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The update formulae for A and W, given in equations (11) and (12), are derived as follows.

First, consider minimizing the RFE loss function LRFE(Z,A,W) with respect to A, given

fixed Z and W. This is equivalent to minimizing the function fA(A) = ||X− ZA′||2. Taking into

account the constraint that Z satisfies equation (3), the normal equation for this minimization

problem is given by

∂fA(A)

∂A
= 2AZ′Z− 2X′Z = pOp+r (S1.1)

A =
1

n
X′Z. (S1.2)

Here, noting that A = [Λ,Ψ] with Ψ being a diagonal matrix, the update formula (11) follows

accordingly.

It is important to ensure that the components Λ and Ψ of A have full column rank, which

guarantees that rank(B#) = p+ r as assumed in the proof of Theorem 1 (see Supplementary

Material 2). This condition is satisfied if both F and U have full column rank, which is ensured

by the second condition in (3).

Next, consider minimizing LRFE(Z,A,W) with respect to W, holding Z and A fixed. This

is equivalent to minimizing fW(W) = ||Y − FW′||2. Solving the corresponding normal equation

yields

∂fW(W)

∂W
= 2WF′F− 2Y′F = pOp+r. (S1.3)

Assuming n−1F#F = Ir, we obtain the update formula (12).

Let {(Z(t),A(t),W(t))}∞t=1 denote the sequence of parameter estimates generated by the

proposed alternating minimization algorithm. At each iteration t, the update of each parameter

matrix is performed via a minimization of the objective function LRFE with respect to that

matrix, holding the others fixed. By construction, this yields a non-increasing sequence of

objective values:

LRFE(Z
(t+1),A(t+1),W(t+1)) ≤ LRFE(Z

(t),A(t),W(t)), ∀t ∈ N. (S1.4)



Moreover, the objective function is bounded below by zero:

LRFE(Z,A,W) ≥ 0, ∀Z,A,W. (S1.5)

It follows that LRFE(Z(t),A(t),W(t)) is a bounded monotonic sequence and hence convergent.

While the convergence of the parameter sequence (Z(t),A(t),W(t)) to a stationary point is

not guaranteed in general due to the potential non-convexity of the objective function, the

convergence of the function values is ensured under standard assumptions.
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Theorem 1 is proved as follows.

Proof. Considering the definitions of n× (p+ q) matrix X# and (p+ q)× (p+ r) matrix B#,

we have

rank(n−1/2X#B#) ≤ min(n, p+ q, p+ r). (S2.1)

Assuming that X is a full-column rank matrix and that the columns of Y are not dependent on

those of X, we have

rank(n−1/2X#B#) = min(p+ rank(Y), rank(B#)) (S2.2)

Therfore, when

rank(Y) ≥ r (S2.3)

and

rank(B#) = p+ r (S2.4)

the rank of n−1/2X#B# is equal to p+ r, and all p+ r singular values of the matrix are greater

than zero, while the r smallest singular values in (4) used in MDFA are equal to zero. All the

singular vectors in Ũ and Ṽ correspond to non-zero singular values and they are uniquely

determined, which causes Z obtained by (10) is uniquely determined.
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Theorem 2 is proved as follows.

Proof. Noting (9), we obtain

√
nŨ = X#B#Ṽ∆̃−1. (S3.1)

Substituting this into (10), we have

Z = X#B#Ṽ∆̃−1Ṽ′ (S3.2)

This equation means that the factor score matrix Z is obtained by right-multiplying the weighted

coefficient matrix B#Ṽ∆̃−1Ṽ′ to X# = [X,λ1/2Y], which completes the proof.
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In order to specify the nonsingular matrix T in RFE, several methods can be considered to

eliminate this indeterminacy and uniquely determine T, as listed below.

First, it is possible to use factor rotation methods to approximate Λ to a simple structure.

Approximating Λ to a simple structure can be achieved using algorithms for oblique rotation

widely used in standard FA, such as Promax rotation (Hendrickson & White, 1964) and Geomin

rotation (Yates, 1987).

Second, it is also feasible to approximate F to a simple structure. For example, using criteria

such as the Varimax criterion (Kaiser, 1958), which is maximized when FT has only one non-zero

element in each row, can yield results similar to CCFE, which aims for the clustering of common

factor scores.

Third, it is possible to approximate W to a simple structure. By considering oblique rotation

for W, T can be determined. As will be illustrated in later applications, W describes the

relationship between common factor scores and external criteria, and simplifying this matrix can

make it easier to understand the relationship between the two variables clearly.

Fourth, a method to find T that simplifies all parameter matrices simultaneously can be

considered. For this purpose, let S(•) be a function that evaluates the complexity of any matrix.

