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A. Preintegration Using a Schur Complement

The method of preintegration presented in section 3.1 is mathematically equivalent to marginalizing
out the unwanted states from the full Bayesian posterior. Marginalization can also be performed using
a Schur complement. We will use the Schur complement to efficiently marginalize out unwanted states
from our continuous-time formulation. By exploiting sparsity, this can be performed in 𝑂 (𝐾) time,
which is the same time complexity as the classic approach presented in section 3.1.

We consider the factor graph shown in Figure 1, which could potentially be a result of our continuous-
time state estimation with binary motion prior factors, unary measurement factors, and a unary prior
factor on the initial state x0. Equivalently, the Gauss-Newton system of equations associated with
Figure 1 can be written in the following form:(

A−𝑇Q−1A + C𝑇R−1C
)

︸                          ︷︷                          ︸
L

x̂ = A−𝑇Q−1x̌ + C𝑇R−1y︸                      ︷︷                      ︸
r

, (A1)

where L is block-tridiagonal,

L =


L0,0 L0,1:3

L𝑇0,1:3 L1:3,1:3 L1:3,4

L𝑇1:3,4 L4,4 L4,5:7

L𝑇4,5:7 L5:7,5:7 L5:7,8

L𝑇5:7,8 L8,8


=



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


. (A2)

Here, we consider the case where we would like to marginalize the full posterior such that we only retain
states {x0, x4, x8}. After marginalizing out the unwanted states, our system becomes

Lsmallx̂small = rsmall, (A3)

where by the Schur complement,

Lsmall =


L0,0

L4,4

L8,8

 −

L0,1:3

L𝑇1:3,4 L4,5:7

L𝑇5:7,8


[
L1:3,1:3

L5:7,5:7

]−1 [
L𝑇0,1:3 L1:3,4

L𝑇4,5:7 L5:7,8

]

=


∗
∗
∗

 −

∗

∗ ∗
∗

 ×


∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗



−1 

∗

∗
∗

∗


.

Lsmall can be computed efficiently by exploiting the primary and secondary sparsity. Note that[
L1:3,1:3

L5:7,5:7

]−1 [
L𝑇0,1:3 L1:3,4

L𝑇4,5:7 L5:7,8

]
=

[
L1:3,1:3 \ L𝑇0,1:3 L1:3,1:3 \ L1:3,4

L5:7,5:7 \ L𝑇4,5:7 L5:7,5:7 \ L5:7,8

]
,

(A4)
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where each entry similar to L1:3,1:3\L1:3,4 is shorthand for solving L1:3,1:3ℓ = L1:3,4 for ℓ. Each of these
terms can be solved in linear time thanks to L1:3,1:3 and L5:7,5:7 being block-tridiagonal. Thus, Lsmall
can be constructed in linear time, the same time complexity as the classic approach. Furthermore, it can
be shown that the resulting matrix Lsmall is block-tridiagonal. In summary, Schur complement preinte-
gration is a generalization of classic preintegration that can handle both binary motion prior factors and
unary measurement factors while retaining the same linear time complexity as classic preintegration.

B. Analytical Gradients for Training the Singer Prior

Following the method presented by Wong et al. [30] for training the parameters of the Singer prior, we
found it necessary to derive the analytical gradients of our objective with respect to the desired parame-
ters. Since these gradients were not provided in [30], we provide them here instead for the convenience
of the reader. Starting with the objective from (31), the discrete-time covariance Q𝑘 of the Singer prior
can be written as the product of two factors where

Q𝑘 =


𝝈2

𝝈2

𝝈2

︸          ︷︷          ︸
Q𝝈2

Q(Δ𝑡𝑘 ,𝜶). (B1)

The components of Q(Δ𝑡𝑘 ,𝜶) are provided by Wong et al. [30] and are repeated here,

Q(Δ𝑡𝑘 ,𝜶) =

Q11 Q12 Q13

Q𝑇12 Q22 Q23

Q𝑇13 Q𝑇23 Q33

 , (B2)

where

Q11 =
1

2
𝜶−5

(
1 − 𝑒−2𝜶Δ𝑡𝑘 + 2𝜶Δ𝑡𝑘 +

2

3
𝜶3Δ𝑡3𝑘 − 2𝜶2Δ𝑡2𝑘 − 4𝜶Δ𝑡𝑘𝑒

−𝜶Δ𝑡𝑘
)
, (B3a)

