
Supplementary Material for:

A Continuous-Time Dynamic Factor Model for

Intensive Longitudinal Data Arising from Mobile

Health Studies
by

Madeline R. Abbott, Walter H. Dempsey, Inbal Nahum-Shani, Cho Y. Lam,
David W. Wetter, and Jeremy M. G. Taylor

Section A

A.1 Derivation of the analytic form of the conditional

covariance function of the OU process

Assume η(t) is a p-dimensional Ornstein-Uhlenbeck (OU) stochastic process with a marginal
mean of 0. From Vatiwutipong and Phewchean (2019), if we assume that the initial state
η(t0 = 0) is known, then the cross-covariance function of the OU process at times s and t is

Cov{η(s), η(t)|η(t0 = 0)} =

∫ min(s,t)

0

e−θ(s−u)σσ⊤e−θ⊤(t−u)du

where eA is the matrix exponential. Note that we can assume that t0 = 0 without loss
of generality because this stochastic process is stationary. Using the identity for matrices A,
B, and C that vec(ABC) = (C⊤ ⊗ A)vec(B), we can re-write the vectorized version of the
cross-covariance function as

vec{Cov{η(s), η(t)|η(t0)}} =

∫ min(s,t)

0

e−θ(t−u) ⊗ e−θ(s−u) du vec{σσ⊤}

We can also use the identity that eA ⊗ eB = eA⊕B, so

vec{Cov{η(s), η(t)|η(t0)}} =

∫ min(s,t)

0

e[−θ(t−u)]⊕[−θ(s−u)]du vec{σσ⊤} (1)

Next, we simplify Equation 1 by pulling all the u’s into a single term. For now, focus on
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the term in the exponential:

[−θ(t− u)]⊕ [−θ(s− u)]
(a)
= −θ(t− u)⊗ I + I ⊗ (−θ(s− u))

= −t(θ ⊗ I) + u(θ ⊗ I + I ⊗ θ)− s(I ⊗ θ)

= −(tθ ⊕ sθ) + u(θ ⊕ θ)

where equality (a) is by the definition of the Kronecker sum; A⊕B = A⊗ IB + IA ⊗A,
where IA and IB are identity matrices with dimensions of A and B, respectively. Now,
substituting this new term back into the exponential term in Equation 1, we get

e[−θ(t−u)]⊕[−θ(s−u)] = e−(tθ⊕sθ)+u(θ⊕θ) (2)

We can simplify this further using the identity eA+B = eAeB if A and B commute. Letting
A = (tθ)⊕ (sθ) and B = (θ ⊕ θ), we first show that these terms commute:

A ·B = [(tθ)⊕ (sθ)] · [θ ⊕ θ]

= [tθ ⊗ I + I ⊗ sθ] · [θ ⊗ I + I ⊗ θ]

=(tθ ⊗ I)(θ ⊗ I) + (tθ ⊗ I)(I ⊗ θ) + (I ⊗ sθ)(θ ⊗ I) + (I ⊗ sθ)(I ⊗ θ)

=(tθ ⊗ I)(θ ⊗ I) + (I ⊗ θ)(tθ ⊗ I) + (θ ⊗ I)(I ⊗ sθ) + (I ⊗ sθ)(I ⊗ θ)

=(θ ⊗ I) [(tθ ⊗ I) + (I ⊗ sθ)] + (I ⊗ θ) [(tθ ⊗ I) + (I ⊗ sθ)]

= [(θ ⊗ I) + (I ⊗ θ)] · [(tθ ⊗ I) + (I ⊗ sθ)]

= [(θ ⊕ θ)] · [(tθ ⊕ sθ)]

where line 4 uses the mixed-product property of the Kronecker product.
Referring back to Equation 2, we now have

e−(tθ⊕sθ)+u(θ⊕θ) = e−(tθ⊕sθ)eu(θ⊕θ)

We can substitute this term into Equation 1 to get

vec{Cov{η(s), η(t)|η(t0 = 0)}} =

∫ min(s,t)

0

e−(tθ⊕sθ)eu(θ⊕θ)du vec{σσ⊤}

=

∫ min(s,t)

0

eu(θ⊕θ)du e−(tθ⊕sθ)vec{σσ⊤}

Now that we have rewritten the conditional cross-covariance function in this form, the
only term that we need to integrate is eu(θ⊕θ). We find∫ min(s,t)

0

eu(θ⊕θ)du = (θ ⊕ θ)−1
[
emin(s,t)(θ⊕θ) − I

]
We now have an integral-free analytic form of the conditional cross-covariance function:

vec{Cov{η(s), η(t)|η(t0 = 0)}} = (θ ⊕ θ)−1
[
emin(s,t)(θ⊕θ) − I

]
e−(tθ⊕sθ)vec{σσ⊤}
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Note that if s = t, then the conditional cross-covariance function simplifies to the condi-
tional covariance function given in Vatiwutipong and Phewchean (2019).

A.2 Derivation of the analytic form of the marginal

covariance function of the OU process

The analytic form of the conditional covariance function, given in Section 3.3 of the main
paper, is based on the assumption that the initial state η(t0), with t0 = 0 is known. We
now derive the analytic form of the unconditional cross-covariance function that accounts for
the additional uncertainty of an unknown initial state. From Vatiwutipong and Phewchean
(2019), if η(t0), with t0 = 0, is known, then

E{η(t)|η(t0)} = e−θtη(t0)

Assuming that s ≤ t, from Lemma 1, we have

Cov{η(s), η(t)|η(t0)} = vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
If η(t0) is unknown and t0 = 0, then using the Law of Total Covariance we can calculate

Cov{η(s), η(t)} = E
{
Cov

(
η(s), η(t)|η(t0)

)}
+ Cov

{
E
(
η(s)|η(t0)

)
,E

(
η(t)|η(t0)

)}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ Cov

{
e−θsη(t0), e

−θtη(t0)
}

= vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsV ar

{
η(t0)

}
[e−θt]⊤

If we assume that η(t0) is drawn from the stationary distribution, then V ar(η(t0)) =
vec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
. Then, we have

Cov{η(s), η(t)} =vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

Now we simplify this function. Consider the terms involving θ in the first term of the
sum,

(θ ⊕ θ)−1
[
e(θ⊕θ)s − I

]
e−(θt⊕θs)

We can simplify this expression using the fact that eAeB = eBeA in our setting. This
property means that both

(θ ⊕ θ)−1
[
es(θ⊕θ) − I

]
e−(tθ⊕sθ) = e−(tθ⊕sθ)(θ ⊕ θ)−1

[
es(θ⊕θ) − I

]
(3)

and
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(θ ⊕ θ)−1
[
es(θ⊕θ) − I

]
e−(tθ⊕sθ) = (θ ⊕ θ)−1e−(tθ⊕sθ)

[
es(θ⊕θ) − I

]
(4)

Setting Equations 3 and 4 equal and cancelling the final term implies that

e−(tθ⊕sθ)(θ ⊕ θ)−1 = (θ ⊕ θ)−1e−(tθ⊕sθ)

We will use this proof of the commutative property later and now return to our expression
for the unconditional cross-covariance function, Cov{η(s), η(t)},

Cov{η(s), η(t)} =vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

(5)

Consider the second term in the sum,

e−θsvec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

By applying the identity vec(ABC) = (C⊤ ⊗ A)vec(B), we can rewrite the vectorized
form of the expression as

vec
{
e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

}
= e−θt ⊗ e−θsvec

{
vec−1{(θ ⊕ θ)−1vec{σσ⊤}

}
= e−θt ⊗ e−θs(θ ⊕ θ)−1vec{σσ⊤}
= e−(θt⊕θs)(θ ⊕ θ)−1vec{σσ⊤}

Reversing the vectorization operation and applying the commutative property, we then
get

e−θsvec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤ = vec−1

{
e−(θt⊕θs)(θ ⊕ θ)−1vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
Plugging the term above into the second term of Equation 5, the cross-covariance function

becomes

Cov{η(s), η(t)} = vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)se−(θt⊕θs) − e−(θt⊕θs)

]
vec{σσ⊤}

}
+ vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1e(θ⊕θ)se−(θt⊕θs)vec{σσ⊤} − (θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
+ vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)se−(θt⊕θs)

]
vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)s−(θt⊕θs)

]
vec{σσ⊤}

}
(6)

Equation 6 is the marginal cross-covariance function of the OU process when the initial
state at time t0 = 0 is unknown.
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A.3 Derivation of the precision matrix for the OU pro-

cess

We derive the sparse precision matrix for the multivariate OU process assuming an unknown
initial state. This sparsity results from the Markov property. We use Ω to represent the
precision matrix and Ψ for the covariance matrix.

