)2

]
.

It follows that[
MDD (W1 −W2|Z)2

]1/2
≤
√

2
[
MDD (W1|Z)2 + MDD (W2|Z)2

]1/2

≤ 2

{[
MDD (W1|Z)2

]1/2
+
[
MDD (W2|Z)2

]1/2
}

where the second inequality follows from the fact that
(
a2 + b2

)1/2 ≤ √2 (a+ b) for any a, b ≥ 0.

This completes the proof. �

Proof of Lemma A.3. To prove the first claim, note that
(
R(T−R)R ×Ws (X ) , ‖·‖c

)
forms a

metric space, in which compactness is equivalent to sequential compactness. So it is suffi cient to

show that (Θ, ‖·‖c) is sequentially compact.
Recall that Θ = Φ × G, where Φ is compact by assumption. By Lemma A.2 in Santos (2012),

(G, ‖·‖c) is also compact despite the difference in notations. Specifically, bd2c is equivalent to Santos’s
(2012) m, and d−bd2c is equivalent to his m0. In addition, the condition d ≥ dx+ 2 required by As-

sumption 2.1(ii) guarantees ‘min {m0,m} > dx
2 ’, which is required in Santos (2012). Consequently,

both Φ and G are sequentially compact. Then for any given sequence {θN =
(
φ′N , gN

)′} in Θ, there

is subsequence {θMN
=
(
φ′MN

, gMN

)′} s.t. φMN
→ φ under |·| for some φ ∈ Φ as MN → ∞, and

there is also a subsubsequence {θLMN = (φ′LMN
, gLMN )′} in {θMN

=
(
φ′MN

, gMN

)′} s.t. gLMN → g

5



under ‖·‖c for some g ∈ G as LMN
→ ∞. In short, for any given sequence {θN =

(
φ′N , gN

)′} in Θ,

we are able to find a subsequence {θLMN = (φ′LMN
, gLMN )′} s.t. θLMN →

(
φ′, g

)′ ∈ Θ under ‖·‖c as
LMN

→∞. This shows that (Θ, ‖·‖c) is sequentially compact.
To prove the second claim, note that (Ws (X ) , ‖·‖c) is a metric space. The compactness of its

subset (G, ‖·‖c) as proven above implies total boundedness of G under ‖·‖c, which in turn implies
boundedness of G under ‖·‖c. So there exists a constant Bc s.t. supg∈G ‖g‖c ≤ Bc. As a result, for

any given vector of non-negative integer λ with 〈λ〉 ≤ d
2 , it hods that

sup
x∈X

∣∣∣Dλg(x)
∣∣∣ ≤ sup

x∈X

∣∣∣Dλg(x)
∣∣∣ (1 + x′x

)ζ/2 ≤ max
〈λ〉≤ d

2

[
sup
x∈X

∣∣∣Dλg(x)
∣∣∣ (1 + x′x

)ζ/2]
= ‖g‖c ≤ sup

g∈G
‖g‖c ≤ Bc,

where the first inequality follows from the fact that (1 + x′x)ζ/2 ≥ 1 under the requirement that

ζ >
(
dx
2 ·b

d
2c
)
/
(
bd2c −

dx
2

)
> 0 as specified in Assumption 2.1(ii). �

Proof of Lemma A.4. Here we follow the same notations for various bounds as we have adopted

in the previous proofs. Specifically, the compactness of Φ according to Assumption 2.1(i) implies

that BΦ ≡ supφ∈Φ |φ| < ∞. By Lemma A.3, for all g ∈ G, it holds that supx∈X |g(x)| ≤ Bc < ∞.
Then for any θ ∈ Θ and s = 1, ..., T −R, we have

|ms (Y,X, θ)| =

∣∣∣∣∣[ys − g (xs)] +
R∑
r=1

φs,r [yT−R+r − g (xT−R+r)]

∣∣∣∣∣
≤ [|ys|+ |g (xs)|] +

R∑
r=1

∣∣φs,r∣∣ [|yT−R+r|+ |g (xT−R+r)|]

≤ |Y |+Bc +BΦR [|Y |+Bc] = (BΦR+ 1) [|Y |+Bc]

where Y = (y1, ..., yT )′ , X = (x1, ..., xT )′ , φs,r denote the rth element in φs, and the first inequality

holds by the triangle inequality. It follows that for any θ ∈ Θ and s = 1, ..., T −R,

E
{

[ms (Y,X, θ)]2
}
≤ 2 (BΦR+ 1)2

[
E(|Y |2) +B2

c

]
<∞

where the last inequality follows from the fact that E( |Y |2) < ∞ under Assumption 3.1(ii).

