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Appendix A Nuptiality and mortality from chevage

[bookmark: _Hlk163164311]Lists in court rolls of Glastonbury Abbey’s manors in the late thirteenth and fourteenth centuries were drawn up to collect chevagium garcionum, or head-tax. The term garcio was probably used for children as well as for men of low status (Claridge and Langdon 2015: 202). Once a year, the list of the previous year was copied, and new names were added at the bottom. Besides most names a payment was written, or an abbreviation that probably meant that the garcio still lived in his parental home (Fox 1996: 519-20). Sometimes names were marked to have taken up property, to have died, or to have left the manor, in which case they were left out of the new list (Ecclestone, 1999: 9). For the manors of Longbridge Deverill and Monkton Deverill, Wiltshire, a long series of these lists have survived for the period 1295-1350, which make them extremely valuable for demographic analysis.
In England, chevage was usually a payment for permission to leave the manor in search for work elsewhere, but it might also take the form of a payment from any landless serf (Postan 1966: 564-5; Bailey 2014: 42). Giving examples of similar practice at other manors, Fox (1996) has convincingly argued that the Glastonbury lists were of this latter form, whereby those who lived in their parental home were exempted. 
[bookmark: _Hlk163989421]Local boys entered the tithing at age 12, but were probably registered for the first time somewhere around age 14 (Ecclestone 1999: 22). Based on this assumption, Ecclestone used these lists to estimate their age. 
Immigrants from other manors, however, did only enter these lists after they had remained on the manor for a year and a day, most probably accompanied by a pledge. For them, unfortunately, the age at entering the list is unknown. However, since court rolls stated many pledges of men who appeared on the head-tax list afterwards, Ecclestone (1999: 12-3) was able to distinguish the pledged men from the unpledged, assuming that the unpledged ones were local men who had entered the list at age 14. 
According to these lists, 86 of the unpledged garciones were noted to have acquired land at the manor where they had been born. For only 37 of them, Ecclestone was able to identify records of their entry fines. Fifteen men married a widow, fourteen men inherited from a parent or a relative with the same surname, and eight men did otherwise. This last category might also have included sons-in-law. Therefore, presumably well below 22 per cent of these holdings was taken over by an outsider, which is substantially below the figures that Paping and Karel (2011: 63) found for two communities in the Netherlands in the eighteenth and nineteenth centuries. Such a low percentage is closer to the 12–21 per cent that Schlumbohm (1994: 383-5) observed for seventeenth, eighteenth, and nineteenth-century Belm (Germany). However small the numbers, Ecclestone’s result suggests that family succession was more or less the rule at the turn of the fourteenth century. 
Besides giving an impression of the options on succession, the records of these 37 garciones can be used to estimate their age at (first) wedding under the assumption that they married when they took up land. Assuming that they were about 14 when they first paid head-tax, Ecclestone (1999: 19) estimated that their median age for acquiring property was 26.[footnoteRef:1] Taking into account that age distributions for first marriages are not symmetric but skewed, the mean age lies about one year above the median (Wrigley et al. 1997: 146-7). Therefore, the mean age at first wedding can be taken to have been 27. [1:  Actually, Ecclestone’s calculated it to have been 25, inconsequently assuming that they entered the list at age 13.] 


For 279 unpledged garciones, Ecclestone was able to establish at what age they entered tenure, left the manor, or died. For only 46 of them he could actually establish their age at death, because the others became invisible when they took up land or left the manor. 

Ecclestone presented his findings in nine age groups. As the pattern is highly irregular, we group them two by two to smooth the pattern. We have calculated the mortality probability, which is the chance for someone of age x to die within n years, of course correcting for the interference between the three modes of exit – entering tenure, leaving, and dying. Next, we have determined the most probable mortality pattern by finding the best fit of mortality model (1). This pattern is displayed in figure A.1.




