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General Procedure

In the following, we describe the correction procedure applied to each trial prior to analysis.
Each trial was considered separately, and the goal of the procedure was to move each fixation
to a new position. More formally, each trial was composed of fixations f; = (z;,v;), i =
1...n, given by a horizontal coordinate z; (lower values of 2 appear on the left of the screen;
higher values appear on the right) and a vertical coordinate y; (lower values of y appear at
the top of the screen; higher values appear at the bottom). We denote by F = {f1,..., fa}
the set of all fixations performed in a given trial. Our goal is therefore to define a mapping
function M : R? — R? such that M(f) is a “corrected” fixation, i.e., the value output
by M(f) is a new fixation, with coordinates z and y assigned to a new position that is
assumed to be closer to the real position at which the participant was actually looking
when the fixation was recorded.

Each critical trial was presented in two text lines: the first one containing the pream-
ble and the critical segment; the latter containing two regions of interest and the wrap up
segment. The correction procedure involved fitting a regression model, yielding two regres-
sion lines. To avoid confusion, in the discussion below, we use the wording text line to refer
to the lines of text in which the sentence is displayed on the screen; and regressed/regression
line to refer to the output of a linear model (see below), described by a slope and an inter-
cept.

Surrounding each word we also defined an interest area so that any fixation inside that
interest area was considered to be associated with that word. Figure 1 shows an example
trial, along with the interest areas associated with each word. To simplify the description
of the algorithm, we also define a number of variables in Table 1, which are also depicted
in Figure 1. Basically, these variables indicate the x position of the first letter, and the y
coordinates of the text lines. In addition, before applying any correction, we discard all
fixations that are too far away from the text (i.e., whose y coordinate is higher than y,).

Since all trials were presented in two text lines, and assuming that participants were
really reading the sentences, a typical trial is expected to be composed of fixations that
mimic those text lines, even if they are not positioned exactly along them. In an ideal
scenario in which participants were able to look directly at each text letter as they were
reading it, we would expect the fixations to coincide perfectly with the text, forming two
horizontal lines with slope 0 and intercepts y;; and y;9, respectively (see Table 1). Following
these assumptions, in our correction procedure we fit two regression lines simultaneously,



Table 1
Variables used in the correction procedure. The y wvariables represent a coordinate of the

[ ] [ I |r the only,r variable represents a coordinale of the horizonlal axis
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Variable Description
Furl Y1 The y coordinate where the words appear in the first text line
Y2 The y coordinate where the words appear in the second text line

Fixations with y value higher than y are considered outliers and discarded prior to correction.
We arbitrarily set y, = 450, as this was already quite far from the text lines (see Figure 1).

Tl The x coordinate at the center of the first interest area

Figure 1. The position of the variables defined in Table 1. The trial is the same as that of
Figure 2.

denoted by the equations y,;1 = a,.1x + b1 and y,2 = a,9x + b, with parameters a,; and
b1 corresponding to the slope and intercept of the first regression line; and parameters a,o
and b2 corresponding to the slope and intercept of the second regression line, respectively.
To find the values of these parameters, we associate each [ixation with one of the two
lines (yr1 or yr2). For ease of notation, we define the two subsets of F, Ry = {f|[ €
F, [ is associated with y1 } and Re = {f|f € F, [ is associated with y,2}, so that R{URy =
F (recall that F is the set of all fixations in a given trial). We then calculate the vertical
distance of each fixation to its associated line as
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, and dyo 5 = |arox + b2 — y|. Finally, we minimize the

L= Y Ly,
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where dr1,5 = |ar1z + b1 — y
total loss L,

using the Gradient Descent method, in order to arrive at the final values of a,1, by,
a0 and byo.

Having found the regressed lines y,; and y,9, we are now able to calculate how different
they are [rom the ideal lines discussed above. That is, we should expect both regression
lines to have a slope of 0, the first regression line to have an intercept of w1, and the
second regression line to have an intercept of 5. Thus, for each fixation [ we can measure
the vertical deviation of its ideal position by calculating the offset Ay = yyp — yer il it



Figure 2. A participant’s fixations on the trial of Figure 2 as they were originally collected.
Note that, while fixation 46 clearly belongs to costs, this kind of decision is not as clear for
fixation 43.

is associated with regression line #.1, or by calculating the offset. Ayo = yp9 — yro if it is
associated with the regression line y,;. Finally, we define the M (f) function in the following
way:

(z,y +Ay), if f€ R

M(J) = {(ﬂ?, y+ Ayr2), if [ € Ry

Associating a fixation [ to a regression line

Most of the time, we associate the fixation [ to whichever line it is closest vertically to. In
other words, we calculate the distances d,., r and d,., r, and define that f € Ry ifd, r <d,, f,
and [ € Rs otherwise. Importantly, we make always sure that RN Rs = &. The description
of the gradient descent algorithm below will assume that these are the only rules we use.

