¹ SUPPLEMENTAL MATERIAL

:

2

Challenge	Mitigation Strategy	Successful?
Recovery of instrumentation		•
Iceberg capsize: loss of	Site selection (iceberg): stable water line	Yes
instrumentation		
Iceberg tilting: instrument	Site selection (iceberg): stable water line	Yes
slip/loss of instrumentation		
Iceberg deterioration (fracture)	Site selection (iceberg): minimal undercutting at water line, no big cracks visible, or obvious	Yes
	locations of weakness that would result in a sizable change in the center of mass location	
Iceberg deterioration	Site selection (bathymetry): prior to the field campaign, track the movement and preferred	Yes
(grounding)	fjord locations of all prospective large icebergs. Exclude any that are near shallow regions in	
	the fjord bathymetry (using bathymetric map).	
Iceberg deterioration (wave	Site selection (fjord): minimize the possibility of the iceberg traveling beyond the fjord, where	Yes
erosion)	wave erosion is high. Consider only icebergs in the upper part of the fjord during the	
	deployment period. Use prior variability in location to exclude quickly transiting icebergs.	
Helicopter cannot land	Site selection (fjord): minimize the possibility of the iceberg traveling to the open ocean,	Yes
(location)	where winds are greater, poor weather can persist more easily, and wave action can rock the	
	iceberg more freely. Consider only icebergs in the upper part of the fjord during the	
	deployment period. Use prior variability in location to exclude quickly transiting icebergs.	
Helicopter cannot land (surface	Site selection (iceberg): minimize the possibility of tail clip by selecting an iceberg with	Yes
conditions)	relatively flat surface topography	
Unable to locate iceberg	Instrumentation: install an expendable GPS adjacent to the ApRES system, relaying hourly	Yes
	position to an online server. Coordinate communication with team members able to access	
	the internet and relay positions to the field team.	
Data processing and interpretation		
Instrument slip: inconsistent	Installation (set up): securing antennas to icebergs via climbing slings and 10" ice screws	Partially
survey		
Surface melt/Meltwater	Site selection (iceberg): deploying ApRES system on a local topographic high of the iceberg to	Partially
pooling	enable meltwater to flow away from the system	
	Installation (set up): Mount antennas on wooden 2x2s to decrease the heat capacity of the	
	material in contact with the ice, to minimize melting in of the antennas and meltwater pooling	
Inconsistent iceberg	Site selection (fjord): minimize the possibility of the iceberg traveling to the open ocean or	Yes
environments: iceberg	becoming grounded by increasing the travel distance to the ocean and avoiding icebergs near	
grounding, iceberg moving to	shallow fjord bathymetry	
different environments (out of		
fjord, wave erosion)		
Overlapping off-nadir and at	Site selection (iceberg): select iceberg with rectangular surface geometry and seemingly	Partially
nadir returns	straight/ perpendicular sidewall geometry (no subsurface foot visible)	
	Installation (location): Install ApRES off-center, to maximize the potential of individual sidewall	
	and basal returns	
Battery failure due to being on	Instrumentation: Secure the car battery within a thermally insulated and waterproof	Yes
the surface: cold, moisture	enclosure, affixing it to the iceberg using a climbing sling and ice screw.	
Validation of findings by independent methods		
Lack of independent validation	Instrumentation: ensure equipment is operational for on-iceberg and ship-based independent	Yes
	measurements (geodetic GPS, drone, multibeam sonar, and CTD)	
Incomplete/inconclusive in situ	Site selection (fjord): deploy system on iceberg with ship accessibility, ensuring the ship can	Yes
validation surveys	sail to the iceberg (distance) and complete a circumnavigation survey (minimal-no adjacent	
	icebergs/sea ice)	

Table S1. Projected challenges in on-iceberg ApRES deployment, data processing, and analysis, and the field strategies employed to mitigate each challenge. Additional considerations to the proposed strategies were the constraints of a <15 min on-iceberg installation window, the cargo capacity of the helicopter, and minimal reconnaissance helicopter flying time.

:

Fig. S1. Reconnaissance photos of Iceberg SF0419 (a-e) with arrows highlighting features of consideration during the reconnaissance flight. Also noted in the inset figure are the field of view for each photo (solid dark blue line) and helicopter flight path (dashed light blue line). White arrows identify locations where challenges in either the recovery of instrumentation or data processing and validation may be introduced. Iceberg SF0419 was chosen because there was no visible submerged toe (c) as can be seen in an adjacent iceberg (d), minimal erosion and no visible tilting at the waterline (b), no evidence of potential surface fractures penetrating through the iceberg (f, black arrows), and the iceberg was large enough in size for a helicopter landing and in the desirable location in the fjord.