Q12 =
1

2
𝜶−4

(
𝑒−2𝜶Δ𝑡𝑘 + 1 − 2𝑒−𝜶Δ𝑡𝑘 + 2𝜶Δ𝑡𝑘𝑒

−𝜶Δ𝑡𝑘 − 2𝜶Δ𝑡𝑘 + 𝜶2Δ𝑡2𝑘

)
, (B3b)

Q13 =
1

2
𝜶−3

(
1 − 𝑒−2𝜶Δ𝑡𝑘 − 2𝜶Δ𝑡𝑘𝑒

−𝜶Δ𝑡𝑘
)
, (B3c)

Q22 =
1

2
𝜶−3

(
4𝑒−𝜶Δ𝑡𝑘 − 3 · 1 − 𝑒−2𝜶Δ𝑡𝑘 + 2𝜶Δ𝑡𝑘

)
, (B3d)

Q23 =
1

2
𝜶−2

(
𝑒−2𝜶Δ𝑡𝑘 + 1 − 2𝑒−𝜶Δ𝑡𝑘

)
, (B3e)

Q33 =
1

2
𝜶−1

(
1 − 𝑒−2𝜶Δ𝑡𝑘

)
. (B3f)

The motion error is given by

e𝑘 = x𝑘 −𝚽(𝑡𝑘 , 𝑡𝑘−1)x𝑘−1, (B4)

where

𝚽(𝑡𝑘 , 𝑡𝑘−1) =

1 Δ𝑡𝑘1 (𝜶Δ𝑡𝑘 − 1 + exp(−𝜶Δ𝑡𝑘))𝜶−2

0 1 (1 − exp(−𝜶Δ𝑡𝑘))𝜶−1

0 0 exp(−𝜶Δ𝑡𝑘)

 (B5)
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is the state transition function. 𝝈2 and 𝜶 are both diagonal matrices, whose size depends on the dimen-
sion of the state. For example, for a 6D state, 𝝈2 = diag(𝜎2

1 , 𝜎
2
2 , 𝜎

2
3 , 𝜎

2
4 , 𝜎

2
5 , 𝜎

2
6 ). The gradients of the

objective with respect to the components of 𝝈2 and 𝜶 are then

𝜕𝐽𝑡

𝜕𝛼𝑖
=
1

2

∑︁
𝑘

{
2e𝑇𝑘Q

−1
𝑘

𝜕e𝑘
𝜕𝛼𝑖

− e𝑇𝑘Q
−1
𝑘

𝜕Q𝑘
𝜕𝛼𝑖

Q−1
𝑘 e𝑘 + tr

(
Q−1
𝑘

𝜕Q𝑘
𝜕𝛼𝑖

)}
, (B6a)

𝜕𝐽𝑡

𝜕𝜎2
𝑖

=
3𝐾

2𝜎2
𝑖

− 1

2

∑︁
𝑘

1

𝜎4
𝑖

e𝑇𝑘Q(Δ𝑡𝑘 ,𝜶)−1
𝜕Q𝝈2

𝜕𝜎2
𝑖

e𝑘 , (B6b)

for each 𝛼𝑖 and 𝜎2
𝑖
, respectively, where 𝐽 =

∑𝑇
𝑡=1 𝐽𝑡 . The partial derivatives of Q(Δ𝑡𝑘 ,𝜶) and e𝑘 with

respect to 𝛼𝑖 are then given by

𝜕Q11

𝜕𝛼𝑖
=

[
−
2Δ𝑡3

𝑘

3𝛼3
𝑖

+
Δ𝑡2
𝑘
(2𝑒−𝛼𝑖Δ𝑡𝑘 + 3)

𝛼4
𝑖

+ 5(𝑒−2𝛼𝑖Δ𝑡𝑘 − 1)
2𝛼6

𝑖

+ Δ𝑡𝑘 (𝑒−2𝛼𝑖Δ𝑡𝑘 + 8𝑒−𝛼𝑖Δ𝑡𝑘 − 4)
𝛼5
𝑖

]
𝜹𝑖𝑖 ,

(B7a)

𝜕Q12

𝜕𝛼𝑖
=

[
−
Δ𝑡2
𝑘
(𝑒−𝛼𝑖Δ𝑡𝑘 + 1)