First, we start in the simplest setting in which we assume a stationary univariate
OU process with evenly spaced measurement occasions. The spacing of the measurement
times is given by |tj − tj−1| =: d > 0. The covariance matrix takes the form,

Ψ =
σ2

2θ


1 e−θd . . . e−θ(n−2)·d e−θ(n−1)·d

e−θd 1 . . . e−θ(n−3)·d e−θ(n−2)·d

...
...

. . .
...

...
e−θ(n−2)·d e−θ(n−3)·d . . . 1 e−θd

e−θ(n−1)·d e−θ(n−2)·d . . . e−θd 1


We know that the univariate OU process is equal to the AR(1) process when mea-

surements are evenly spaced, so the OU process precision matrix (assuming evenly spaced
measurements) can be expressed as

Ω =
2θ

σ2

1

1− e−2θd


1 −e−θd . . . 0 0

−e−θd 1 + e−2θd . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + e2θd −e−θd

0 0 . . . −e−θd 1


Now, consider a more general setting in which measurements do not necessarily occur at

evenly spaced intervals. Assume that t1 < t2 < · · · < tn−1 < tn. Then, the covariance matrix
takes the form

Ψ =
σ2

2θ


1 e−θ|t2−t1| . . . e−θ|tn−1−t1| e−θ|tn−t1|

e−θ|t2−t1| 1 . . . e−θ|tn−1−t2| e−θ|tn−t2|

...
...

. . .
...

...
e−θ|tn−1−t1| e−θ|tn−1−t2| . . . 1 e−θ|tn−1−tn|

e−θ|tn−t1| e−θ|tn−t2| . . . e−θ|tn−tn−1| 1


and the precision matrix can be expressed as

Ω =
2θ

σ2



1
1−e−2θ|t2−t1| − e−θ|t2−t1|

1−e−2θ|t2−t1| . . . 0 0

− e−θ|t2−t1|

1−e−2θ|t2−t1|
1−e−2θ|t3−t1|

(1−e−2θ|t2−t1|)(1−e−2θ|t3−t2|)
. . . 0 0

...
...

. . .
...

...

0 0 . . . 1−e−2θ|tn−tn−2|

(1−e−2θ|t2−t1|)(1−e−2θ|t3−t2|)
− e−2θ|tn−tn−1|

1−e−2θ|tn−tn−1|

0 0 . . . − e−2θ|tn−tn−1

1−e−2θ|tn−tn−1|
1

1−e−2θ|tn−tn−1|


Next, we move from the one-dimensional case to the two-dimensional case. We start by
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re-arranging the terms in the definition of the cross-covariance function for the bivariate OU
process.

Cov{η(s), η(t)} = vec−1
{
(θ ⊕ θ)−1es∧t(θ⊕θ)−(θt)⊕(θs)vec(σσ⊤)

}
(a)
= vec−1

{
es∧t(θ⊕θ)e−(θt)⊕(θs)(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
es∧tθ ⊗ es∧tθ

][
e−θt ⊗ e−θs

]
(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
es∧tθe−θt

]
⊗

[
es∧tθe−θs

]
(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
e−θ(t−s∧t)]⊗ [

e−θ(s−s∧t)](θ ⊕ θ)−1vec(σσ⊤)
}

(b)
= vec−1

{[
e−θ(t−s∧t)]⊗ I(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{
(θ ⊕ θ)−1vec(σσ⊤)

}
e−θ⊤|t−s|

:= V · e−θ⊤|t−s|

where equality (a) is because these terms commute and equality (b) holds when we
assume that min(s, t) = s. We can make this assumption without loss of generality because
the matrices are symmetric. When min(s, t) = t, Cov{η(s), η(t)} = e−θ|t−s|V ⊤ = e−θ|t−s|V .
Then, the covariance matrix is given by

Ψ =


V V e−θ⊤|t2−t1| . . . V e−θ⊤|tn−1−t1| V e−θ⊤|tn−t1|

e−θ|t2−t1|V V . . . V e−θ⊤|tn−1−t2| V e−θ⊤|tn−t2|

...
...

. . .
...

...

e−θ|tn−1−t1|V e−θ|tn−1−t2|V . . . V V e−θ⊤|tn−1−tn|

e−θ|tn−t1|V e−θ|tn−t2|V . . . e−θ|tn−tn−1|V V


By the definition of the OU process, we know that the precision matrix, Ω = Ψ−1,

is block tri-diagonal. We start by solving for two blocks, Ω11 and Ω12. We assume that
Ω11 = A−1 and Ω12 = A−1B, based on the form of the precision matrix in the case of
the univariate OU process. Based on patterns seen when multiplying the AR(1) precision
and covariance matrices, we assume that, for the OU process, the first row of blocks in
the precision matrix, [Ω11,Ω12, 0, . . . , 0] times the second column of blocks in the covariance
matrix, [V e−θ⊤(t2−t1), V, . . . ]⊤, is equal to 0. So,

0 = Ω11V e−θ⊤(t2−t1) + Ω12V

=⇒ 0 = A−1V e−θ⊤(t2−t1) + A−1BV

=⇒ 0 = V e−θ⊤(t2−t1) +BV

=⇒ BV = −V e−θ⊤(t2−t1)

=⇒ B = −V e−θ⊤(t2−t1)V −1

By similar logic, the first row of blocks in the precision matrix times the first column of

6



blocks in the covariance matrix is equal to the identity matrix. So,

I = Ω11V + Ω12e
−θ(t2−t1)V

=⇒ I = A−1V + A−1Be−θ(t2−t1)V

=⇒ A = V +Be−θ(t2−t1)V

We know that B = −V e−θ⊤(t2−t1)V −1 so

A = V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

=⇒ A−1 = [V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V ]−1

Now we have

Ω11 =
[
V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

]−1

Ω12 = −
[
V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

]−1
V e−θ⊤(t2−t1)V −1

Continuing with this logic, we can check the first row of blocks in Ω against all other
columns of Ψ and see that

0 = Ω11V e−θ⊤(tk−t1) + Ω12V e−θ⊤(tk−t2)

= A−1V e−θ⊤(tk−t1) + A−1BV e−θ⊤(tk−t2)

= V e−θ⊤(tk−t1) +BV e−θ⊤(tk−t2)

= V e−θ⊤(tk−t1) − V e−θ⊤(t2−t1)V −1V e−θ⊤(tk−t2)

= V e−θ⊤(tk−t1) − V e−θ⊤(t2−t1)e−θ⊤(tk−t2)

= V e−θ⊤(tk−t1) − V e−θ⊤(tk−t1)

= 0

Now we move to the second row of blocks in Ω. Because Ω = Ω⊤, we also know that
Ω21 = Ω⊤

12. This symmetry means that we only need to derive Ω22 and Ω23. Based on
previous results, we have

Ω23 = −
[
V − V e−θ⊤(t3−t2)V −1e−θ(t3−t2)V

]−1

V e−θ⊤(t3−t2)V −1

Then we find the form of Ω22 by once again using the same logic to say that the second
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row of blocks in Ω times the second column of blocks in Ψ will be equal to an identity matrix:

I = Ω21V e−θ⊤(t2−t1) + Ω22V + Ω23e
−θ(t3−t2)V

⇒ V −1 = Ω21V e−θ⊤(t2−t1)V −1 + Ω22 + Ω23e
−θ(t3−t2)

⇒ Ω22 = V −1 + V −1e−θ(t2−t1)V
[
V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

]−1⊤

V e−θ⊤(t2−t1)V −1

+
[
V − V e−θ⊤(t3−t2)V −1e−θ(t3−t2)V

]−1

V e−θ⊤(t3−t2)V −1e−θ(t3−t2)

The final terms are then given by:

I = Ωn,n−1V e−θ⊤(tn−tn−1) + ΩnnV

⇒ I = −V −1e−θ(tn−tn−1)V
[
V − V eθ

⊤(tn−tn−1)V −1e−θ(tn−tn−1)V
]−1

V e−θ⊤(tn−tn−1) + ΩnnV

⇒ Ωnn = V −1 + V −1e−θ(tn−tn−1)V
[
V − V e−θ⊤(tn−tn−1)V −1e−θ(tn−tn−1)V

]−1

V e−θ⊤(tn−tn−1)V −1

Thus, the precision matrix Ω is block tri-diagonal with the following entries (indexed by
j) for 1 < j < n:

V := vec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
Ω11 =

[
V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

]−1

Ωj,j+1 = Ω⊤
j+1,j = −

[
V − V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)V

]−1
V e−θ⊤(tj+1−tj)V −1

Ωjj = V −1 + V −1e−θ(tj−tj−1)V
[
V − V e−θ⊤(tj−tj−1)V −1e−θ(tj−tj−1)V

]−1
V e−θ⊤(tj−tj−1)V −1

+
[
V − V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)V

]−1
V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)

Ωnn = V −1 + V −1e−θ(tn−tn−1)V
[
V − V e−θ⊤(tn−tn−1)V −1e−θ(tn−tn−1)V

]−1
V e−θ⊤(tn−tn−1)V −1

A.4 Identifiability constraint: re-scaling the OU pro-

cess

Let (θ∗, σ∗) be a pair of OU process parameters satisfying the identifiability constraint that
the stationary variance of the OU process is equal to 1; that is, diag{Ψ(θ∗, σ∗)} = 1, where
Ψ is the covariance matrix of the OU process. We show that we can always find a pair of
(θ∗, σ∗) that defines a valid mean-reverting OU process with stationary variance of 1 that
has the same correlation structure as the original unconstrained OU process defined by (θ,
σ). As an example, consider the stochastic differential equation definition of the bivariate
OU process. For an arbitrary mean-reverting OU process, η(t),

d

[
η1(t)
η2(t)

]
= −

[
θ11 θ12
θ21 θ22

] [
η1(t)
η2(t)

]
dt+

[
σ11 0
0 σ22

]
d

[
W1(t)
W2(t)

]
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We could equivalently define this OU process η(t) as

d

[
η1(t)
η2(t)

]
= −

[
θ11 θ12
θ21 θ22

] [
c1 0
0 c2

] [
1/c1 0
0 1/c2

] [
η1(t)
η2(t)

]
dt+

[
σ11 0
0 σ22

]
d

[
W1(t)
W2(t)

]
= −

[
c1θ11 c2θ12
c1θ21 c2θ22

] [ 1
c1
η1(t)

1
c2
η2(t)

]
dt+

[
σ11 0
0 σ22

]
d

[
W1(t)
W2(t)

]
Let η∗(t) be a scaled version of η where[

η∗1(t)
η∗2(t)

]
=

[ 1
c1
η1(t)

1
c2
η2(t)

]
and [

θ∗11 θ∗12
θ∗21 θ∗22

]
=

[
c1θ11 c2θ12
c1θ21 c2θ22

]
and assume that η∗(t) has a stationary variance equal to 1. Then,

dη∗(t) = −
[
θ∗11 θ∗21
θ∗12 θ∗22

] [
η∗1(t)
η∗2(t)

]
dt+

[
σ∗
11 0
0 σ∗

22

]
d

[
W1(t)
W2(t)

]
= −

[
θ∗11 θ∗21
θ∗12 θ∗22

] [
c1 0
0 c2

] [
η1(t)
η2(t)

]
dt+

[
σ∗
11 0
0 σ∗

22

]
d

[
W1(t)
W2(t)

]
= −

[
c1θ

∗
11 c2θ

∗
21

c1θ
∗
12 c2θ

∗
22

] [
η1(t)
η2(t)

]
dt+

[
σ∗
11 0
0 σ∗

22

]
d

[
W1(t)
W2(t)

]
Looking back at the original OU process η(t),

dη(t) = d

[ 1
c1

0

0 1
c2

]
η∗(t)

= −
[ 1
c1

0

0 1
c2

] [
c1θ

∗
11 c2θ

∗
12

c1θ
∗
21 c2θ

∗
22

]
η(t)dt+

[ 1
c1
σ∗
11 0

0 1
c2
σ∗
22

]
dW (t)

= −
[ c1
c1
θ∗11

c2
c1
θ∗12

c1
c2
θ∗21

c2
c2
θ∗22

]
η(t)dt+

[ 1
c1
σ∗
11 0

0 1
c2
σ∗
22

]
dW (t)

Finally, we see that the parameters for η(t) can easily be re-scaled to satisfy our identi-
fiability assumption: [

θ11
c1
c2
θ12

c2
c1
θ21 θ22

]
=

[
θ∗11 θ∗12
θ∗21 θ∗22

]
and [

c1σ11 0
0 c2σ22

]
=

[
σ∗
11 0
0 σ∗

22

]
Thus, we have shown that for a mean-reverting bivariate OU process defined by θ and

σ with covariance matrix Ψ(θ, σ) and correlation matrix Ψ∗(θ, σ), we can re-scale this OU
process to have stationary variance equal to 1 by scaling θ12, θ21 and σ11, σ22 by a pair of
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positive scalar constants, (c1, c2). This proof can easily be extended to higher dimensional
OU processes.

A.5 Derivation of the analytic gradients for the mea-

surement submodel

We have previously defined the log-likelihood for a single subject i as

ℓi = −1

2
log|Σ∗

i |+ Y ⊤
i Σ∗−1

i Yi (7)

where we ignore the constant terms and

Σ∗
i = (Ini

⊗ Λ)Ψi(Ini
⊗ Λ)⊤ + Jni

⊗ Σu + Ini
⊗ Σϵ (8)

Gradient w.r.t. the loadings: We first take the derivative of ℓi with respect to the
elements of the loadings matrix Λ, λk, k = 1, ...., p × K. The first element of the loadings
matrix is parameterized on the log scale in order to restrict this element to positive values
for identifiability purposes and so the gradient of this element looks slightly different. For
k > 1, we have

∂ℓi
∂λk

= −1

2

[
tr
{
Σ∗−1

i

∂Σ∗
i

∂λk

}
− Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂λk

Σ∗−1
i Yi

]
(9)

where
∂Σ∗

i

∂λk

= (Ini
⊗ Λ)Ψi(Ini

⊗ Jk⊤) + (Ini
⊗ Jk)Ψi(Ini

⊗ Λ⊤) (10)

We use Jk as an indicator matrix that has the same dimension as Λ but contains all zeros
except for a single 1 indicating the location of element λk. For k = 1, we apply the chain
rule and have

∂ℓi
∂log(λk)

=
∂ℓi
∂λk

[
∂log(λk)

∂λk

]−1

=
∂ℓi
∂λk

λk (11)

Gradient w.r.t. the random effects: Next, we take the gradient of ℓi with respect to
the elements of Ru where Ru comes from the Cholesky decomposition of the random effects
covariance matrix, Σu = R⊤

uRu. For p, q = 1, ..., K and p ̸= q,

∂Σ∗
i

∂rpq
= Jni

⊗ (Jk⊤Ru +R⊤
u J

k) (12)

∂ℓi
∂rpq

= −1

2

[
tr

{
Σ∗−1

i

∂Σ∗
i

∂rpq

}
+ Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂rpq
Σ∗−1

i Yi

]
(13)

where again Jk is an indicator matrix of the same dimensions as Σu.
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For p, q = 1, ..., K and p = q,

∂ℓi
∂log(rupp)

=
∂ℓi
∂rupp

[
∂log(rupp)

∂rupp

]−1

=
∂ℓi
∂rupp

rupp
(14)

Note that if we assume only random intercepts (i.e., a diagonal covariance matrix) then
we can avoid the Cholesky decomposition by estimating σu on the log scale. In this case,
the gradient simplifies to the form given below for the measurement error.