Figure A.1. Mortality probability for unpledged garciones on two Wiltshire manors, 1296-1344.
Notes: 
Following Ecclestone (1999: 22), in assuming age to have been 14 when appearing on the lists for the first time, 'to allow for occasional delays in recording newcomers to the list'.
Data age groups: 0-4, 5-9, 10-13, 14-18, 19-28, 29-38, 39-48, 49-58,…
Calculation:  death rate = observed deaths / man-years (from Ecclestone 1999: 23). To correct for interference of modes of exit, the mortality probability nqx can be estimated with  (Preston et al. 2001: 82).
Best fit of two-parameter model (1) at β = 0.060; θ = -5.8. Error of fit is 0.45.


As Ecclestone (1999: 21) noted himself, the number of deaths in every age group is small, and uncertainties are substantial. These substantial uncertainties are reflected in the large error of fit of 0.45. 
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Appendix B Inheritance from family reconstitution

Razi (1980: 10, 84) has argued that peasants in Halesowen married fairly young in the period 1280-1349. His argument builds upon 285 families of which he had reconstructed three generations from manorial court rolls. 
As much as 80 times, i.e., 40 times per generation, he observed that within 20 years after the first appearance of a landholder, his son appeared in these records as a landholder as well. Because the minimum age to take up land was 20, Razi assumed that they were firstborns. As landholders on average appeared in these records every three years, he concluded that these 40 sons had taken up land below age 23. 

Does this analysis underpin Razi’s firm statement that thirteenth-century Halesowen peasants married young? Of course, the empirical basis is feeble. First, the reconstruction of three-generation families from court rolls is wrought with difficulties (Poos and Smith 1984:128-37; Razi 1980: 11-24). Second, the method used to determine the ages of Halesowen's inhabitants is necessarily indirect and inaccurate. Third, the estimation is based upon the assumption of male firstborn successors only.
[bookmark: _Hlk93748866]We use Razi’s data to make a rough estimate of the mean age at marriage. As about 65 per cent of the new-borns survived to age 23 (see figure 1A in the main text of our article), and half of them were males, 93 of the observed 285 holdings must have had a firstborn male heir who reached this age of 23. Razi’s data imply that 40 of them, i.e., 43 per cent, inherited their parents’ property below age 23. The only contemporary comparison available is Russell’s dataset of Tenants-in-Chief, already discussed in section 1. While their mean age at inheritance was 27, as much as 42 per cent had inherited their fief before age 25 (Russell 1948: 202), which is two years below the mean age at inheritance for this group. Based on this comparison, we might set the mean age at wedding for male peasants in Halesowen at 25 (La Poutré 2023: 71-3), which is certainly not supporting Razi’s bold statement.
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Appendix C Nuptiality from merchets

Hallam (1985) studied merchets – licences for customary tenants to marry off their daughters (Razi 1980: 45) – at five Lincolnshire manors in the Late Middle Ages. He used these merchets, and any available additional information, to estimate age at marriage by putting an upper and lower bound to the year of birth, and taking the birthyear halfway between these two bounds; for instance, if a woman’s father had married in 1287 and his widow remarried in 1311, the woman must have been born between 1288 and 1311. Her year of birth was set at 1300. For 39 men between 1287 and 1348, Hallam was able to find the necessary dates, resulting in a mean estimated age at first marriage at 26.1 years. For 128 women between 1269 and 1348 Hallam estimated their age at wedding, yielding to a mean estimated age at first marriage at 21.4 years old.
The accuracy of his estimates is highly disputable. For instance, if the upper bound was missing, which was often the case, he used the canonical age of legal marriage (12 for girls, 14 for boys) to set the upper boundary at 12 to 14 years before their marriage (Hallam 1985: 57), which must have lowered his results considerably. 

A simple model may give insight in the bias in Hallam’s method. If we assume that the upper bound was missing in every case, this model can be used to calculate the mean age at marriage of men and women out of Hallam’s results. In this model, we assume that a woman had her first baby one year after her wedding and subsequent babies every 33 months, that her risk to become infertile is described by equation (2) in our article, and that the risks to die are given by equation (1) for both parents, Hallam’s results are reproduced by this model if we assume that men married at age 34.8, and women at age 25.2 (La Poutré 2023: 75-6).
If we compare the parameters of our model to the mean age at marriage as estimated by Hallam, we find a large difference for men, namely 34.8 and 26.1 years respectively. As Hallam has not specified to how many men he applied the above mentioned dubious procedure, this range is too wide to assign any value to his estimated mean age at marriage of men.
For women, we are on much safer ground. Taking notice of Hallam’s remark that the majority of the upper bounds were missing, the mean female age at first marriage was probably closer to the outcome of our model (25.2 years) than to Hallam’s result (21.4 years). Most likely, it was about 24 years.

