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S1 Supplemental Material and Figures for the calibration and model
performance
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Figure S1: Distributions of calibrated creep parameters to match the consensus volume estimate of
Farinotti and others (2019) for each of the 88 glaciers (depicted as kernel density estimates truncated
at the data limits). We show the influence of (a) temperature lapse rate, (b) surface-type distinction
(c) temporal climate resolution, and (d) calibration strategies on the factor that we multiplied to the
standard creep parameter (median of 2.6, thresholds set to [0.1, 10]).
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Figure S2: (a) Relation between winter daily precipitation and calibrated precipitation factor (pf ) for
C2 for the 114 glaciers where the calibration to match the winter MB was possible for all temperature-
index model choices together (correlation coefficient R2=0.2). The logarithmic fit with one standard
deviation error of the parameters is given. This relation is used to estimate a glacier-specific pf for C5.
The only relation between calibrated pf and glacier(-climate) characteristic that we found was with
winter precipitation (i.e., average daily precipitation over the years 1980–2019 between October and
April for glaciers in the Northern Hemisphere and between April and September for glaciers in the
Southern Hemisphere).(b) Uncorrected and corrected precipitation distributions of the 114 glaciers.
If the same pf , median from (a), is applied to each glacier, the precipitation distribution width is
much larger than the uncorrected one or the one using a winter-precipitation dependent pf .
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S1.1 Temperature-index model choice influence on calibrated parameter combi-
nations (related to Sect. 3.1.1)
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Figure S3: Calibrated model parameters for different temperature-index model (Table 1) and calibra-
tion (Table 2) options C1−5. df stands for degree-day factor, pf for precipitation factor, and tb for
temperature bias. The parameter distributions (median and interquartile range, 25%ile–75%ile) are
shown for the 88 glaciers with enough in-situ observations to apply all calibration strategies.

In the main paper, we only shortly mentioned the temperature-index degree-day factor differences for
calibration strategy C5 (Fig. 1). Side remark: the unit of the degree-day factor in e.g. Huss and Hock
(2015); Braithwaite (2008) is in mm K−1 day−1. However, they actually mean mm w.e. K−1 day−1

(personal communication).
Here, we provide additional details for calibration strategies C1−4 and always relate to Fig. S3:

S1.1.1 Temperature lapse rate choice

When allowed to vary, the precipitation factor is larger for the variable (weaker negative) lapse rates
compared to the constant lapse rate. Following Fig. 4a, a smaller precipitation factor would be needed
to match the observations if a lower degree-day factor is applied. Thus, the reversed relationship that
results in lower degree-day factors for the variable lapse rates compared to the constant lapse rate is
not a result of equifinality but a result of the higher air temperatures. The temperature bias differences
between constant and variable temperature lapse rate (same for the temporal climate data choice) in
C1 are not systematic (Fig. SS3a) and balance out differences from the other two parameters.
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S1.1.2 Temporal climate resolution choice

For the daily choice, the additional daily distinction between snow and rain likely results in a slightly
larger degree-day factor compared to the pseudo-daily choice.

In all calibration strategies with variable precipitation factors (C1–C4, Fig. SS3a–d), the theoreti-
cally decreased solid precipitation for the daily choice is balanced out by a larger precipitation factor
to match the average winter MB (Fig. SS3b), the interannual MB variability (Fig. SS3c) or both
(Fig. SS3a).

S1.1.3 Surface-type distinction choice

When only matching the winter MB and not applying any temperature bias (C2), the precipitation
factor is almost the same for the three surface-type distinction choices (Fig. S3b). Winter MB depends
much more on the precipitation factor than the degree-day factor; thus, the surface-type distinction
makes little difference. When matching interannual MB variability (C3), a temperature-index model
where the degree-day factor changes from snow to firn or ice needs a smaller precipitation factor
than one without (Fig. S3c). With surface-type distinction, positive MB anomalies from large (solid)
precipitation years are enhanced by the lower snow degree-day factor, and negative MB anomalies
are enhanced by using the higher firn or ice degree-day factor. Consequently, if a calibration strategy
uses the same precipitation factor, the interannual MB variability will be larger for models including
surface-type distinction.

When having three free parameters (C1), neither precipitation nor degree-day factor changes con-
sistently between the surface-type distinction choices (Fig. S3a). However, the temperature bias
changes, which has a similar effect as a higher degree-day factor. A positive temperature bias is ap-
plied to balance out otherwise decreased melt for model choices with surface-type distinction, and a
negative temperature bias is applied for those without surface-type distinction (Fig. S3a). Again, this
is not a result of equifinality but reflects the parameter combinations which better match all observed
variables.