𝛼3
𝑖

+ Δ𝑡𝑘 (3 − 𝑒−2𝛼𝑖Δ𝑡𝑘 − 2𝑒−𝛼𝑖Δ𝑡𝑘 )
𝛼4
𝑖

+ 4𝑒−𝛼𝑖Δ𝑡𝑘 − 2𝑒−2𝛼𝑖Δ𝑡𝑘 − 2

𝛼5
𝑖

]
𝜹𝑖𝑖 ,

(B7b)

𝜕Q13

𝜕𝛼𝑖
=

[
Δ𝑡2
𝑘
𝑒−𝛼𝑖Δ𝑡𝑘

𝛼2
𝑖

+ 3(𝑒−2𝛼𝑖Δ𝑡𝑘 − 1)
2𝛼4

𝑖

+ Δ𝑡𝑘 (𝑒−2𝛼𝑖Δ𝑡𝑘 + 2𝑒−𝛼𝑖Δ𝑡𝑘 )
𝛼3
𝑖

]
𝜹𝑖𝑖 ,

𝜕Q22

𝜕𝛼𝑖
=

[
3𝑒−2𝛼𝑖Δ𝑡𝑘 − 12𝑒−𝛼𝑖Δ𝑡𝑘 + 9

2𝛼4
𝑖

+ Δ𝑡𝑘 (𝑒−2𝛼𝑖Δ𝑡𝑘 − 2𝑒−𝛼𝑖Δ𝑡𝑘 − 2)
𝛼3
𝑖

]
𝜹𝑖𝑖 , (B7c)

𝜕Q23

𝜕𝛼𝑖
=

[
2𝑒−𝛼𝑖Δ𝑡𝑘 − 𝑒−2𝛼𝑖Δ𝑡𝑘 − 1

𝛼3
𝑖

+ Δ𝑡𝑘 (𝑒−𝛼𝑖Δ𝑡𝑘 − 𝑒−2𝛼𝑖Δ𝑡𝑘 )
𝛼2
𝑖

]
𝜹𝑖𝑖 , (B7d)

𝜕Q33

𝜕𝛼𝑖
=

[
𝑒−2𝛼𝑖Δ𝑡𝑘 − 1

2𝛼2
𝑖

+ Δ𝑡𝑘𝑒
−2𝛼𝑖Δ𝑡𝑘

𝛼𝑖

]
𝜹𝑖𝑖 , (B7e)

𝜕e𝑘
𝜕𝛼𝑖

= −


(
2(1−𝑒−𝛼𝑖Δ𝑡𝑘 )

𝛼3
𝑖

− Δ𝑡𝑘 (𝑒−𝛼𝑖Δ𝑡𝑘 +1)
𝛼2
𝑖

)
𝜹𝑖𝑖(

𝑒−𝛼𝑖Δ𝑡𝑘 −1
𝛼2
𝑖

+ Δ𝑡𝑘𝑒
−𝛼𝑖Δ𝑡𝑘

𝛼𝑖

)
𝜹𝑖𝑖(

−Δ𝑡𝑘𝑒−𝛼𝑖Δ𝑡𝑘
)
𝜹𝑖𝑖


[
0 0 1

]
x𝑘 , (B7f)

where 𝜹𝑖𝑖 is the Kronecker delta. We can use these gradients to learn the parameters of the Singer prior
using gradient descent. In order to speed up training, we can solve for the optimal value of 𝜎2

𝑖
at each

iteration of gradient descent:

𝜎2★

𝑖 =
1

3𝐾𝑇

∑︁
𝑡

∑︁
𝑘

e𝑇𝑘,𝑡Q(Δ𝑡𝑘,𝑡 ,𝜶)−1
𝜕Q𝝈2

𝜕𝜎2
𝑖

e𝑘,𝑡 . (B8)

Note that Q𝑘 is numerically unstable for 𝛼 < 1.0. In this case, we use a Taylor series expansion about
𝛼 = 0 as an approximation. The Jacobian 𝜕Q𝑘