Hallam (1985: 59) suggested a second method to estimate the mean age at first marriage for 80 men who appeared as groom in a merchet, on average, some 17 years after they had been mentioned in a pre-plague list of landholders. Obviously, many of these merchets must have concerned remarriages instead of first marriages, or family members (offspring) with the same name, so we ignore this estimate.
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Appendix D Household size from serf lists

Hallam (1958) studied serf lists from three manors of the Spalding Priory (Lincolnshire). This study is often referred to as having calculated the mean household size to have been 4.7 persons (Benedictow 2004: 269; Hallam 1985: 57; Hollingsworth 1969: 120; Howell 1983: 235; Schofield 2003: 84). A closer look shows that this is not the case. The studied serf lists tabulated the serfs' sons and daughters family by family. For two out of these three manors, the lists also mentioned who still lived at home, and who did not (Hallam 1958, 1963; Russell 1962). To arrive at his figure, Hallam summed the married couples and their offspring that still lived at home. However, since these lists tabulated the serf's direct relatives only, live-in servants were not counted. It should be noted that, as the opportunity to start their own household was limited, most people who left their home to work must have become live-in servants somewhere else. Their numbers must have been substantial; for instance, according to a census, out of 68 serfs' sons, 38 per cent did leave the manor of Weston (Smith 1991: 74). Therefore, inclusion of these live-in servants must have resulted in a substantially larger household size.

Fortunately, Hallam’s study provides the information to make an educated guess. He gives figures on family size, in which 'all offspring alive at the time of the census are included in these figures, whether or not they were adult and whether or not they had left the manor' (Hallam 1958: 353). These figures probably lead to a better approximation of the mean household size, because the lion’s share of the ones that had left their parental home probably worked as a live-in servant in another household, and vice versa. 
As this procedure counts double those offspring that were already married, but overlooks orphans, these two aspects are assumed to, at least partly, nullify each other. 252 couples had produced 468 sons and 391 daughters at the time of the census. The mean size is estimated to have been 5.4 (Hallam 1958: 353; Razi 1980: 93).
In this calculation, it is assumed that both householder and housewife were still alive at the time of the counting, adding 2.0 parents to every household, which is obviously not true for every household. Hallam (1958: 353) counted 5 widows among 54 households in Weston, thus about 9 per cent, and 9 widowers among 252 households in Moulton, Weston, Spalding, thus some 4 per cent. If indeed 13 per cent of the households belonged to widows or widowers, one should add 1.9 parents instead of 2.0 to every household. Consequently, the mean family size has to be reduced from 5.4 to 5.3.
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Appendix E Outline macrosimulation

[bookmark: _Hlk163937655]The central elements of the macrosimulation developed in this study are the age distributions for the population and for housewives in some year t, specifying for each age x the number of, respectively, persons Px(t) and housewives Hx(t) at that age. 
If we subtract the number of deaths and add the number of births to the population’s age distribution Px(t) for some year t, we can calculate the age distribution for the following year Px(t+1). For housewives, the age distribution for the following year is calculated by adding the number of weddings and subtracting the number of deaths of housewives. To calculate the number of deaths per age x, we need to know the mortality probability  , i.e., the chance to die within a year. As is well-known from demographic theory, this risk to die can be calculated from the survivorship function , which is the number of new-borns to survive to a certain age , as given in equations (1a) and (1b) in the main text of our article:

										(E.1)

The population of age +1 at year t+1, denoted as Pt+1(x+1), can be calculated as follows:

							(E.2)