In addition, by the triangle inequality, Jensen inequality, and Assumption 3.1(ii), E
∣∣∣zs − z†s∣∣∣ ≤

E
∣∣Z − Z†∣∣ ≤ 2

[
E( |Z|2)

]1/2
<∞. Therefore, the result in Lemma A.2 is applicable here.

By Lemma A.2, we have that for any θ1 ∈ Θ and θ2 ∈ Θ,∣∣∣MDD [ms (Y,X, θ1) | zs]
2 −MDD [ms (Y,X, θ2) | zs]

2
∣∣∣ ≤ bs

{
MDD [ms (Y,X, θ1)−ms (Y,X, θ2) | zs]

2
}1/2

≤ bsc ‖θ1 − θ2‖L2

6



for some finite constants bs and c, where the first and second inequalities hold by Lemmas A.2 and

3.1, respectively. As a result,

|Q (θ1)−Q (θ2)| =

∣∣∣∣∣
T−R∑
s=1

MDD [ms (Y,X, θ1) | zs]
2 −

T−R∑
s=1

MDD [ms (Y,X, θ2) | zs]
2

∣∣∣∣∣
≤

T−R∑
s=1

∣∣∣MDD [ms (Y,X, θ1) | zs]
2 −MDD [ms (Y,X, θ2) | zs]

2
∣∣∣

≤
[
T−R∑
s=1

bs

]
c ‖θ1 − θ2‖L2 .

This completes the proof of the lemma. �

Proof of Lemma A.5. We refer to Conditions (i) —(iv) listed in the statement of Lemma A.5 as

C(i) —C(iv), respectively. By C(iii), ∀ ε > 0, ∃ a constant Lε <∞ and a positive integer Nε s.t.

Pr

(
sup
θ∈ΘN

|QN (θ)−Q (θ)| < LεbN

)
≥ 1− ε (B.14)

for all N ≥ Nε. For any given θ0 ∈ ΘI , it follows from C(ii) that ∃ a sequence
{
θ0
N

}
with θ0

N ∈ ΘN

s.t. d
(
θ0
N , θ

0
)
≤ σN .

Let Aε ≡ max
{

2
√
Lε/a1,

√
2a2/a1

}
<∞ and ρN,ε ≡ Aε max{σN , b1/2N }. Let Θ

ρN,ε
I be the open

ρN,ε enlargement of ΘI under d (·, ·). By C(i) (compactness of Θ) and C(iv), it holds that

∆N,ε ≡ inf
θ∈
(

Θ
ρN,ε
I

)c
∩Θ

Q (θ) ≥ a1ρ
2
N,ε,

where Ac denotes the complement of set A. Note that

Q
(
θ̂N

)
−Q

(
θ0
N

)
=

[
Q
(
θ̂N

)
−QN

(
θ̂N

)]
+
[
QN

(
θ̂N

)
−QN

(
θ0
N

)]
+
[
QN

(
θ0
N

)
−Q

(
θ0
N

)]
≤

[
Q
(
θ̂N

)
−QN

(
θ̂N

)]
+
[
QN

(
θ0
N

)
−Q

(
θ0
N

)]
≤

∣∣∣Q(θ̂N)−QN (θ̂N)∣∣∣+
∣∣QN (θ0

N

)
−Q

(
θ0
N

)∣∣ , (B.15)

where the first inequality holds because QN
(
θ̂N

)
−QN

(
θ0
N

)
≤ 0 by the definition of θ̂N . Then for

N ≥ Nε, we have

Pr

(
Q
(
θ̂N

)
< Q

(
θ0
N

)
+

∆N,ε

2

)
= Pr

(
Q
(
θ̂N

)
−Q

(
θ0
N

)
<

∆N,ε

2

)
≥ Pr

(
Q
(
θ̂N

)
−Q

(
θ0
N

)
<
a1ρ

2
N,ε

2

)
≥ Pr

(∣∣∣Q(θ̂N)−QN (θ̂N)∣∣∣+
∣∣QN (θ0

N

)
−Q

(
θ0
N

)∣∣ < 2LεbN

)
≥ 1− ε (B.16)
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where the second inequality follows from (B.15) and the fact that a1ρ
2
N,ε/2 ≥ 2LεbN , and the last

inequality follows from (B.14).