S1.2 Supplemental Figures of temperature-index model choice and calibration
strategy performance (related to Sect. 3.1.3 and Sect. 3.2.2)
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Figure S4: Amount of glaciers per RGI region that could be calibrated for all calibration and
temperature-index model options (in total 88 glaciers). That means the glaciers need to have both
sufficient winter MB and annual MB measurements available, as well as fitting parameter combina-
tions for all options.
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Figure S5: Amount of glaciers per temperature-index (TI) model choices that could be calibrated for
calibration strategy (a) C4 and (b) C5.
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Figure S6: Performance of temperature-index model choices using different measures from independent
observations and calibration strategy C5. In (a), the difference between modelled and observed mean
MB gradient below the equilibrium line altitude (ELA) and in (b), the standard deviation quotient
between modelled and observed interannual MB variability is shown. Distributions represented by the
5%ile, 25%ile, 50%ile (median), 75%ile and the 95%ile.
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Figure S7: Performance comparison of temperature-index (TI) models for different measures from
independent observations for calibration strategy C5. In (a), the ratio of MB profile mean absolute
errors (mae) between observed and modelled mean MB profile over the observation years is shown for
83 glaciers. As we do not want to set too much weight on the wider snow or firn-covered accumulation
area where uncertainties are larger, we compute the mae of the altitudinal bands without weighting
for the glacier width. To compare the performance between different TI models, we divide the mae
of every choice through the reference model choice. In (b), differences in the absolute std. quotients
to one (i.e., a measure of how well the interannual MB is matched) are shown for 212 glaciers. df

stands for degree-day factor. Distributions represented by the 5%ile, 25%ile, 50%ile (median), 75%ile

and the 95%ile. A distribution shift to the right means, for each measure, that this option matches the
validation measure worse than the reference model. The differences in the mean MB gradient absolute
bias below the equilibrium line altitude are shown in Fig. 3a.
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S1.3 Supplemental Figures of the influence of equifinality on the temperature-
index model output (related to Sect. 3.2.1)
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Figure S9: Same as Fig. 4 but for RGI60-13.08624: Influence of downscaling model parameters
for RGI60-13.08624 on the calibrated (a, b) degree-day factor (df ) to match the geodetic observations
and on the resulting (c, d) interannual MB variability, (e, f) average winter MB and (g, h) mean
elevation-dependent MB profiles (using the reference model option). Left plots (a, c, e, g) show
varying precipitation factors (pf ) with temperature bias (tb) set to zero, while right plots (b, d, f, h)
show varying tb with pf set to two. Colorbar in (c–h) based on (a, b). std stands for standard
deviation, mae for mean absolute error. Each df , pf , and tb combination matches the geodetic mean
MB, and the combinations that best match in-situ observations are indicated. Modelled estimates
only shown for years with observational data.
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Figure S10: Same as Fig. 4 but for RGI60-08.00987: Influence of downscaling model parameters
for RGI60-08.00987 on the calibrated (a, b) degree-day factor (df ) to match the geodetic observations
and on the resulting (c, d) interannual MB variability, (e, f) average winter MB and (g, h) mean
elevation-dependent MB profiles (using the reference model option). Left plots (a, c, e, g) show
varying precipitation factors (pf ) with temperature bias (tb) set to zero, while right plots (b, d, f, h)
show varying tb with pf set to two. Colorbar in (c–h) based on (a, b). std stands for standard
deviation, mae for mean absolute error. Each df , pf , and tb combination matches the geodetic mean
MB, and the combinations that best match in-situ observations are indicated. Modelled estimates
only shown for years with observational data.
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Figure S11: Same as Fig. 4 but for RGI60-02.00377: Influence of downscaling model parameters
for RGI60-02.00377 on the calibrated (a, b) degree-day factor (df ) to match the geodetic observations
and on the resulting (c, d) interannual MB variability, (e, f) average winter MB and (g, h) mean
elevation-dependent MB profiles (using the reference model option). Left plots (a, c, e, g) show
varying precipitation factors (pf ) with temperature bias (tb) set to zero, while right plots (b, d, f, h)
show varying tb with pf set to two. Colorbar in (c–h) based on (a, b). std stands for standard
deviation, mae for mean absolute error. Each df , pf , and tb combination matches the geodetic mean
MB, and the combinations that best match in-situ observations are indicated. Modelled estimates
only shown for years with observational data.
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S2 Supplemental Figures of volume projections (related to Sect. 4)
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Figure S12: Same as Fig. 5 but for Hintereisferner glacier (RGI60-11.00897): Hintereisferner
glacier volume projections (2000–2100) for two SSP scenarios. We show the median, interquartile range
(25%ile–75%ile, IQR) and total range resulting from (a) temperature-index (TI-) model choices using
C5 and (b) calibration strategies using the reference model. df stands for degree-day factor, pf for
precipitation factor, and tb for temperature bias. We use the median volume from five GCMs. Fig. 5
shows the same for the Aletsch glacier.
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Figure S13: Same as Fig. 6 but for SSP5-8.5: (a) Individual glacier volume changes in 2040
and 2100 for 15 glaciers that could be calibrated on all options and still exist in 2100 under the
SSP5-8.5 scenario. Individual glacier volume ratios for (b–f) temperature-index model choice and (g)
calibration strategy. Distributions represented by the 5%ile, 25%ile, 50%ile (median), 75%ile and the
95%ile. A rightward (leftward) distribution shift indicates larger (smaller) glacier volume compared to
the reference option. (a) Volume changes are estimated from all 15 glaciers, 3 · 3 · 2 temperature-index
model and 5 calibration options, volume ratios respectively by (b) 15 · (3 · 3) · 5, (c–f) 15 · (3 · 2) · 5,
and (g) 15 · (3 · 3 · 2) glaciers and options. We use the median volume from five GCMs. See Fig. 6 for
SSP1-2.6.
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Figure S14: Additional subplot of (a) Fig. 6 and (b) Fig. S13 by comparing volume projections
of another temporal climate resolution variant. “pseudo-daily changing std” is a choice where the
applied daily temperature standard deviation is derived from the actual daily W5E5 and future GCMs
instead of using a seasonally different but interannually constant standard deviation as used in the
temperature-index model choice “pseudo-daily”. Distributions represented by the 5%ile, 25%ile, 50%ile