The number of births in year t, denoted as B(t), depends on the birth-interval and the number of fertile housewives, calculated by taking account of the proportion of sterile females as given by equation (2) in the main text of our article.
[bookmark: _Hlk81764956]It should be noted that, besides infertile housewives and fertile married housewives, there also existed households with fertile widows and households with widowers, thus without a housewife. As was already mentioned in appendix D in Supplementary material, Hallam (1958: 353) counted nine per cent widows, and four per cent widowers in some Lincolnshire manors. To account for widows, our model contains a parameter that expresses the proportion of widows. The problem of widowers will be addressed below.
The total number of annual births can be calculated by summing up all infants:

 						(E.3)

in which parameter BI represents the birth-interval in years, WW the proportion of widows, and  and  respectively the number of housewives and the proportion of sterile females at age . 

As this model is based upon housewives, the existence of households with widowers is ignored. The model assumes that, when a housewife died, her place was immediately filled by another woman as long as there were unmarried women available. This assumption is obviously not in accordance with reality. Since households without a housewife did obviously exist, equation (E.3) predicts more births than it should. At the same time, couples retiring, handing over their holding or craftmanship to a successor, are ignored as well, since death is the only way acknowledged by our model to be removed from the number of housewives Hx(t). Ignoring this aspect leads to an underestimation of the number of births, since retired women must have been old and infertile, while women who took their places must have been much younger, and probably fertile. Furthermore, children born outside marriage are ignored completely in this model, which leads to underestimation as well. As these three ignored aspects work in opposite directions, the effects may, at least partly, nullify each other.
 
For the age distribution of housewives, denoted as Hx(t), subtraction of deaths leads to an equation that is similar to equation (E.2). Summing the numbers of the housewives who died, gives us the number of vacancies to be filled again. When a housewife died, her husband could remarry, or her family could cease to exist, and its holding or craftsman-shop be taken over by a new couple; this assumption fits with the observed small number of households headed by widows. In both cases, the deceased’ place was filled by an unmarried woman. In this section’s simulation, the age distribution of these brides is described by the Coale-McNeil (1972) nuptiality model (equation 3 in the main text of our article) as presented in section 3 of our article. Subtraction of deaths and addition of brides to the age distribution of housewives gives us next-years age distribution.

The complete computer source code is given in Appendix F in Supplementary material.
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Appendix F	Simulation computer programming code (in Python)

In this appendix, the complete computer source code is given. Please notice that long lines of code have been broken into pieces. To run this program, these lines should be restored!

This programming code is organised as follows:
1. Modules are imported and constants are defined.
2. [bookmark: _Hlk189931684]Some form-components are defined to enable the user to choose the values of parameters and variables: TLabel, TEdit, TSpin, TMemo, TListbox, and TGraph. 
3. The formulas to calculate survivorship and nuptiality (Coale-McNeal) are defined.
4. TPopulation defines the actual simulation procedures, and is therefore the most relevant part of this programming code. An outline of this part is given in Appendix E in Supplementary material.
5. PopulationInputDialog defines the form that enables the user to choose the values of parameters and variables and to view the output of the simuation.




# Modules are imported and constants are defined

import math
from tkinter import ttk, Tk, Text, END, Listbox, NORMAL, DISABLED, Canvas, Button, filedialog

maxNumber = 1000000000000
maxScan = 5
pointsize = 2
pointsizeData = 4
PopMax = 10
maxAge = 100
CMN2 = 0.174
CMN3 = 6.06
CMN4 = 0.288
FertilityThreshold = 45
unknown = -9999
CLblack = 'black'
CLred = 'red'
Lfont = ('Calibri', 16)
Sfont = ('Calibri', 12)




#Some form-components are defined to enable the user to choose the values of parameters and variables: TLabel, TEdit, TSpin, TMemo, TListbox, and TGraph. 