Gradient w.r.t. the measurement error: Finally, we take the gradient of ℓi with
respect to the elements of the measurement error covariance matrix, Σϵ. For k = 1, ..., K,
we have

∂Σ∗
i

∂σϵk

= Ini
⊗ 2σϵkJ

k (15)

∂ℓi
∂σϵk

= −1

2

[
tr

{
Σ∗−1

i

∂Σ∗
i

∂σϵk

}
− Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂σϵk

Σ∗−1
i Yi

]
(16)

∂ℓi
∂log(σϵk)

=
∂ℓi
∂σϵk

[
log(σϵk)

∂σϵk

]−1

=
∂ℓi
∂σϵk

σϵk
(17)

where Jk is an indicator matrix of the same dimensions as Σϵ.

A.6 Parameterization of the log-likelihood for stan-

dard error estimation

To make our OUF model identifiable, we impose a constraint on the scale of the OU process
by forcing the stationary variance equal to 1 via a set of p positive scalar constants. These
constants are functions of OU parameters θ and σ.

When the log-likelihood is allowed to vary as a function all parameters, rather than just
a single block of parameters as in our block coordinate descent algorithm, our model is no
longer identifiable. To estimate standard errors, we take advantage of the fact that under
the identifiability constraint, σ can be written as a function of θ, as shown here:

Recall that the stationary variance of the OU process is V := vec−1
{
(θ⊕θ)−1vec{σσ⊤}

}
.

Assuming a bivariate OU process, under the identifiability constraint, V takes the form[
1 ρ
ρ 1

]
where the off-diagonal element ρ is the correlation. Then,

[
1 ρ
ρ 1

]
= vec−1

{
(θ ⊕ θ)−1vec{σσ−1}

}
=⇒


1
ρ
ρ
1

 = (θ ⊕ θ)−1


σ2
11

0
0
σ2
22

 .
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Letting

(θ ⊕ θ)−1 =


x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

 ,

where each element xij is some function of the elements of θ, we can solve for σ in the (θ,
σ) pair that satisfies the identifiability constraint via

1 = x11σ
2
11 + x14σ

2
22

1 = x41σ
2
11 + x44σ

2
22

By constraining σ to be a function of θ, we take an alternative approach to identification
and no longer require use of the scaling constants here.

A.7 Choice of true OU process in simulation study

In the simulation study described in the main text (Section 4.1-4.2), we generate data in
three different settings in which the true OU process has varying degrees of auto-correlation.
These parameters are used in both the ILD and non-ILD simulations. We present the true
OU process parameters here:

Setting 1:

θ =

[
1 0.6
4 5

]
and σ =

[
1 0
0 2

]
Setting 2:

θ =

[
1.0 0.4
1.8 3.0

]
and σ =

[
1.25 0
0 2.00

]
Setting 3:

θ =

[
1 0.5
2 5

]
and σ =

[
2 0
0 3

]

In the simulation study assessing use of AIC and BIC to select the correct number of
latent factors in a model (described in the main text in Section 4.3-4.4), the true parameters
were set to the values listed below. The true values used for Σu and Σϵ were the same as in
the original simulation study (see Section 4.1 in the main text).
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One factor model:

Λ =


1.2
1.8
−0.4
2

 , θ = 0.8, σ = 1

Two factor model with low signal:

Λ =


1.2 0
1.8 0
0 −0.4
0 2

 , θ =

[
2 0.5
0.4 4

]
, σ =

[
2 0
0 1

]

Two factor model with high signal:

Λ =


1.2 0
1.8 0
0 −0.4
0 2

 , θ =

[
1 1.5
2 5

]
, σ =

[
2 0
0 3

]

Three factor model with low signal:

Λ =


1.2 0 0
1.8 0 0
0 −0.4 0
0 0 2

 , θ =

 2 0.2 0.4
0.8 1.1 0.5
0.7 0.5 1.2

 , σ =

1.2 0 0
0 0.8 0
0 0 0.4


Three factor model with high signal:

Λ =


1.2 0 0
1.8 0 0
0 −0.4 0
0 0 2

 , θ =

 1 0.4 0.6
1.8 3 0.9
0.9 1 1.2

 , σ =

1.2 0 0
0 0.8 0
0 0 0.4


When fitting the models in our simulation studies, we assume that the loadings matrices

take the same structure as above (i.e., the locations of the structural zeros are specified as
above for all fitted one-, two-, and three-factor models). In our model selection simulation
study, this means that if the fitted model and data-generating model have the same number
of factors, the location of the structural zeros in the fitted model will match the true model.
If the fitted model and the data-generating model differ in the number of latent factors, then
the loadings matrix of the fitted model will not have structural zeros in the correct locations.
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A.8 Results from simulation study with ILD

Simulation study: bias and variance In Supplementary Tables 1, 2, and 3, we sum-
marize the results of our simulation study by reporting average relative bias (reported as
(estimate - truth) / truth x 100), root mean squared error (RMSE), the empirical standard
deviation of the point estimates across simulation replicates, the average standard error, and
the coverage rate of 95% confidence intervals.

The estimation algorithm failed to converge due to numerical issues when applied to a
few of the simulated datasets generated in the simulation study described in Section 4.1-4.2.
The failures were caused by a singular V matrix at the start of the first block update of
the structural submodel parameters. Slightly altering the values at which the OU process
parameters were initialized resolved this issue. Point estimates were ultimately calculate
for all 1000 simulated datasets in each setting. In Setting 3, an invalid variance for the
measurement submodel parameter σ2

ϵ4
was estimated from one dataset. In this instance,

the variance estimated for this parameter was negative. We attribute this issue to the
numerical approximation used to calculate the Hessian when applied to these this dataset
of size N = 200. We anticipate that a larger dataset would improve the approximation
of the numerical Hessian but chose to simulate a dataset of this size in order to assess
model performance in a realistic setting similar to that encountered in the motivating data
application. In practical application, if a negative variance were to be estimated, it could be
rounded to 0. In the results presented in the main text, we ignore the variance estimate for
this one σ2

ϵ4
.

Simulation study: model selection In our simulation studies, we aimed to assess sim-
ulated datasets with sample sizes similar to that of our motivating dataset. For datasets of
fixed size (N = 200 subjects), we found that convergence speeds decrease and estimation
becomes more difficult as the number of factors in the model increases. We found that point
estimates of the diagonal elements of θOU hit the lower bound of 1 × 10−4 less than 1% of
the time. To improve convergence, we slightly altered the set of default parameter values
considered during the initialization steps of the block-wise estimation algorithm for a subset
of datasets. However, when assessing AIC and BIC as model selection criteria (see Section
4.3-4.4), we very occasionally encountered numerical issues and so failed to calculate param-
eter estimates for a subset of models applied to the simulated datasets. The results reported
in the main paper correspond to a comparison of AIC and BIC across datasets for which the
algorithm used to fit all three models (the one-factor, two-factor, and three-factor models)
either converged or reached the maximum number of iterations prior to convergence. We
assessed whether or not including results in which the maximum number of iterations was
reached prior to convergence impacted our model selection results and found no substantial
changes. Supplementary Table 4 shows the equivalent version of Table 1 presented in the
main text if only results from datasets that had converged were shown.