Then, T is specified as the one minimizing

l(T) = S(FT) + S(ΛT−1′) + S(WT−1′) (S4.1)

Geomin criterion and CLF criterion (Jennrich, 2006) can be considered as functions for complexity

evaluation. Similar methods have been proposed by Kiers (1998) and Yamashita (2024).
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The specification process of λ using Akaike Information Criterion (AIC, Akaike, 1974) is

detailed below.

As previously mentioned, RFE can be considered a penalized FA with penalties applied to F

and W. Previous studies on penalized FA (Choi et al., 2011; Hirose & Terada, 2022; Hirose &

Yamamoto, 2015) have adopted AIC to set the tuning parameters. Here, we consider following

this method and selecting the value of λ that minimizes the AIC among the candidate values.

Let Λ̂ and Ψ̂ denote the estimators of Λ and Ψ obtained by the RFE algorithm.

Furthermore, let T̂ represent the T obtained through rotation aimed at simplifying the structure

of Λ, utilizing the indeterminacy of rotation mentioned in the second section. Based on these, the

covariance structure of the parameter matrices estimated by RFE is given by

Σ̂(Λ̂, Ψ̂) = Λ̂Φ̂Λ̂′ + Ψ̂2 (S5.1)

where Φ̂ = T̂′T̂. Using (S5.1), the corresponding log-likelihood is obtained as

l̂(Λ̂, Ψ̂) = log |SXΣ̂(Λ̂, Ψ̂)−1|− trSXΣ̂(Λ̂, Ψ̂)−1 (S5.2)

where SX = n−1X′X is the sample covariance matrix of X. Based on these results, the AIC for

the parameter matrices obtained by RFE is given by

AIC(λ) = −2l̂(Λ̂, Ψ̂) + 2d (S5.3)

where d is the degrees of freedom of the FA model and is given by

d = p(r + 1)− r(r − 1)

2
. (S5.4)

The optimal λ can be selected as the one minimizing AIC(λ) among candidates of values for λ.

The above result provides an semi-automated approach for selecting the optimal λ, which is

beneficial for potential users of RFE. Given a set of candidate values for λ, such as

λ = 10−3.0, 10−2.5, · · · , 101.0, RFE is applied to the data matrix for each λ to compute the

corresponding AIC(λ) values. The optimal λ is determined as the one that minimizes AIC(λ).



Furthermore, the simulation results in the next section demonstrate that estimation accuracy

remains stable across different λ values. Notably, due to the L2 penalty used in RFE, the

estimation outcomes show limited sensitivity to small variations in λ. These findings indicate that

incorrect results are unlikely in most cases, even if λ is not precisely specified.

As Theorem 1 indicates, factor scores are uniquely determined when λ > 0. Therefore,

choosing a sufficiently small λ ensures identifiability of the factor scores, which is one of the main

objectives of the proposed method. To demonstrate that a small λ performs well—and that this

choice is consistent with selections made by an AIC/BIC-based semi-automatic procedure—we

conducted the following numerical simulation. The data generation process and experimental

design were identical to those described in the earlier Numerical Simulation section. For each

dataset X, we selected the optimal λ value using both AIC and BIC from among six candidate

values, defined as log(λ) = −3,−2, . . . , 2.

The selected λ values are summarized in Table S5.1. Both AIC and BIC selected λ = 0.01 as

optimal in nearly all cases, indicating that setting λ to a small value such as 0.01—even without a

tuning procedure—performs well across a wide range of scenarios.

Table S5.1.

Modes and standard deviations (s.d.) of the optimal λs selected by AIC and BIC.

θ AIC BIC

0.900 mode 0.010 0.010

s.d. 0.000 0.000

0.850 mode 0.010 0.010

s.d. 0.000 0.000

0.600 mode 0.010 0.010

s.d. 0.000 0.000
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The estimates for the parameter matrices in CFE can be obtained by repeating the steps to

minimize (16) for each parameter matrix under appropriate initial values until the decrease in the

objective function converges. For the parameter matrix A, we can obtain the A that minimizes

(16) as in RFE using (11). The optimal Z is obtained by using the singular value decomposition

of √nX#B# with Y and W replaced by MC and Ir in (9), respectively. However, regarding this

singular value decomposition, rank(MC) ≤ min(k, r) ensures that all singular values are larger

than zero and the factor scores are uniquely determined as long as k ≥ r + 1 holds. Next, let mij

denote the (i, j) element of M representing the membership of the i-th individual in cluster j.

The mij that minimizes (16) is obtained as

mij =






1 (j = argminl=1,··· ,k||f(i) − c(l)||2)

0 (otherwise)
. (S6.1)

Here, f(i) and c(l) represent the i-th row vector of F and the l-th row vector of C, respectively.