class TLabel(ttk.Label):
    def __init__(self,master,nX,nY,sLabel):
        super(TLabel,self).__init__(master, font = Lfont, text = sLabel)
        self.place(x=nX, y=nY)

class TEdit(ttk.Entry):
    def __init__(self,master,nX,nXE,nY,sLabel,sEdit):
        super(TEdit,self).__init__(master,font = Sfont, width = 8)
        self.label = ttk.Label(master, font = Sfont,text = sLabel)
        self.insert(0,sEdit)
        self.label.place(x=nX,y=nY)
        self.place(x=nX + nXE,y=nY)
    def text(self):
        s = self.get()
        return s
        #self.label.config(text = self.get())

       
class TSpin(ttk.Spinbox):
    def __init__(self,master,nX,nXE,nY,sLabel,n,nFrom,nTo):
        super(TSpin,self).__init__(master,font = Sfont, from_ = nFrom, to = nTo, width = 6)
        self.place(x=nX + nXE, y=nY)
        self.label = ttk.Label(master,font = Sfont, text = sLabel)
        self.label.place(x=nX, y=nY)
        self.set(n)
    def text(self):
        s = self.get()
        return s


class TMemo(Text):
    def __init__(self,master,nX,nY,nX2,nY2):
        super(TMemo,self).__init__(master,font = Sfont, height = nY2 - nY, width = nX2 - nX)
        self.place(x = nX, y = nY)
    def clear(self):
        self.delete('1.0',END)
    def append(self,s):
        self.insert(END,s + '\n')


class TListbox(Listbox):
    def __init__(self,master,nX,nY,nX2,nY2,sLabel):
        super(TListbox,self).__init__(master,font = Sfont,width = nX2 - nX, height = nY2 - nY)
        self.place(x = nX, y = nY+20)
        self.label = ttk.Label(master,font = Sfont, text = sLabel)
        self.label.place(x=nX, y=nY)
        self.No = unknown
        self.bind('<<ListboxSelect>>',self.Selection)
    def setEnabled(self,b):
        if b:
            self.configure(state = NORMAL)
        else: self.configure(state = DISABLED)
    def SelectedIndex(self):
        n = self.curselection()
        if n:
            index = n[0]
        else: index = unknown
        return index
    def SelectedText(self):
        n = self.curselection()
        if n:
            index = n[0]
            s = self.get(index)
        else: s = ''
        return s
    def Selection(self,event):
        if self.No > unknown: self.itemconfig(self.No,{'bg':'White'})
        n = self.SelectedIndex()
        if n > unknown: self.No = n
        self.itemconfig(self.No,{'bg':'Yellow'})
        return self.No
    def ClearSelection(self):
        if self.No > unknown: self.itemconfig(self.No,{'bg':'White'})
        self.No = unknown
    def Select(self,n):
        self.ClearSelection()
        self.No = n
        self.itemconfig(self.No,{'bg':'Yellow'})


class TGraph(Canvas):
    def __init__(self,master,nX,nY,xBegin,xEnd,yBegin,yEnd):
        self.margin = 50
        self.graphWidth = 800
        self.graphHeight = 500
        super(TGraph,self).__init__(master,bg='white',height = self.graphHeight, width = self.graphWidth)
        self.place(x=nX,y=nY)
        self.width = self.graphWidth -2*self.margin
        self.height = self.graphHeight -2*self.margin
        self.xBegin = xBegin
        self.xEnd = xEnd
        self.yBegin = yBegin
        self.yEnd = yEnd
        for j in range(11):
            y = self.margin + (10-j) * self.height/10 
            self.create_line(self.margin, y, self.margin + self.width,y, width = 1, fill = 'black')
            self.create_text(20,y,text = str(yBegin + j*(yEnd-yBegin)/10))
        for i in range(11):
            x = self.margin + i*self.width/10
            self.create_line(x,self.margin, x, self.margin + self.height, width = 1, fill = 'black')
            self.create_text(x,self.margin + self.height + 10,text = str(xBegin + i * (xEnd - xBegin)/10))
    def point(self,x,y,size,color):
        nx = round((x - self.xBegin)* self.width / (self.xEnd - self.xBegin))
        ny = round((y - self.yBegin)* self.height / (self.yEnd - self.yBegin))
        self.create_oval(self.margin + nx -size,self.height + self.margin -ny -size, self.margin + nx +size,self.height + self.margin -ny +size, fill= color)