However, we additionally have a special rule for fixations positioned far towards the
right of the screen. Consider, for example, fixation 46 (circled in dashed lines) of in Figure
2. When considered solely its horizontal coordinate (its x position), even if the regression
line y,9 were closer than 1, it would not make sense to assign it to Rs, since there is no
text in that region of the screen. While this is clear for fixation 46, this decision is not as

easy for fixation 43, which could belong to both R; and Rs.

To deal with these special cases, we define two variables 2125t 4 and 7135t ™A indicating

the z coordinate of the right edge of the last interest area of the first and the second text
line, respectively. Then, for any fixation [ = (x,y), we check if it makes sense to assign it
to the other regression line. In particular, we do:

if fe Ry and = > :;-:}‘fit IA 4 + and not(z > T%é“’t IA 4 7) then

Ri< R\ [ > Remove [ from R;

Ro «+ RoU f > Add f to Rs
else if f € Ry and = > /3" + 7 and not(z > z}3*' A + 7) then

Re < R2 \ [ > Remove [ from Ro

R+~ RyUJ > Add f to By
end if

The variable 7 is used as a tolerance to deal with ‘grey zone’ cases such as that of
fixation 43 in Figure 2.



Figure 3. The trial of Figure 2 after correction.

The Gradient Descent algorithm

Let # = {a,1,b.1,0.2,b.2} be the set of parameters to be optimized. The goal of the loss
minimization procedure is to find values for the elements of # for which the loss is the lowest
possible. In other words, we look for:

L = Z Ly = argmin Z dr,p + Z dro 5
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As mentioned above, in this description, we assume that each fixation is associated
with whichever regression line is closest to it. This changes our loss to

arg min I = arg min Z min (dy1,7,dro,f) -
o 0  fer

We use Gradient Descent to calculate these parameters. The Gradient Descent al-
gorithm depends on the calculation of derivatives. Notice, however, that the distances
d,_j? ¢ = |arjz 4+ brj — yrj| are module functions, and therefore their derivative does not exist
in the entirety of their domain. To avoid this discontinuity, we square the distances:

L'=) min (d?_l,f, d?_glf) :
feF '

Hence, we seek to find:

arg min L' = arg min Z min (d?_l.f, (jfz,f) .
) 2] fEF )

In the discussion below, we denote by L'(u,v,w, z) the evaluation of the loss L' at
the point (u,v,w, ), i.e., the value of L' when a,; = u, b,y = v, a9 = w, by = z. In other
words,

L'(u,v,w,z) = Z min ((u:r:i +v—y)?, (we; + 2 — yi]z) i
fer

To find the values for the parameters in #, Gradient Descent starts by initializing the
parameters:

initial

initial initial initial
ar, Qg br, < by Ary 4 Qy, bry < by,



It then iteratively updates these values using the following two steps, which are re-
peated several times. First, it calculates the gradient VL' at the point (a;q,br1,ar2,br2):

aLr(arlu hrl; Ar2, br?) HL‘F(GTI; h?‘l? Ar2, i,3'1"2)

VL’(G'TI? brlu Ar2, b?‘?) = (

aarl 1 ahrl '
HL’(G'T].: br1 , Ar2, b‘rZ) aLf{arlz IlJi!"la ar2, h‘r2) )
8"11"2 ’ abrﬁ

Then, each of the parameters is updated by the rules

aLr(arlu brl; ar2, er) aLf(a?'l: IlJ1r'1; ar2, i':"1"2)

Qry < Gy + Aa b, < br) + M X

¢aﬂ-'-ﬂ"l ahrl
! a7l
(J.rg — Urrg + /\a aL ((1‘1'13;;1;"17'2?51"2) b‘l"g — b‘rg + )‘b X dL (a?']-)(:;);l; &3, I)TZ) (J-)

where A, and Ay are called the learning rate, and are hyperparameters of the model.
In our experiments, we used A\, = 10~ % and A\, = 10 5. We used no systematic procedure
to choose these values, but they were chosen so as to maintain the numerical stability of
the model. The numerical stability of the gradient VL' is dependent on the number of
terms the loss L' is composed of (see Equation 3 below). If the learning rate is too big, the
update steps performed in Equation 1 become bigger and bigger as the iterative process
develops, leading the gradients to diverge. In that case, the parameters found are likely not
a local minimum of the loss function. Conversely, if the gradient is too small, the update
steps of Equation 1 are also too small, it may take too many iterations to arrive at the
local minimum. The values chosen for A, and A, were found to produce (seemingly) stable
results but still arrive at a local minimum.