In Supplementary Table 5, we summarize the number (out of 100) of datasets (in each
setting) for which the algorithm converged (using δ = 1 × 10−6) or reached the maximum
number of iterations prior to convergence. When this total number does not add up to
100, the remaining datasets correspond to situations in which the algorithm failed due to
numerical issues (e.g., current OU parameter estimates corresponded to a singular stationary
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Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.16 -0.34 0.03 0.032 0.031 94.6
λ2 1.74 -0.37 0.04 0.044 0.042 94.2
λ3 -0.39 -0.29 0.02 0.017 0.017 94.9
λ4 1.97 -0.30 0.05 0.053 0.051 93.8

σ2
u1

1.10 -0.41 0.13 0.127 0.130 94.2
σ2
u2

1.30 -0.59 0.17 0.175 0.173 94.2
σ2
u3

1.40 -1.27 0.14 0.143 0.143 93.4
σ2
u4

0.90 -0.74 0.14 0.143 0.142 94.1

σ2
e1 0.60 -0.57 0.02 0.022 0.022 95.0

σ2
e2 0.50 -0.40 0.04 0.037 0.035 93.5

σ2
e3 0.40 -0.21 0.01 0.012 0.012 94.4

σ2
e4 0.70 -1.05 0.12 0.122 0.123 94.8

θOU11 1.00 -0.50 0.19 0.187 0.182 95.1
θOU21

3.91 2.14 0.60 0.596 0.612 95.9
θOU12

0.61 -1.25 0.21 0.212 0.208 95.3
θOU22

5.00 2.10 0.75 0.741 0.765 96.4

σOU11 1.04 -0.07 0.04
σOU22 2.03 0.66 0.16

Supplementary Table 1: ILD setting 1. Across the 1000 simulation replicates, we report the
average relative bias ((estimate - truth) / truth), root mean squared error (RMSE), empirical
standard deviation (SD) of the point estimates, the average estimated standard error (SE),
and the coverage rate of the 95% confidence intervals. Note that average relative bias is
scaled up by a factor of 100 and that coverage rate is reported as a percent.
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Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.20 -0.35 0.03 0.029 0.029 94.4
λ2 1.80 -0.36 0.04 0.040 0.039 94.2
λ3 -0.40 -0.21 0.02 0.017 0.017 95.4
λ4 2.00 -0.35 0.06 0.055 0.054 93.7

σ2
u1

1.10 -0.42 0.13 0.128 0.130 94.3
σ2
u2

1.30 -0.59 0.18 0.175 0.174 94.6
σ2
u3

1.40 -1.28 0.14 0.143 0.143 93.4
σ2
u4

0.90 -0.78 0.14 0.137 0.137 94.2

σ2
e1 0.60 -0.58 0.03 0.026 0.026 95.7

σ2
e2 0.50 -0.44 0.05 0.049 0.046 93.8

σ2
e3 0.40 -0.27 0.01 0.012 0.013 94.9

σ2
e4 0.70 -0.63 0.16 0.160 0.162 95.3

θOU11 1.00 0.14 0.10 0.103 0.100 93.8
θOU21

1.80 1.15 0.22 0.217 0.215 95.0
θOU12

0.40 -0.44 0.12 0.120 0.117 94.6
θOU22

3.00 1.00 0.33 0.328 0.328 95.3

σOU11 1.25 0.04 0.05
σOU22 2.00 0.24 0.12

Supplementary Table 2: ILD setting 2. Across the 1000 simulation replicates, we report the
average relative bias ((estimate - truth) / truth), root mean squared error (RMSE), empirical
standard deviation (SD) of the point estimates, the average estimated standard error (SE),
and the coverage rate of the 95% confidence intervals. Note that average relative bias is
scaled up by a factor of 100 and that coverage rate is reported as a percent.

16



Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.88 -0.35 0.04 0.038 0.038 94.6
λ2 2.83 -0.37 0.06 0.054 0.054 94.7
λ3 -0.45 -0.30 0.02 0.018 0.018 94.8
λ4 2.25 -0.29 0.06 0.063 0.062 93.8

σ2
u1

1.10 -0.39 0.14 0.140 0.142 94.0
σ2
u2

1.30 -0.59 0.21 0.215 0.213 94.6
σ2
u3

1.40 -1.28 0.14 0.143 0.143 93.4
σ2
u4

0.90 -0.73 0.14 0.135 0.134 94.0

σ2
e1 0.60 -0.60 0.03 0.034 0.033 94.9

σ2
e2 0.50 -0.37 0.07 0.071 0.067 94.1

σ2
e3 0.40 -0.23 0.01 0.014 0.014 95.3

σ2
e4 0.70 -1.70 0.22 0.224 0.224 94.9

θOU11
1.00 -0.05 0.11 0.110 0.107 94.2

θOU21
2.78 1.79 0.40 0.397 0.397 94.5

θOU12
0.36 -1.27 0.16 0.157 0.154 95.2

θOU22 5.00 1.72 0.68 0.673 0.675 95.2

σOU11 1.27 0.03 0.04
σOU22

2.66 0.57 0.19

Supplementary Table 3: ILD setting 3. Across the 1000 simulation replicates, we report the
average relative bias ((estimate - truth) / truth), root mean squared error (RMSE), empirical
standard deviation (SD) of the point estimates, the average estimated standard error (SE),
and the coverage rate of the 95% confidence intervals. Note that average relative bias is
scaled up by a factor of 100 and that coverage rate is reported as a percent.

# Factors Signal 1 2 3 1 2 3
1 - 99 0 1 100 0 0
2 Low 0 93 7 4 96 0
2 High 0 100 0 0 100 0
3 Low 0 0 100 0 8 92
3 High 0 0 100 0 0 100

True Model # Factors in Fitted Model with Best AIC # Factors in Fitted Model with Best BIC

Supplementary Table 4: For datasets generated under each true model, we summarize the
percent of times that the model-selection metric chose the fitted model with the indicated
number of factors. The settings in which the fitted model has the same number of factors
as the true data-generating model are emphasized with bold orange text. These results are
presented for datasets on which the algorithm converged prior to reaching the maximum
number of iterations (200) for all three models.
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# Factors Signal convergence iteration limit convergence iteration limit convergence iteration limit
1 - 100 0 100 0 79 20
2 Low 100 0 100 0 96 4
2 High 100 0 100 0 98 2
3 Low 100 0 99 1 100 0
3 High 99 0 100 0 99 1

True Model
# Factors in Fitted Model

1 2 3

Supplementary Table 5: For datasets generated under each true model, we summarize the
number of datasets (out of 100) on which the algorithm converged or reached the maximum
number of block-wise iterations prior to convergence (when δ = 1×10−6). For totals that do
not sum to 100, the remaining cases correspond to instances in which the algorithm failed
due to numerical issues prior to converging or reaching the maximum number of block-wise
iterations (200).

# Factors Signal convergence iteration limit convergence iteration limit convergence iteration limit
1 - 100 0 100 0 94 5
2 Low 100 0 100 0 100 0
2 High 100 0 100 0 100 0
3 Low 100 0 99 1 100 0
3 High 99 0 100 0 100 0

# Factors in Fitted Model
True Model 1 2 3

Supplementary Table 6: For datasets generated under each true model, we summarize the
number of datasets (out of 100) on which the algorithm converged or reached the maximum
number of block-wise iterations prior to convergence (when δ ≤ 1×10−3). For totals that do
not sum to 100, the remaining cases correspond to instances in which the algorithm failed
due to numerical issues prior to converging or reaching the maximum number of block-wise
iterations (200).

covariance matrix).
After loosening the convergence criteria across the block-wise iterations, we did not find

substantially different results when evaluating AIC and BIC as model selection criteria when
compared to results under the original convergence criteria. For example, if we categorized
convergence using δ ≤ 1 × 10−3, rather than only the original δ = 1 × 10−6, the algorithm
would have converged when fitting almost every model to almost every dataset (see Supple-
mentary Table 6) but the model selection results would not have changed (see Supplementary
Table 7).