#The formulas to calculate survivorship and nuptiality (Coale-McNeal) are defined.

def CoaleMcNeil(x):
    r = math.exp(-CMN2/D.WeddingK * (x-D.minWedAge-CMN3*D.WeddingK) -math.exp(-CMN4/D.WeddingK*(x-D.minWedAge-CMN3*D.WeddingK)))
    return r
    

def Survivorship(x):
    r0 = 1/math.exp(-1/(1-D.ohmega) * math.exp((1-D.ohmega)*math.log(1.5)) - math.exp(D.theta)*math.log(1+math.exp(-16)) - 1/D.beta * math.log(1+math.exp(-D.beta*100)))
    r = r0 * math.exp(-1/(1-D.ohmega) * math.exp((1-D.ohmega)*math.log(x+1.5)) - math.exp(D.theta)*x - math.exp(D.theta)*math.log(1 + math.exp(x-16)) - 1/D.beta * math.log(1 + math.exp(D.beta * (x-100))))
    return r




#TPopulation defines the actual simulation procedures, and is therefore the most relevant part of this programming code. An outline of this part is given in Appendix E of Supplementary material.

class TPopulation:
    def InitiateVariables(self,D):
        self.t = D.tBegin
        self.PtotalJan = D.Pbegin
        self.PtotalDec = 0
        self.Householdsize = D.HouseholdsizeBegin
        self.Positions = D.Pbegin / D.HouseholdsizeBegin
        self.vacancies = 0
        self.HouseholdsTotal = self.Positions
        self.BachelorsTtotal = 0
        self.WeddingsTotal = 0
        self.births = 0
        self.growthrate = 0
        self.U14t = 0
        self.nQx = []
        self.Pt = []
        self.Households = []
        self.Bachelors = []
        self.Weddings = []
        for i in range(maxAge+1):
            self.nQx.append(0)
            self.Pt.append(0)
            self.Households.append(0)
            self.Bachelors.append(0)
            self.Weddings.append(0)
    def CalculateTotal(self,Distrib):
        Dtotal = 0
        for i in range(maxAge+1): Dtotal += Distrib[i]
        return(Dtotal)
    def BuildPreCrisisMortality(self):
        for i in range(maxAge):
            r1 = Survivorship(i)
            r2 = Survivorship(i+1)
            self.nQx[i] = (r1 - r2)/r1
        self.nQx[maxAge] = 1
    def BuildStartHouseholds(self):
        RR = []
        for i in range(math.ceil(D.minWedAge)): RR.append(0)
        for i in range(math.ceil(D.minWedAge),maxAge+1):
            r = (1 - self.nQx[i]) * RR[i-1] * math.exp(-self.growthrate/100) + CoaleMcNeil(i) * math.exp(-self.growthrate/100*(i-math.ceil(D.minWedAge)))
            RR.append(r)
        Rtot = 0
        for i in range(math.ceil(D.minWedAge),maxAge+1): Rtot += RR[i]
        for i in range(math.ceil(D.minWedAge),maxAge+1): self.Households[i] = RR[i] / Rtot * self.HouseholdsTotal
    def BuildPopulationJanuaryStartYear(self):
        self.BuildPreCrisisMortality()
        for i in range(maxAge +1): self.Pt[i] = Survivorship(i) * math.exp(-self.growthrate * i/100)
        r = self.PtotalJan
        self.PtotalJan = self.CalculateTotal(self.Pt)
        for i in range(maxAge +1): self.Pt[i] *= r / self.PtotalJan
        self.births = self.Pt[0]
        self.PtotalJan = self.CalculateTotal(self.Pt)
        self.BuildStartHouseholds()
    def CalculateBirths(self):
        self.births = 0
        for i in range(15,FertilityThreshold +1):
            rr = 1 - math.exp(4.6 * ((i-15)/(FertilityThreshold-15) -1))
            self.births += rr * self.Households[i] * D.BpY
        self.Pt[0] = self.births
    def BuildPopulationJanuary(self):
        i = maxAge
        while i > 0:
            i -= 1
            self.Pt[i] = self.Pt[i-1]
        self.CalculateBirths()
        self.PtotalJan = self.CalculateTotal(self.Pt)
        self.Householdsize = self.PtotalJan / self.HouseholdsTotal
        i = maxAge
        while i > 0:
            i -= 1
            self.Households[i] = self.Households[i-1]
    def Mortality(self,i):
        r = self.nQx[i]
        if r > 1: r = 1
        return r
    def CalculateDeaths(self):
        for i in range(maxAge+1):
            r = self.Mortality(i) 