It follows from C(iv) that Q
(
θ0
N

)
≤ a2 d

(
θ0
N ,ΘI

)2 ≤ a2 d
(
θ0
N , θ

0
)2 ≤ a2σ

2
N ≤ ∆N,ε/2 for N

large enough, which, together with (B.16), implies that

Pr
(
Q
(
θ̂N

)
< ∆N,ε

)
≥ Pr

(
Q
(
θ̂N

)
< Q

(
θ0
N

)
+

∆N,ε

2

)
≥ 1− ε (B.17)

for N large enough.

Note that Q(θ̂N ) < ∆N,ε if and only if θ̂N ∈ Θ
ρN,ε
I , or, equivalently, d(θ̂N ,ΘI) < ρN,ε =

Aε max{σN , b1/2N }. Therefore, we can rewrite (B.17) as

Pr
(

d
(
θ̂N ,ΘI

)
< Aε max{σN , b1/2N }

)
≥ 1− ε

for N large enough. This exactly shows that d
(
θ̂N ,ΘI

)
= Op

(
max{σN , b1/2N }

)
. �

To prove Lemma A.6, we need the following Lemma.

Lemma B.1 Consider a generic econometric model Q (θ) = 0, the identified set of which is char-

acterized by ΘI ≡ {θ ∈ Θ : Q (θ) = 0 a.s.} . Suppose the following conditions hold: (i) Q (·) ≥ 0 and

Θ is compact under (pseudo-)norm ‖·‖; (ii) ΘN ⊆ Θ are closed and s.t. ∃ ΠNθ ∈ ΘN for each

θ ∈ Θ s.t. supθ∈Θ ‖ΠNθ − θ‖ = o(1); (iii) sup
θ∈ΘN

|QN (θ)−Q (θ)| = op (1); (iv) Q (·) is continuous

w.r.t. ‖·‖ in Θ. Then for θ̂N ∈ argmin
θ∈ΘN

QN (θ) , it holds that d‖·‖(θ̂N ,ΘI) = op (1).

Proof of Lemma B.1. Lemma B.1 is essentially the same as Lemma A.5 in Santos (2012), except

that we do not assume the continuity of QN w.r.t. ‖·‖ in ΘN . A close inspection on the proof of

Lemma A.5 in Santos (2012) shows that the continuity of QN does not play a role in the proof. In

other words, the proof of Lemma A.5 in Santos (2012) works without assuming the continuity of

QN , and therefore applies directly to proving Lemma B.1 here. �

Proof of Lemma A.6. We prove parts (i) and (ii) of the Lemma in turn.

Part I. Proof of part (i).

Let Q (θ) ≡
∑T−R

s=1 MDD [ms (Y,X, θ) |zs]
2 and QN (θ) ≡ 1

N SN (θ) =
∑T−R

s=1
1
N SNs (θ) , as in the

proof of Theorem 3.2. Our goal is to show that, over the restricted parameter space Θ ∩ΘR under

‖·‖L2 , Q (·) and QN (·) as specified above satisfy Conditions (i)—(iv) in Lemma B.1.
Due to the non-negativity of MDD, Q (·) ≥ 0. By Lemma A.3, Θ is compact under ‖·‖c and

hence is compact under ‖·‖L2 , which is weaker than ‖·‖c. Since ΘR is closed due to the continuity

of L (·) under Assumption 2.2, Θ ∩ ΘR is also compact under ‖·‖L2 . So Condition (i) in Lemma
B.1 is satisfied. Assumption 3.3(i) guarantees Condition (ii) in Lemma B.1 to hold; Condition (iii)
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in Lemma B.1 holds according to Theorem 3.1. Condition (iv) in Lemma B.1 holds according to

Lemma A.4. Consequently, the conclusion in part (i) follows from Lemma B.1.

Part II. Proof of part (ii).

This part of the proof is similar to the proof of Lemma A.3 in Hong (2017) and it goes as follows.