𝜕𝛼𝑖
is also numerically unstable for 𝛼 < 4.0. In this case, we

can approximate the components of this matrix with either a Laurent series or Taylor series as 𝛼 → 0.
The previous gradients work well for learning the parameters of a Gaussian process in simulation

where the ground truth measurements of the state are noiseless. In reality, our source of ground truth
will have some measurement covariance that may be estimated or taken from the datasheet of the sensor
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being used. In this case, computing the gradients of the objective with respect to the components of
𝝈2 and 𝜶 is slightly more involved. We follow the approach presented by Wong et al. [30]. Now, our
objective function looks at the entire trajectory at once,

𝐽 = − ln 𝑝(y|𝝈,𝜶) = 1

2
e𝑇Q−1e + 1

2
ln |Q| + 𝑛

2
ln 2𝜋, (B9)

where e is a stacked version of all the individual error terms from each timestep e𝑘 , and

Q =


𝚺0,0 𝚺0,1

𝚺𝑇1,0 𝚺1,1 𝚺1,2

𝚺𝑇1,2
. . .

. . .

. . . 𝚺𝐾,𝐾


, (B10)

where

𝚺𝑘,𝑘 ≈ R𝑘 +𝚽(𝑡𝑘 , 𝑡𝑘−1)R𝑘−1𝚽(𝑡𝑘 , 𝑡𝑘−1)𝑇 +Q𝑘 , (B11a)
𝚺𝑘,𝑘+1 ≈ −R𝑘𝚽(𝑡𝑘+1, 𝑡𝑘)𝑇 , (B11b)

and R𝑘 is the measurement covariance associated with local variable x𝑘 . The gradient of the objective
function 𝐽 with respect to GP parameter 𝜃 is

𝜕𝐽

𝜕𝜃
= −1

2
e𝑇Q−1 𝜕Q

𝜕𝜃
Q−1e + e𝑇Q−1 𝜕e

𝜕𝜃
+ 1

2
tr
(
Q−1 𝜕Q

𝜕𝜃

)
(B12)

where each of the Jacobians is evaluated using the current value of 𝜃. We can compute the trace in
𝑂 (𝐾) time by first computing only the block-tridiagonal components of Q−1. Since Q is itself block-
tridiagonal, we can compute the blocks of the inverse that we need in 𝑂 (𝐾) time [29]. Then, we can
compute the trace of the matrix product in𝑂 (𝐾) time by only computing the elements along the diagonal
of the matrix product. Q−1e can also be evaluated in 𝑂 (𝐾) time by solving Qx = e for x using a sparse
Cholesky solver. Using the gradient in (B12) for each parameter, we can learn the parameters of the
Gaussian process by minimizing the negative log likelihood using gradient descent.

C. IMU-as-Input Lidar-Inertial Baseline Jacobians

Perturbations to the state variables are defined as C𝑖𝑣 = C𝑖𝑣 exp(𝛿𝜙∧), r𝑣𝑖𝑖 = r̄𝑣𝑖
𝑖
+ C𝑖𝑣𝛿r, v𝑣𝑖𝑖 = v̄𝑣𝑖

𝑖
+

C𝑖𝑣𝛿v, b = b̄+ 𝛿b. The Jacobians of the point-to-plane error function (46) with respect to perturbations
to the state variables are provided here,

𝜕e 𝑗

𝜕𝛿x
=

[
𝜕e 𝑗

𝜕r𝑣𝑖
𝑖
(𝜏 𝑗 )

𝜕e 𝑗
𝜕𝛿C𝑖𝑣 (𝜏 𝑗 )

]
×
[

𝜕r𝑣𝑖
𝑖
(𝜏 𝑗 )

𝜕rℓ

𝜕rℓ
𝜕𝛿x +

𝜕r𝑣𝑖
𝑖
(𝜏 𝑗 )

𝜕rℓ+1
𝜕rℓ+1
𝜕𝛿x

𝜕𝛿C𝑖𝑣 (𝜏 𝑗 )
𝜕𝛿Cℓ

𝜕𝛿Cℓ

𝜕𝛿x + 𝜕𝛿C𝑖𝑣 (𝜏 𝑗 )
𝜕𝛿Cℓ+1

𝜕𝛿Cℓ+1
𝜕𝛿x

]
, (C1)
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where

𝜕e 𝑗

𝜕r𝑣𝑖
𝑖
(𝜏𝑗 )