            self.Pt[i] *= (1-r)
        self.PtotalDec = self.CalculateTotal(self.Pt)
    def CalculateDeathsHouseholds(self):
        for i in range(maxAge+1):
            r = self.Mortality(i)
            self.Households[i] *= (1-r)
        self.HouseholdsTotal = self.CalculateTotal(self.Households)
    def CalculateBachelors(self):
        for i in range(math.ceil(D.minWedAge),maxAge+1):
            self.Bachelors[i] = self.Pt[i]/2 - self.Households[i]
            if self.Bachelors[i] < 0: self.Bachelors[i] = 0
        self.BachelorsTotal = 0
        for i in range(math.ceil(D.minWedAge),maxAge+1): self.BachelorsTotal += self.Bachelors[i]
    def CalculatePositions(self):
        self.vacancies = self.Positions - self.HouseholdsTotal
        if self.vacancies < 0.001 * self.Positions: 
            self.growthrate = 0
            self.Positions *= (1+self.growthrate)
    def CalculateWeddings(self):
        self.CalculateDeathsHouseholds()
        self.CalculateBachelors()
        self.vacancies = self.Positions - self.HouseholdsTotal
        if ((self.vacancies > 0) & (self.BachelorsTotal > 0)):
            self.WeddingsTotal = self.vacancies
            for i in range(maxAge +1): self.Weddings[i] = 0
            C = 0
            for i in range(math.ceil(D.minWedAge),maxAge+1):
                r = CoaleMcNeil(i) * math.exp(-self.growthrate/100 * (i-math.ceil(D.minWedAge)))
                C += r
            rtot = 0
            for i in range(math.ceil(D.minWedAge),maxAge+1):
                r = CoaleMcNeil(i)/C * math.exp(-self.growthrate/100 * (i-math.ceil(D.minWedAge)))
                rr = r * self.WeddingsTotal
                if rr > self.Bachelors[i]: rr = self.Bachelors[i]
                rtot += rr
                self.Weddings[i] = rr
            for i in range(math.ceil(D.minWedAge)): self.Households[i] = 0
            for i in range(math.ceil(D.minWedAge),maxAge+1): self.Households[i] += self.Weddings[i]
        self.HouseholdsTotal = self.CalculateTotal(self.Households)
        self.CalculateBachelors()
    def CalculateU14(self):
        r = 0
        for i in range(14): r += self.Pt[i]
        self.U14t = r/self.PtotalDec * 100
    def SimulationStart(self):
        self.t = D.tBegin
        self.BuildPopulationJanuaryStartYear()
        self.CalculateDeaths()
        self.CalculatePositions()
    def SimulationNextYear(self):
        if abs(self.PtotalJan) < maxNumber:
            self.t += 1
            PoldJan = self.PtotalJan
            self.BuildPopulationJanuary()
            self.CalculateDeaths()
            self.CalculateWeddings()
            self.CalculatePositions()
            self.HouseholdsTotal = self.CalculateTotal(self.Households)
    def Simulation(self):
        if D.listbox1.No == 0:
            graphPop = TGraph(D,380,250,D.tBegin,D.tBegin + D.duration,0,PopMax)
        elif D.listbox1.No == 1:
            graphU14 = TGraph(D,380,250,D.tBegin,D.tBegin + D.duration,0,100)
        elif D.listbox1.No == 2:
            graphHsize = TGraph(D,380,250,D.tBegin,D.tBegin + D.duration,0,10)
        D.memo1.clear()
        s = 'year\tPop\tU14\tHouses\tHsize'
        D.memo1.append(s)
        self.SimulationStart()
        for i in range(1,D.duration+1):
            self.SimulationNextYear()
            self.CalculateU14()
            s = str(self.t)+ '\t' + str(round(self.PtotalJan,2)) + '\t' + str(round(self.U14t,1)) 
            s += '\t' + str(round(self.HouseholdsTotal,2)) +'\t' + str(round(self.Householdsize,2))
            D.memo1.append(s)
            if D.listbox1.No == 0:
                graphPop.point(self.t,self.PtotalJan,pointsize,CLblack)
            elif D.listbox1.No == 1:
                graphU14.point(self.t,self.U14t,pointsize,CLblack)
            elif D.listbox1.No ==2:
                graphHsize.point(self.t,self.Householdsize,pointsize,CLblack)