For any given θ0 ∈ ΘI ,∥∥∥θ̂N − θ0
∥∥∥
L2
≤

∥∥∥θ̂N −ΠNθ
0
∥∥∥
L2

+
∥∥ΠNθ

0 − θ0
∥∥
L2

≤ %N dw

(
θ̂N ,ΠNθ

0
)

+ δs,N

≤ 2%N

[
dw

(
θ̂N , θ

0
)

+ dw
(
ΠNθ

0, θ0
)]

+ δs,N

≤ 2%N

[
dw

(
θ̂N , θ

0
)

+ δw,N

]
+ δs,N ,

where the first inequality follows from the triangle inequality for ‖·‖L2 , the second one holds by
Definition 3.2 and Assumption 3.3(i), the third one follows from Lemma 3.1, and the last inequality

holds by Assumption 3.3(ii). Taking infimum over θ0 ∈ ΘI ∩ΘR yields

d‖·‖L2

(
θ̂N ,ΘI ∩ΘR

)
≤ 2%N

[
dw

(
θ̂N ,ΘI ∩ΘR

)
+ δw,N

]
+ δs,N

= Op

(
%N dw

(
θ̂N ,ΘI ∩ΘR

)
+ δs,N

)
where the equality holds by the fact that δw,N = o(N−1/2). �

C A discussion on Assumption 3.4

Recall that we have already required in Assumption 3.2 that the eigenvalues of E
[
pkN (xt) p

k′N (xt)
]

for t = 1, ..., T are uniformly bounded and uniformly bounded away from zero. Here, we mainly

focus on discussing suffi cient conditions for %N to satisfy Assumption 3.4 for point-identification

cases. Under point-identification,

%N = sup
θ∈ΘoN :θ 6=ΠNθ

0

∥∥θ −ΠNθ
0
∥∥
L2

dw
(
θ,ΠNθ

0
) ,

with ΘoN =
{
θ ∈ ΘN :

∥∥θ − θ0
∥∥
L2
≤ ςN

}
being the o (1) neighborhood of θ0 under the L2 norm

as ςN ↓ 0. Since a proper completeness condition is necessary for point-identification, we maintain

such a condition for most of the discussion, stated as follows:

(Completeness condition) For any measurable function v (·) : X → R, E [v (xs) |zs] =

0 iff v (·) = 0 a.s. for s = 1, ..., T −R.
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Note that, for any θ ∈ ΘN , we can write θ−ΠNθ
0 =

((
φ− φ0

)′
,∆′Np

kN

)′
for some ∆N ∈ RkN .

By Assumption 3.2, we have

∥∥θ −ΠNθ
0
∥∥2

L2
�
∣∣φ− φ0

∣∣2 + |∆N |2 . (C.1)

C.1 The case of R = 0

We consider the special case of R = 0 (i.e., no IFEs) and T = 1. Generalization to the R = 0

and T > 1 case is straightforward. Note that, when R = 0, θ = g (·) and Θ = G. Consequently, ∀
θ ∈ ΘN s.t. θ 6= ΠNθ

0, it holds that dw
(
θ,ΠNθ

0
)2

= MDD
[
∆′Np

kN (xi1) |zi1
]2
for some ∆N 6= 0.

For a fixed N , the following three conditions are equivalent: (i) MDD
[
∆′Np

kN (xi1) |zi1
]2
> 0 for

all ∆N 6= 0; (ii) E
[
∆′Np

kN (xi1) |zi1
]
6= 0 for all ∆N 6= 0; (iii) There is no multicollinearity among

the elements of the pkN (·) vector. Note that the equivalence between (ii) and (iii) follows from the

completeness condition. The condition of the eigenvalues of E
[
pkN (xt) p

k′N (xt)
]
being bounded

away from zero uniformly over N by Assumption 3.2 guarantees that there is no multicollinearity

in pkN (·) even as N → ∞ and kN → ∞. Consequently, it can be shown that dw
(
θ,ΠNθ

0
)
�∥∥θ −ΠNθ

0
∥∥
L2
for θ ∈ ΘoN . Therefore, when R = 0, Assumption 3.4 holds trivially with %N = O(1)

under Assumption 3.2.

C.2 The case of R ≥ 1

Now we consider the case of R = 1 and T = 2. Generalization to the R ≥ 1 and T = R + 1 case is

straightforward at the cost of more tedious algebra.