The two step iterative variable update process can be repeated until a certain halting
condition is achieved. In our experiments, we always repeated it for exactly 500000 itera-
tions. The whole process took around 2 minutes for each trial’, running in a machine with
a Core i7 CPU with a maximum clock of 2800MHz. Tho parameters almt”l bm‘t“‘l, ;‘Fjﬁ*‘l,
piitial were chosen by fitting a single linear regression? to the trial data and then using its
slope and intercept as a basis for the initialization. Concretely, let a and b he the slope and
intercept, respectively, output by the linear regression. Then:

altel = g — 0.05

a“?glt“l a -+ 0.05

T

b‘lrnlt ial —b—

bmltml b T 50

2

We now turn to the calculation of the gradient VL' as it was implemented in our
code. Notice that the derivative of a sum is the sum of derivatives:

du dv

Lo =2y
wr dr ' dr

dr

!This was calculated as the average over the first 40 trials in our dataset.
2We used R’s lm() function to fit this model.



This is valid for the value L', which is a sum of several terms, each of which corresponds
to one fixation. Therefore, to calculate the gradient VL' it is only necessary to calculate
the gradient of each of the terms (corresponding to each of the fixations) and sum them all.

Jonsider, for example, a trial in which the a participant made exactly three fixations [, [y
and f5 in a given trial. In that case, L' would be given by the sum of the losses associated
with each fixation,

!

(2 2 (2 2 (2 2
example — T (drl,fl? dr?,fl) + min (drl,f:Z'J drz,ﬂ) + min (drl,f3! dr?,f?i)

and therefore its gradient would be given by
VL ample = V min (dgl,flu d12~2,f1) + Vmin (d;%l,f% dEZ,fZ) + Vmin (dzl,ﬂ%u (jzz,fg) - (2)

where each term (i.e., each V min (d?_lff,d%. f)) is the gradient of that term with

T

respect to the four parameter variables. In other words, let {y = min (d’f,l, f,dfz, f) be the
term corresponding to the loss associated with the fixation f. Then

Vi = ((‘%; ¢_"')f,f Dy Oy )
day1 by Oagqe’ Obre

and
VL' = Y Viy, (3)
VfEF
Before proceeding with the value of these derivatives, note that the loss associated
with each fixation (see the example in Equation 2) will only depend on the (parameters of
the) regression line to which it is closest — i.e., they’ll either depend on a,; and by, or on
a0 and byo.
In addition, note that the min function does not change when the higher parameter
is changed:
min(z,z + k) = min(z,z + j), Vk,j€N

. o ot It .
This suggests that the derivatives ?;ELI and ?()F'% are going to be zero whenever the

S ot o :

rivallves = T are Ze ¢ viCe-versa.

derivatives zz& and gL are not zero, and vice-versa
T i

With this in mind, we can define the derivatives above. If f = (x,y) and
— i 2 2 i 22 2
Ly = min (drl,f, d,_z?f) = min ((aﬂ:.-: + b1 — y)°, (ar2z + b2 — y) ) ) (1)
then?

ol o l
8(1:]_ - Haﬂ (mln ((a'rlir + Il)“.r'l - ?})2? (argﬂ? + b-,-g o Jy)z)) -

FThe following derivatives were adapted from Wolfram Alpha (https://www.wolframalpha.com/). The
query used was derivatives min( (a*z! + yi - b)"2, (a*x2 + y2 - b )2 ), where a and b indicate the fixation
coordinates = and y in Equation 4, and =i, yI, 2 and y2 indicate the variables a,i, br1, a2 and b2,
respectively.



20(amz +bp —y) i (a2 + by — y)? < (arex + bro — y)?
0 otherwise

ol o ) .

(%i = T (mm ((arlm + b — ?})2: (aroz + bra — ?)")z)) =
2(ar1x + b1 —y) il (ap1® 4+ by — ?})2 < (apor + bro — 'y)?
0 otherwise

oty 0 : 2 2

Das ~ Das (mm ((arlJ, + br1 — y)°, (ar2x + b2 — y) )) =
2x(arox +bra —y) i (anz+ b —y)? > (arex + bro — y)?
0 otherwise

ol J ) .

abjz = 8!‘)7-2 (l]'.llﬂ (((1.,—]_.‘]",‘ + brl - ?})21 (G‘TQ:I: + hr? - 1)")2)) =

2(arax + bra — 1) if (ap12 4 bp — y)? > (apox + bra — y)?
0 otherwise

In our actual implementation, the conditions above (e.g., (a;12 + br1 —y)? > (ay27 +
bra — y)?), which depend solely on the distance of a fixation to the regression lines, and
instead used the sets R; and R9, which allow for a fixation to be assigned to the farther
regression line in some special cases.

When the correction procedure fails

The correction procedure described above, while effective in a majority of noisy trials, may
fail whenever the calibration error is not reducible to two straight lines. In these cases,
a more complicated curve may be needed, and fitting this curve may be diflicult given
the relatively few fixation points produced in each trial. Figure 4 shows an example of a
particularly bad trial that could not be corrected by our algorithm. Indeed, the corrected
result. was actually less usable than the original one, and goes in the opposite direction of
an ideal correction. Trials like these were discarded from the data prior to analysis.



(b)

Figure 4. An example of a particularly bad trial before correction (a) and after correction

(b), showing how corrrection may fail.