We expect that increasing the size of the simulated dataset would increase the rate at
which we successfully fit models with more factors.

A.9 Results from simulation study with non-ILD

We present results from the simulation study with non-ILD in Supplementary Figures 1
and 2. As with the ILD simulation study, the estimation algorithm failed to converge due
to numerical issues when applied to a few of the simulated datasets. As before, slightly
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# Factors Signal 1 2 3 1 2 3
1 - 99 0 1 100 0 0
2 Low 0 93 7 4 96 0
2 High 0 100 0 0 100 0
3 Low 0 0 100 0 8 92
3 High 0 0 100 0 0 100

True Model # Factors in Fitted Model with Best AIC # Factors in Fitted Model with Best BIC

Supplementary Table 7: For datasets generated under each true model, we summarize the
percent of times that the model-selection metric chose the fitted model with the indicated
number of factors. The settings in which the fitted model has the same number of factors
as the true data-generating model are emphasized with bold orange text. These results
are presented for datasets on which the algorithm converged (using δ ≤ 1 × 10−3) prior to
reaching the maximum number of iterations (200) for all three models.

adjusting the initial parameter values resolved this issue. Point estimates were ultimately
calculate for all 1000 simulated datasets in each setting. We also encountered a few issues
with standard error estimation. In all three settings, we occasionally estimated invalid
(negative) variances for the measurement submodel parameter σ2

ϵ4
. This issue occurred for

one non-ILD dataset in setting 1, 10 in setting 2, and 18 in setting 3, out of a total of
1,000 non-ILD datasets in each setting. Furthermore, for three datasets in setting 3, the
estimated Hessian (approximated using the optimHess function from the stats package; R
Core Team, 2022) was not invertible and so we were unable to get standard error estimates
for any parameters. In the results presented in this section, we ignore the invalid and missing
variance estimates. It is likely that the infrequent longitudinal measurements lead to issues
with the numerical approximation used to calculate the Hessian. These challenges are not
entirely unexpected, as our method was developed for the ILD setting and so we did not
anticipate it to work perfectly in the non-ILD setting. Estimation in the non-ILD setting
is challenging, as the data contain very little information on correlation, which is needed to
estimate the parameters (particularly θ) well.

Supplementary Figure 1 shows the relative bias of parameter estimates across 1,000 sim-
ulated datasets under each true parameter setting. We see that the relative bias is low for
most parameters, as in the ILD setting, but bias is higher for the OU process parameter θ ,
compared to the ILD setting. As mentioned in the main text (Section 4.2), the OU process
parameter θ captures the correlated change in the longitudinal latent process. Since our
model assumes that the latent process can be reliably measured through the observed longi-
tudinal outcomes, measurements of the longitudinal outcomes must be close enough together
that the correlation of the OU process is captured. We see that in the non-ILD setting, the
frequency of measurements is low enough to lead to bias. The correlation half-life of the OU
process can provide some insight into what values of θ one may reasonably expect to recover
with low bias given the gaps between measurement occasions.

Supplementary Figure 2 summarizes a comparison of the standard deviation of the point
estimates (across the 1,000 simulated datasets) and the average estimated standard error.
We see that the average standard error is close to the empirical standard deviation for most
parameters. For some elements of θ, the average standard error deviates from the empirical
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Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.16 -0.31 0.05 0.054 0.054 94.2
λ2 1.74 -0.36 0.07 0.072 0.070 94.0
λ3 -0.39 -0.19 0.03 0.033 0.033 95.0
λ4 1.97 -0.06 0.09 0.090 0.092 94.9

σ2
u1

1.10 -0.73 0.14 0.145 0.148 95.0
σ2
u2

1.30 -0.41 0.21 0.209 0.208 94.3
σ2
u3

1.40 -0.71 0.15 0.151 0.152 93.4
σ2
u4

0.90 -1.80 0.20 0.199 0.199 94.6

σ2
e1 0.60 -0.76 0.05 0.046 0.045 94.7

σ2
e2 0.50 -0.66 0.07 0.074 0.074 94.4

σ2
e3 0.40 -0.12 0.02 0.024 0.024 94.4

σ2
e4 0.70 -3.44 0.24 0.242 0.246 94.7

θOU11
1.00 2.51 0.49 0.487 0.527 96.5

θOU21
3.91 3.07 1.14 1.132 1.562 92.7

θOU12
0.61 5.43 0.57 0.569 0.608 95.2

θOU22 5.00 3.68 1.41 1.403 1.969 93.0

σOU11 1.04 -0.66 0.09 - - -
σOU22

2.03 1.01 0.32 - - -

Supplementary Table 8: Non-ILD setting 1. Across the 1000 simulation replicates, we report
the average relative bias ((estimate - truth) / truth), root mean squared error (RMSE),
empirical standard deviation (SD) of the point estimates, the average estimated standard
error (SE), and the coverage rate of the 95% confidence intervals. Note that average relative
bias is scaled up by a factor of 100 and that coverage rate is reported as a percent.

standard deviation, reflecting the additional challenges of the non-ILD setting.
In Supplementary Tables 8, 9, and 10, we summarize average relative bias (reported as

(estimate - truth) / truth × 100), RMSE, the empirical standard deviation of the point
estimates across simulation replicates, the average standard error, and the coverage rates of
95% confidence intervals.

20



Setting 3

Setting 2

Setting 1

λ11 λ21 λ32 λ42 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ21 θ12 θ22 σ11 σ11

λ11 λ21 λ32 λ42 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ21 θ12 θ22 σ11 σ11

λ11 λ21 λ32 λ42 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ21 θ12 θ22 σ11 σ11

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

Parameter

R
el

at
iv

e 
bi

as

Measurment submod.

Structural submod.

Supplementary Figure 1: Results from non-ILD simulation study. Relative bias of parameter
estimates from the block coordinate descent algorithm for the three different settings in which
the true OU process differs. Relative bias is calculated as (estimate - truth) / truth and is
summarized across the 1000 simulated datasets with box plots. The colored dots indicate 0
bias.
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Supplementary Figure 2: Results from non-ILD simulation study. Comparison of estimated
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similarity of the standard error estimates and empirical standard deviation suggests that the
standard errors are of appropriate size for all parameters except some elements of θ.
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Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.20 -0.30 0.05 0.054 0.054 94.1
λ2 1.80 -0.41 0.07 0.073 0.071 93.9
λ3 -0.40 -0.20 0.03 0.034 0.034 94.1
λ4 2.00 -0.04 0.10 0.100 0.102 93.9

σ2
u1

1.10 -0.77 0.15 0.148 0.151 95.2
σ2
u2

1.30 -0.37 0.22 0.220 0.218 94.1
σ2
u3

1.40 -0.71 0.15 0.151 0.152 93.7
σ2
u4

0.90 -1.45 0.21 0.211 0.210 94.6

σ2
e1 0.60 -0.92 0.06 0.055 0.054 94.3

σ2
e2 0.50 -0.39 0.10 0.100 0.098 94.1

σ2
e3 0.40 -0.15 0.03 0.025 0.025 93.8

σ2
e4 0.70 -4.81 0.31 0.313 0.313 93.4

θOU11 1.00 0.42 0.28 0.275 0.279 96.2
θOU21

1.80 6.72 0.65 0.634 0.638 93.9
θOU12

0.40 0.70 0.34 0.341 0.345 94.8
θOU22

3.00 7.40 1.00 0.980 0.997 93.5

σOU11 1.25 -0.36 0.11 - - -
σOU22 2.00 2.48 0.32 - - -

Supplementary Table 9: Non-ILD setting 2. Across the 1000 simulation replicates, we report
the average relative bias ((estimate - truth) / truth), root mean squared error (RMSE),
empirical standard deviation (SD) of the point estimates, the average estimated standard
error (SE), and the coverage rate of the 95% confidence intervals. Note that average relative
bias is scaled up by a factor of 100 and that coverage rate is reported as a percent.
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Param. Truth Relative bias (x 100) RMSE Empirical SD SE Coverage rate (%)