(median), 75%ile and the 95%ile. In 2100, using the “pseudo-daily changing std” compared to the
monthly choice results in a larger projected glacier volume for more than 75% of the glaciers.
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respectively, for SSP5-8.5 are shown. The distribution of the standard deviation of the temperature-
index model type volume ratios (for each glacier one std) is used here to compare how much the
temperature-index model choices vary for each calibration strategy.
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S3 Supplemental Figures of runoff projections (related to Sect. 4)
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Figure S16: Aletsch glacier (RGI60-11.01450) projections for the annual runoff. We show the median,
interquartile range (25%ile–75%ile, IQR) and total range resulting from (a) temperature-index (TI-)
model choices using C5 and (b) calibration strategies using the reference model. For this glacier, in
(b), the calibrated parameters and thus projections for C1, C2 and C5 are very similar. df stands
for degree-day factor, pf for precipitation factor, and tb for temperature bias. The runoff estimates
correspond to the median runoff from the five GCMs.
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(a) TI-model choice influence (calibration strategy C5 used)
18 TI-model choices:

median
IQR
total range

historical climate
SSP1-2.6 (median GCM)
SSP5-8.5 (median GCM)
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(b) calibration strategy influence (reference TI-model used)
5 calibration strategies:

median
IQR
total range

calibration strategy with
maximum & minimum
melt_on_glacier in 2099 for SSP1-2.6:

C4: df=529.2,
pf=2.6, tb=0.0
C1: df=199.6,
pf=0.6, tb=0.0

Figure S17: Aletsch glacier (RGI60-11.01450) projections for the melt on glacier contribution to the
annual runoff (same structure as in Fig. S16). The melt on glacier estimates correspond to the median
from the five GCMs.
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(a) TI-model choice influence (calibration strategy C5 used)

18 TI-model choices:
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IQR
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SSP1-2.6 (median GCM)
SSP5-8.5 (median GCM)
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(b) calibration strategy influence (reference TI-model used)
5 calibration
strategies:

median
IQR
total range

calibration strategy with
maximum & minimum runoff
in 2099 for SSP1-2.6:

C1: df=77.0,
pf=5.0, tb=5.8
C3: df=193.7,
pf=0.7, tb=0.0

Figure S18: Hintereisferner glacier (RGI60-11.00897) projections for the annual runoff (same structure
as in Fig. S16). The runoff estimates correspond to the median from the five GCMs.
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(a) TI-model choice influence (calibration strategy C5 used)
18 TI-model choices:

median
IQR
total range

historical climate
SSP1-2.6 (median GCM)
SSP5-8.5 (median GCM)

TI-model choice with
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melt_on_glacier in 2099 for SSP1-2.6:

linear df change, 
pseudo daily, constant lapse rate
no df change, 
daily, variable lapse rate
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(b) calibration strategy influence (reference TI-model used)
5 calibration strategies:

median
IQR
total range

calibration strategy with
maximum & minimum
melt_on_glacier in 2099 for SSP1-2.6:

C5: df=403.8,
pf=3.5, tb=0.0
C3: df=193.7,
pf=0.7, tb=0.0

Figure S19: Hintereisferner glacier (RGI60-11.00897) projections for the melt on glacier contribution
to the annual runoff (same structure as in Fig. S16). The melt on glacier estimates correspond to the
median from the five GCMs.
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(i) (j)

Figure S20: Additional subplots of Fig. 7 with (a–h) the four different runoff components
of OGGM and (i, j) the annual runoff variance for the Aletsch glacier under SSP1-2.6:
Influence of equifinality on (a, b) melt on glacier, (c, d) melt off glacier, (e, g) liquid precipitation on
glacier and (g, h) liquid precipitation off glacier projections. The “off”-glacier parts are coming from
the former glacier area at the RGI date. Thus, the “on”-glacier components are dominant over the
first decades while the “off”-glacier influence increases as the glacier melts away. The colors indicate
the precipitation factor (pf ) or temperature bias (tb) as presented in (a, b) or in Fig. 7 (e, f). In (i,
j), the annual runoff variance is displayed as a 15-year rolling average. For each pf or tb, a degree-day
factor was calibrated to match the same average geodetic MB. On the left, tb is set to zero and pf is
varied while on the right, pf is set to 2 and tb is varied. Projections are median estimates from five
GCMs using the reference model.
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Figure S21: Same as Fig. 7 and Fig. S20 together, but for Hintereisferner glacier: Influence
of equifinality on (a, b) volume and (c, d) runoff projections for the Hintereisferner glacier under
SSP1-2.6. The projections of the four different runoff components ((g, h) melt on glacier, (i, j) melt
off glacier, (k, l) liquid precipitation on glacier and (k, l) liquid precipitation off glacier) are also
shown. The colors indicate the precipitation factor (pf ) or temperature bias (tb) as presented in (e, f),
which shows the relation between pf or tb and average annual runoff. For each pf or tb, a degree-day
factor was calibrated to match the same average geodetic MB. On the left, (a, c, e, g, j, k, m), tb

is set to zero and pf is varied while on the right, (b, d, f, h, j, l, n), pf is set to 2 and tb is varied.
Projections are median estimates from five GCMs using the reference model.
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Figure S22: Glacier runoff projections for SSP1-2.6 and SSP5-8.5 for the 85 glaciers that could be
calibrated and simulated on all options. The figure is similarly constructed as Fig. 6 and Fig. S13, but
here the fixed-gauge runoff instead of the volume is shown. Note that many glaciers do not exist any
more in 2100 (e.g., around half of them for SSP1-2.6) but the runoff of the former glacierized area is
included as we account for the off-glacier runoff.
(a) Individual annual glacier runoff averaged over 2030–2049 and 2080–2099 for the 85 glaciers. In-
dividual annual glacier runoff ratios for (b–f) temperature-index model choice and (g) calibration
strategy. Distributions represented by the 5%ile, 25%ile, 50%ile (median), 75%ile and the 95%ile. A
rightward (leftward) distribution shift indicates larger (smaller) annual glacier runoff compared to the
reference option. (a) Runoff is estimated from all 85 glaciers, 3 · 3 · 2 temperature-index model and 5
calibration options, volume ratios respectively by (b) 85 ·(3 ·3) ·5, (c–f) 85 ·(3 ·2) ·5, and (g) 85 ·(3 ·3 ·2)
glaciers and options. We use the median volume from five GCMs.
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S4 Supplemental Material for the discussion

S4.1 Comparison of other studies discussing the added value of more observations
for the calibration (related to Sect. 5.1.4)

The climate dataset choice can have a similar influence on the model performance as the precipitation
factor choice, i.e., both a climate dataset with larger winter precipitation (Compagno and others,
2021) or a larger precipitation factor (Fig. 4e) result in a larger winter MB. Using 16 regionally fixed
parameter sets of precipitation factors and degree-day factors and only changing the temperature
bias on a glacier-per-glacier level resulted in poorer model performance in Huss and Hock (2015)
compared to their reference parameter calibration strategy (i.e., varying first the precipitation factor
in a specific range, then, if necessary, the degree-day factor within a range, followed by the temperature
bias) for Alpine glaciers. When optimising six MB model parameters to geodetic, point stake data and
transient snowline retreat, the resulting parameter combination ensemble showed only little spread
over historical MB estimates on a single glacier in Geck and others (2021). This limited impact of
equifinality can be attributed to available higher temporally and spatially resolved MB observations
during calibration, as well as narrower parameter ranges due to the use of weather station data to
drive their enhanced temperature-index model.
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