Finally, the C that minimizes (16) is obtained as:

C = (M′M)−1M′F. (S6.2)

The inverse of M′M is uniquely determined only when there are no empty clusters among the k

clusters. Moreover, equation (16) can be rewritten using the block diagonal matrix

R̃ = bdiag(R, Ip), which includes the orthogonal matrix R(r × r), as

LCFE(Z,A,M,C) = ||X− ZR̃R̃′A′||2 + λ||MCR− FR||2 = LCFE(ZR̃,AR̃,M,CR). (S6.3)

To determine R, an appropriate orthogonal rotation algorithm can be used for Λ, which can

simplify the structure of Λ.
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The whole results of the simulation study are shown in the tables below.

Table S7.1.

Medians and standard deviations (s.d.) of frequency of local minimum occurred in each condition.

log(λ) -3 -2 -1 0 1 2

θ

0.900 median 0.000 0.000 0.000 0.000 0.000 0.000

s.d. 0.184 0.076 0.098 0.089 0.000 0.000

0.850 median 0.000 0.000 0.000 0.000 0.000 0.000

s.d. 0.203 0.113 0.113 0.030 0.000 0.000

0.600 median 0.075 0.000 0.000 0.000 0.000 0.000

s.d. 0.213 0.160 0.162 0.000 0.000 0.000



Table S7.2.

Medians and standard deviations (s.d.) of RMSEAs of the estimated parameter matrices obtained by RFE and FA
in each condition.

log(λ) -3 -2 -1 0 1 2 FA

θ

A 0.900 median 0.021 0.014 0.012 0.014 0.015 0.015 0.030

s.d. 0.006 0.003 0.003 0.002 0.002 0.006 0.007

0.850 median 0.030 0.023 0.021 0.025 0.028 0.028 0.119

s.d. 0.006 0.005 0.003 0.003 0.003 0.003 0.031

0.600 median 0.040 0.032 0.029 0.035 0.038 0.039 0.040

s.d. 0.007 0.006 0.004 0.004 0.004 0.005 0.004

ψ2 0.900 median 0.075 0.038 0.031 0.038 0.044 0.045 0.036

s.d. 0.027 0.011 0.007 0.008 0.009 0.009 0.008

0.850 median 0.099 0.070 0.067 0.088 0.099 0.100 0.136

s.d. 0.026 0.016 0.013 0.012 0.013 0.013 0.029

0.600 median 0.126 0.098 0.098 0.127 0.134 0.135 0.044

s.d. 0.028 0.021 0.018 0.018 0.018 0.018 0.004

W 0.900 median 0.035 0.036 0.037 0.038 0.041 0.042

s.d. 0.006 0.007 0.007 0.007 0.008 0.010

0.850 median 0.043 0.041 0.043 0.055 0.070 0.071

s.d. 0.009 0.009 0.010 0.013 0.015 0.016

0.600 median 0.053 0.052 0.069 0.107 0.121 0.122

s.d. 0.013 0.014 0.018 0.024 0.031 0.032

F 0.900 median 0.024 0.019 0.019 0.019 0.021 0.021 0.045

s.d. 0.004 0.002 0.001 0.001 0.001 0.003 0.008

0.850 median 0.033 0.029 0.029 0.031 0.033 0.033 0.155

s.d. 0.004 0.002 0.002 0.002 0.002 0.002 0.032

0.600 median 0.041 0.037 0.038 0.042 0.044 0.044 0.052

s.d. 0.004 0.003 0.002 0.002 0.002 0.002 0.003

U 0.900 median 0.027 0.025 0.024 0.024 0.024 0.024

s.d. 0.002 0.002 0.002 0.002 0.002 0.002

0.850 median 0.035 0.033 0.033 0.033 0.033 0.033

s.d. 0.002 0.002 0.002 0.002 0.002 0.002

0.600 median 0.041 0.039 0.038 0.038 0.038 0.038

s.d. 0.002 0.002 0.002 0.002 0.002 0.002
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The estimated loading and uniqueness by CFE and CCFE in the second example are shown

below.

Table S8.1.

Factor loading matrices and uniquenesses (Uniq.) estimated by CFE and CCFE applied to the job impression dataset.
The loadings larger than 0.4 in absolute are bolded.

CFE CCFE

F1 F2 Uniq. F1 F2 Uniq.

Useful 0.842 0.125 0.199 0.874 0.129 0.213

Good 0.763 0.013 0.338 0.790 0.014 0.367

Firm 0.754 0.131 0.337 0.785 0.135 0.359

Quick 0.062 0.790 0.293 0.067 0.817 0.321

Noisy 0.068 0.898 0.108 0.069 0.938 0.106

Busy 0.404 0.670 0.310 0.420 0.694 0.336