λ1 1.88 -0.35 0.07 0.067 0.066 94.4
λ2 2.83 -0.44 0.10 0.094 0.092 93.6
λ3 -0.45 -0.06 0.03 0.034 0.035 94.7
λ4 2.25 -0.11 0.11 0.110 0.115 92.5

σ2
u1

1.10 -0.73 0.16 0.165 0.170 95.9
σ2
u2

1.30 -0.05 0.28 0.285 0.281 94.6
σ2
u3

1.40 -0.71 0.15 0.151 0.152 93.8
σ2
u4

0.90 -1.74 0.22 0.216 0.217 94.5

σ2
e1 0.60 -1.08 0.07 0.072 0.070 93.7

σ2
e2 0.50 0.10 0.14 0.145 0.140 93.3

σ2
e3 0.40 -0.25 0.03 0.027 0.027 93.7

σ2
e4 0.70 -4.19 0.39 0.390 0.417 90.8

θOU11 1.00 0.88 0.28 0.281 0.289 95.4
θOU21

2.78 3.01 0.80 0.800 1.006 94.0
θOU12

0.36 4.41 0.42 0.421 0.432 94.5
θOU22

5.00 3.54 1.30 1.290 1.716 93.0

σOU11 1.27 -0.36 0.09 - - -
σOU22 2.66 0.86 0.36 - - -

Supplementary Table 10: Non-ILD setting 3. Across the 1000 simulation replicates, we report
the average relative bias ((estimate - truth) / truth), root mean squared error (RMSE),
empirical standard deviation (SD) of the point estimates, the average estimated standard
error (SE), and the coverage rate of the 95% confidence intervals. Note that average relative
bias is scaled up by a factor of 100 and that coverage rate is reported as a percent.

24



Irritable Lonely Nervous

Angry Ashamed Guilty

Sad Scared Disgusted

Grateful Proud Attentive

Active Calm Determined

Happy Joyful Enthusiastic

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

Emotion intensity (centered)

C
ou

nt

Supplementary Figure 3: Marginal distribution of responses to emotion items across all
individuals in the mHealth study. Positive emotions are in yellow and negative emotions are
in blue.

Section B

B.1 Application to mHealth emotion data

We provide the marginal distribution of the reponses to the emotion items in Supplementary
Figure 3.

B.1.1 OUF model with one factor

In this model, we assume that a single latent factor generates all observed emotions of
happy, joyful, enthusiastic, active, calm, determined, grateful, proud, attentive, sad, scared,
disgusted, angry, ashamed, guilty, irritable, lonely, and nervous. We plot the point estimates
from this model in Supplementary Figure 4. Using these estimated parameters, we calculate
the auto-correlation half-life of this latent factor as approximately 27 days. This model has
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Supplementary Figure 4: Point estimates for each of the parameter matrices in our one-factor
OUF model. Because we assume structural zeros in the loadings matrix are known, each
emotion has only a single loading. Parameter subscripts 1-18 correspond to the emotions as
follows: 1 = happy, 2 = joyful, 3 = enthusiastic, 4 = active, 5 = calm, 6 = determined, 7 =
grateful, 8 = proud, 9 = attentive, 10 = sad, 11 = scared, 12 = disgusted, 13 = angry, 14 =
ashamed, 15 = guilty, 16 = irritable, 17 = lonely, 18 = nervous.

a total of 56 parameters, along with one constraint, which we use when calculating AIC and
BIC.

B.1.2 OUF model with two factors

In this model, we assume that two latent factors generate the observed emotions. The latent
factors represent positive affect (which underlies happy, joyful, enthusiastic, active, calm,
determined, grateful, proud, and attentive) and negative affect (which underlies sad, scared,
disgusted, angry, ashamed, guilty, irritable, lonely, and nervous). Results from this fitted
model are available in Section 5 of the main text. This model has a total of 60 parameters,
along with two constraints, which we use when calculating AIC and BIC.

B.1.3 OUF model with three factors

We assume that three latent emotional states underlie the emotions observed during this
study. The emotions load on to the latent factors as follows:

1. enthusiastic, proud, active, calm, determined, attentive, grateful [η1 = high arousal
positive affect]

2. calm, happy, joyful [η2 = no-to-low arousal positive affect]
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Positive affect items Arousal Citation

calm no-to-low McManus (2019), Gilbert (2008), Remington (2000)
grateful high Reisenzein (1994)
proud high McManus (2019)
happy no-to-low Remington (2000)
joyful no-to-low Remington (2000)
enthusiastic high McManus (2019), Gilbert (2008), Remington (2000)
active high McManus (2019), Gilbert (2008), Remington (2000)
determined high McManus (2019)
attentive high McManus (2019)

Supplementary Table 11: Behavioral science literature supporting the division of the positive
emotions into two groups representing no-to-low arousal positive affect and high arousal
positive affect.

3. sad, scared, disgusted, angry, ashamed, guilty, irritable, lonely, nervous [η3 = negative
affect]

We use behavioral science literature and theory—namely the circumplex model of emotion—
to inform the division of the positive affect emotions into groups representing high arousal
positive affect and no-to-low arousal positive affect (see Gilbert et al. (2008), McManus et al.
(2019), Reisenzein (1994), and Remington et al. (2000)). Literature supporting the place-
ment of each positive affect emotion is summarized in Supplementary Table 11. Happy and
joyful are also commonly placed midway between high and low arousal in the circumplex
model of emotion (see Remington et al. (2000)) and so we chose to assess the fit of the OUF
model when these emotion items load onto the latent factor representing no-to-low arousal
positive affect. This model converged after 211 block iterations and we present point esti-
mates in Supplementary Figure 5. This model has a total of 66 parameters, along with three
constraints, which we use when calculating AIC and BIC.

Section C

C.1 Estimation algorithm

C.1.1 Parameter initialization

Due to the complexity of our model, our estimation algorithm is sensitive to the choice of
initial estimates. Here we present an approach to estimating reasonable starting values based
on simple existing models prior to maximizing the entire likelihood.

1. To initialize the measurement submodel parameters, fit a standard cross-sectional
factor model to the data collapsed across time (do not include a random intercept but
do assume that the positions of the non-zero loadings are known).

2. Using this fitted factor model, estimate the factor scores (predicted values for η1 and
η2).
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Supplementary Figure 5: Point estimates for each of the parameter matrices in our three-
factor OUF model. Because we assume structural zeros in the loadings matrix are known,
each emotion has only a single loading. Parameter subscripts 1-18 correspond to the emotions
as follows: 1 = happy, 2 = joyful, 3 = enthusiastic, 4 = active, 5 = calm, 6 = determined,
7 = grateful, 8 = proud, 9 = attentive, 10 = sad, 11 = scared, 12 = disgusted, 13 = angry,
14 = ashamed, 15 = guilty, 16 = irritable, 17 = lonely, 18 = nervous.
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3. Fit four separate linear mixed effects models—one for each of the observed outcomes,
Y1, ..., YK—including the factor scores as fixed effects and a random intercept for
subject. We do not include a fixed effect intercept in these models. For outcome
k = 1, ..., K, subject i = 1, ..., N , and measurement occasion j = 1, ..., ni, the mixed
model is given by

Ykij = λkηi(tj) + uk0i + ϵkij

where uk0i ∼ N(0, σ2
uk
) and ϵkij ∼ N(0, σ2

ϵk
).