In the o (1) neighborhood of θ0 under the L2 norm, which is also the o (1) neighborhood of ΠNθ
0

under the L2 norm by Assumption 3.3(i) (
∣∣ΠNθ

0 − θ0
∣∣ ↓ 0 suffi ciently fast),

dw
(
θ,ΠNθ

0
)2

= MDD
[
m1 (Y,X, θ)−m1

(
Y,X,ΠNθ

0
)
|zs
]2

= ρ11

(
θ0, θ −ΠNθ

0
)

+ o (1) ,

where

ρ11

(
θ0, θ −ΠNθ

0
)

≡ −E
[[
∂m1

(
Y,X, θ0

)
∂θ

[
θ −ΠNθ

0
]] [∂m1

(
Y †, X†, θ0

)
∂θ

[
θ −ΠNθ

0
]] ∣∣∣z1 − z†1

∣∣∣]

+2E

[[
∂m1

(
Y,X, θ0

)
∂θ

[
θ −ΠNθ

0
]] ∣∣∣z1 − z†1

∣∣∣]E[[∂m1

(
Y †, X†, θ0

)
∂θ

[
θ −ΠNθ

0
]]]

.
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Recall
∂m1(Y,X,θ0)

∂θ

[
θ −ΠNθ

0
]

=
(
φ1 − φ0

1

) [
y2 − g0 (x2)

]
−
[
g (x1)−ΠNg

0 (x1)
]
−φ0

1

[
g (x2)−ΠNg

0 (x2)
]
.

It then follows that

ρ11

(
θ0, θ −ΠNθ

0
)

=
(
φ1 − φ0

1,∆
′
N

)
MN

φ1 − φ0
1

∆N

 ,

where

MN ≡ −E
[
WN

(
X,X†, Y, Y †

) ∣∣∣z1 − z†1
∣∣∣]+ 2E

[
WN

(
X,X†, Y, Y †

)]
E
[∣∣∣z1 − z†1

∣∣∣]
with

WN

(
X,X†, Y, Y †

)
≡

 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

 y†2 − g0
(
x†2

)
−pkN

(
x†1

)
− φ0

1p
kN
(
x†2

)
′ .

By the definition of the martingale difference divergence matrix (MDDM) in Lee and Shao (2018)

(see their Definition 1 and Lemma 1),1 we can rewrite MN above as

MN = MDDMo

 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

 |z1

+MN1

with

MN1 ≡ E

 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

E
 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

′ E [∣∣∣z1 − z†1
∣∣∣] .

By Lemma 1 and Theorem 1 in Lee and Shao (2018), MDDMo

 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

 |z1

 is
positive semi-definite (p.s.d.). This, in conjunction with the p.s.d. of MN1, implies that MN is also

p.s.d.

Note that the MDDMo in Lee and Shao (2018) is defined to examine conditional mean indepen-

dence. To examine the case of conditional mean zero, we redefine

MDDM (V |W ) ≡ −E
(
V V †

′
∣∣∣W −W †∣∣∣)+ 2E (V )E

(
V †
)′
E
∣∣∣W −W †∣∣∣

= MDDMo (V |W ) + E (V )E
(
V †
)′
E
∣∣∣W −W †∣∣∣ .

Then it is straightforward to conclude, based on Theorem 1 in Lee and Shao (2018), that ∀ V ∈ Rp

and W ∈ Rq s.t. E
(
|V |2 + |W |2

)
< ∞, ∃ p − s linearly independent combinations of V s.t. they

1Lee and Shao (2018) extend the MDDo (V |W ) concept of Shao and Zhang (2014) for a scalar variable V to

MDDMo (V |W ) to a vector-valuded V . Specifically, for variables V and W , both of which can be vector-valued, s.t.

E
(
|V |2 + |W |2

)
<∞, Lee and Shao (2018) specify MDDMo (V |W ) = −E

[
(V − E (V ))

(
V † − E

(
V †))′ ∣∣W −W †∣∣].
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are conditionally mean zero w.r.t. W , iff rank (MDDM (V |W )) = s. Consequently, MN is strictly

positive definite if and only if:

no element of E

 y2 − g0 (x2)

−pkN (x1)− φ0
1p
kN (x2)

 |z1

 equals zero.

If, in addition, we require that the smallest eigenvalue ofMN be bounded away from zero, a condition

similar to Assumption 3.2, then

dw
(
θ,ΠNθ

0
)2

= ρ11

(
θ0, θ −ΠNθ

0
)

+ op (1) �
∣∣φ− φ0

∣∣2 + |∆N |2 , (C.2)

which, in conjunction with (C.1), implies that dw
(
θ,ΠNθ

0
)2 � ∥∥θ −ΠNθ

0
∥∥2

L2
. This, together with

Lemma 3.1, implies that dw
(
θ,ΠNθ

0
)2 � ∥∥θ −ΠNθ

0
∥∥2

L2
in an o (1) neighborhood of θ0 under the

L2 norm. Consequently, Assumption 3.4 is satisfied with %N = O (1).
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