= −n𝑇𝑗 ,
𝜕e 𝑗

𝜕𝛿C𝑖𝑣 (𝜏𝑗 )
= n𝑇𝑗

(
C𝑖𝑣 (𝜏𝑗 ) (C𝑣𝑠q 𝑗 + r𝑠𝑣𝑣 )∧

)
, (C2a)

𝜕r𝑣𝑖
𝑖
(𝜏𝑗 )

𝜕rℓ
= (1 − 𝛼)1,

𝜕r𝑣𝑖
𝑖
(𝜏𝑗 )

𝜕rℓ+1
= 𝛼1, (C2b)

𝜕𝛿C𝑖𝑣 (𝜏𝑗 )
𝜕𝛿Cℓ

= 1 −A(𝛼, 𝝓),
𝜕𝛿C𝑖𝑣 (𝜏𝑗 )
𝜕𝛿Cℓ+1

= A(𝛼, 𝝓), (C2c)

where A(𝛼, 𝝓) = 𝛼J𝑟 (𝛼𝝓)J𝑟 (𝝓)−1, 𝝓 = ln(C𝑇
ℓ
Cℓ+1)∨, and

𝜕𝛿Cℓ
𝜕𝛿C𝑖

= ΔC
𝑇

𝑖ℓ , where ΔC𝑖ℓ =
ℓ−1∏
𝑘=𝑖

exp
(
Δ𝑡𝑘 (�̃�𝑘 − b𝜔 (𝑡𝑘))∧

)
, (C3a)

𝜕𝛿Cℓ
𝜕𝛿b𝜔 (𝑡𝑖)

= −
ℓ−1∑︁
𝑘=𝑖

ΔC
𝑇

𝑘+1,ℓJ𝑟 (𝝓𝑘)Δ𝑡𝑘 , where 𝝓𝑘 = Δ𝑡𝑘 (�̃�𝑘 − b𝜔 (𝑡𝑘)), (C3b)

𝜕vℓ
𝜕𝛿v𝑖

= C𝑖 , (C3c)

𝜕vℓ
𝜕𝛿C𝑖

= −
ℓ−1∑︁
𝑘=𝑖

C𝑘 (ã𝑘 − b𝑎 (𝑡𝑘))∧ΔC
𝑇

𝑖𝑘Δ𝑡𝑘 , (C3d)

𝜕vℓ
𝜕𝛿b𝜔 (𝑡𝑖)

= −
ℓ−1∑︁
𝑘=𝑖

C𝑘 (ã𝑘 − b𝑎 (𝑡𝑘))∧
𝜕𝛿C𝑘

𝜕𝛿b𝜔 (𝑡𝑖)
Δ𝑡𝑘 , (C3e)

𝜕vℓ
𝜕𝛿b𝑎 (𝑡𝑖)

= −
ℓ−1∑︁
𝑘=𝑖

C𝑘Δ𝑡𝑘 , (C3f)

𝜕rℓ
𝜕𝛿v𝑖

= C𝑖Δ𝑡𝑖 𝑗 , (C3g)

𝜕rℓ
𝜕𝛿C𝑖

=

ℓ−1∑︁
𝑘=𝑖

[
𝜕v𝑘
𝜕𝛿C𝑖

Δ𝑡𝑘 −
1

2
C𝑘 (ã𝑘 − b𝑎 (𝑡𝑘))∧ΔC

𝑇

𝑖𝑘Δ𝑡
2
𝑘

]
, (C3h)

𝜕rℓ
𝜕𝛿b𝜔 (𝑡𝑖)

=

ℓ−1∑︁
𝑘=𝑖

[
𝜕v𝑘

𝜕𝛿b𝜔 (𝑡𝑖)
Δ𝑡𝑘 −

1

2
C𝑘 (ã𝑘 − b𝑎 (𝑡𝑘))∧

𝜕𝛿C𝑘
𝜕𝛿b𝜔 (𝑡𝑖)

Δ𝑡2𝑘

]
, (C3i)

𝜕rℓ
𝜕𝛿b𝑎 (𝑡𝑖)

=

ℓ−1∑︁
𝑘=𝑖

[
𝜕v𝑘

𝜕𝛿b𝑎 (𝑡𝑖)
Δ𝑡𝑘 −

1

2
C𝑘Δ𝑡

2
𝑘

]
. (C3j)

(C3k)