      
                  


#PopulationInputDialog defines the form that enables the user to choose the values of parameters and variables, and to view the output of the simulation.

class PopulationInputDialog(Tk):
    def SelectListbox1(self,event):
        n = self.listbox1.SelectedIndex()
        if n > unknown: self.GraphNumber = n
        print(self.GraphNumber)
    def __init__(self):
        super().__init__()
        self.geometry('1200x800')
        self.title('Panel')
        self.beta = 0.064
        self.theta = -6.3
        self.ohmega = 119.3 * self.beta - 1.01 * self.theta - 14.5
        if self.ohmega < 2.7: self.ohmega = 2.7
        self.BpY = 0.33
        self.minWedAge = 15.5
        self.WeddingMean = 24
        self.WeddingK = (self.WeddingMean- self.minWedAge)/11.36
        self.tBegin = 1330
        self.duration = 50
        self.Pbegin = 6
        self.HouseholdsizeBegin = 5.7
        self.label1 = TLabel(self,10,10,'Two-parameter Mortality model')
        self.edit1 = TEdit(self,10,50,40,'beta :',str(self.beta))
        self.edit2 = TEdit(self,10,50,70,'theta :',str(self.theta))
        self.label3 = TLabel(self,10,250,'Marital Fertility model')
        self.edit5 = TEdit(self,10,255,280,'Births per Married Women per Year :', str(self.BpY))
        self.label4 = TLabel(self,10,340,'Nuptiality model')
        self.edit6 = TEdit(self,10,270,370,'Mean Age at first Wedding for Women :', str(self.WeddingMean))
        self.label5 = TLabel(self,10,430,'Start Variables')
        self.edit7 = TEdit(self,10,155,460,'Household Size begin :',str(self.HouseholdsizeBegin))
        self.spin1 = TSpin(self,10,155,490,'Begin Year :', self.tBegin,1000,2000)
        self.spin2 = TSpin(self,10,155,520,'duration :', self.duration,0,1000)
        self.edit8 = TEdit(self,10,155,550,'P begin :',str(self.Pbegin))
        self.memo1 = TMemo(self,520,10,590,20)
        self.listbox1 = TListbox(self,380,80,395,85,'Choose Graph:')
        self.listbox1.insert(0,'Population','Under14','Household size')
        self.button1 = Button(self,font = Sfont, width=11, text='Simulation', command = self.Button1Click)
        self.button1.place(x= 10,y=730)
    def InitiateVar(self):
        InputError = False
        self.title('input')
        try:
            self.beta = float(self.edit1.text())
            self.theta = float(self.edit2.text())
            self.BpY = float(self.edit5.text())
            self.WeddingMean = float(self.edit6.text())
            self.HouseholdsizeBegin = float(self.edit7.text())
            self.tBegin = int(self.spin1.text())
            self.duration = int(self.spin2.text())
            self.Pbegin = float(self.edit8.text())
        except:
            InputError = True
            self.title('Check your input!')
        return InputError
    def Button1Click(self):
        if self.InitiateVar() == False:
            Pop = TPopulation()
            Pop.InitiateVariables(self)
            Pop.Simulation()
            self.listbox1.setEnabled(True)


D = PopulationInputDialog()
D.mainloop()
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