4. From each of these K mixed models, extract estimates of the coefficient for the fixed
effect, the variance for the random intercept, and the residual variance. Use the co-
efficients of the fixed effects to initialize the non-zero elements of Λ and the variance
estimates to initialize the diagonal components of Σu and Σϵ. In some cases, the esti-
mated variances were very small, so a lower limit of 0.1 was set for the initial parameter
values to avoid extremely negative estimates after logging. We also set the same lower
bound for initial values of the elements in the loadings matrix.

5. To initialize the structural submodel parameters, we add a term for white noise
to the OU process likelihood. This noise term will absorb some of the extra variability
in the predicted factor scores and allow for more stable estimation. Let Γi be white
noise, then ηi ∼ N(0,Ψi+Γi) where Γi is a diagonal matrix (of the same dimension as
OU covariance matrix Ψi) with constant but unknown diagonal γ. We then maximize
this likelihood and use the estimated OU process parameter values as initial values,
restricting the maximum initial values of the diagonals of θOU to be less than 7. This
maximum helps deal with instability in the initial estimate of θ.

C.1.2 Maximization of the marginal log-likelihood

To maximize the log-likelihood, we use quasi-Newton optimizers as implemented in the stats
package in R (R Core Team, 2022). To prevent the parameter estimates from diverging to
infinite values, we set the maximum allowed step size to 10.

Using the initial parameter values estimated via the approach described in the previous
section, we iteratively update measurement and structural submodel parameter estimates in
blocks:

1. Initialize estimates: Λ(0),Σ
(0)
u ,Σ

(0)
ϵ , θ(0), σ(0). Measurement submodel parameters are

always initialized empirically; for structural submodel parameters, two sets of initial
estimates are considered—an empirical set of values estimated as described above and
a default set of values that are based on a reasonable guess. The set of values that
corresponds to the higher log-likelihood is used.

2. Set r = 1 and δ = 0. While r ≤ 200 and δ = 0,

(a) Update block of measurement submodel parameters:

Λ(r),Σ(r)
u ,Σ(r)

ϵ = argmax
Λ,Σu,Σϵ

{
logL(Y |θ(r−1), σ(r−1))

}
.
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We solve this iteratively using nlm (R Core Team, 2022) and analytic gradients
with convergence criteria set to gradtol = max(1 × 10−4/10r, 1 × 10−8) and
steptol = max(1× 10−4/10r, 1× 10−8). gradtol is the tolerance for the scaled
gradient and steptol is the tolerance for parameter estimates across iterations.
We model the first element of the loadings matrix and the variance parameters
on the log scale, since all of these estimates are required to be positive.

(b) Update block of structural submodel parameters:

θ(r), σ(r) = argmax
θ,σ

{
logL(Y |Λ(r),Σ(r)

u ,Σ(r)
ϵ )

}
.

We solve this iteratively using nlminb and numeric approximations to the gradi-
ents. For estimates of θ, the diagonal elements must be positive and the matrix
must have eigenvalues with positive real parts. The eigenvalue constraint is im-
plemented by adding a negative penalty term to the likelihood for proposed values
of θ that do not satisfy this constraint. The diagonal element of σ are estimated
on the log scale, since they are required to be positive.

(c) Check for block-wise convergence: Let Θ be a vector containing all elements of Λ,
Σu, Σϵ, θ, and σ. Then, calculate

δ = max
{
I
{
|Θ(r)−Θ(r−1)|/Θ(r) < 10−6

}
, I
{
logL(Θ(r)|Y )−logL(Θ(r−1)|Y ) < 10−6

}}
where all operations on Θ are element-wise.

(d) Rescale OU process parameters so stationary variance is equal to 1 using Equation
5 in the main paper.

(e) Update r: r = r + 1

3. Estimate standard errors using a numerical approximation to the Hessians of the joint
negative log-likelihood for Λ(r),Σ

(r)
u ,Σ

(r)
ϵ , θ(r) at the current parameter values. Rather

than rescaling the OU parameters so the stationary variance is equal to 1, we assume
that σ is a function of θ. See Section A.6 of the supplementary material for further
description of this function. The numeric approximation to the Hessians is carried out
using the optimHess function in the stats package.

4. Estimate confidence interval for OU process parameter σ based on a parametric boot-
strap of θ.

C.2 Comparison with Tran et al. (2021)

To illustrate the computational benefits of our proposed block coordinate descent algorithm
for estimation relative to the Bayesian approach taken in Tran et al. (2021), we apply both
methods to simulated ILD. Because we only consider continuous outcomes in this work, we
slightly modify the original model proposed in Tran et al. (2021) and do not estimate the
additional parameters used to account for non-continuous outcomes. Tran et al. (2021) also
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consider two different sets of constraints on the OU process drift matrix (denoted here as
θOU); we use the set of constraints that specify the eigenvalues of θOU to have positive real
parts.

We use the same ILD simulation set-up as described in the main text (Section 4.1) with
the true OU process parameters corresponding to setting 1 (Section A.7). We make one
modification to the true values of the loadings parameters: we restrict all elements of the
loadings matrix to be positive. This restriction means that λ3 = 0.4, rather than the original
λ3 = −0.4. We make this assumption in order to make identification of parameters more
straightforward in this comparison of methods.

We generate 100 replicates of the simulated dataset and fit the OUF model using our
proposed estimation algorithm and the algorithm proposed in Tran et al. (2021). Tran et al.
(2021) use a slightly different parameterization of the OU process than we use in this work.
In our implementation of the OU process, we restrict the volatility parameter matrix, σOU ,
to be a diagonal matrix. Although Tran et al. (2021) do not make this assumption, there is
still a one-to-one correspondence between the set of parameters estimated in our work and
the set of posterior estimates resulting from their Bayesian method. As a result of these
differences in parameters, we do not report estimates of σOU in the plot below and instead
present parameter estimates for ρ, which is the stationary correlation between η1 and η2.
Tran et al. estimate this parameter directly and we can calculate an estimate for it using
θ̂OU and σ̂OU .

When applying the Bayesian approach, we use our proposed empirical approach to ini-
tializing parameter values, assume 4 chains, and allow the sampler to run for 2,000 itera-
tions. We discard the first half of these samples as burn-in. The computation time of both
approaches—excluding time required to compute initial parameter estimates—is shown in
Supplementary Figure 6. Computing resources are the same across all replicates; we use 4
cores with a total of 4GB of memory for each replicate (this allows gradients to be evaluated
or chains to be sampled in parallel, depending on the method). We find that our approach,
on average, takes approximately 5% of the time required by the method in Tran et al. (2021).

Point estimates for both estimation approaches are shown in Supplementary Figure 7. We
present the posterior means for each parameter across the 100 simulated datasets as estimated
using the method from Tran et al. (2021); maximum likelihood estimates resulting from our
block coordinate descent algorithm are also summarized across the 100 simulated datasets.
We also report the average relative bias (where relative bias is calculated as (estimate - truth)
/ truth), RMSE, and the coverage probability for comparison across the two methods in
Supplementary Table 12. We find that overall, performance is similar for most parameters,
but the relative bias and RMSE is substantially lower for the OU process parameter θ
estimated using our method compared to the Bayesian alternative. It is important to note,
however, that the posterior point estimates from the Bayesian approach may be improved
by running the sampling algorithm for additional iterations; we limit the MCMC algorithm
to 2,000 iterations as our goal is to emphasize the difference in computation time.
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Supplementary Figure 6: Computation time (in minutes) for our estimation algorithm and
the Bayesian estimation method proposed in Tran et al. (2021). Box plots summarizes the
computation time required to fit the OU factor model using both approaches across 100
simulated datasets. Time required to compute initial parameter estimates is not included in
the total above. For our approach, the total time includes both the time required to carry out
the block coordinate descent algorithm plus the time required to estimate standard errors.
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Supplementary Figure 7: Final parameter estimates from the block coordinate descent algo-
rithm and the Bayesian estimation method proposed in Tran et al. (2021). For the Bayesian
method, posterior means are used for point estimates. Each box plot summarizes point esti-
mates across the 100 simulated datasets. True parameter values are indicated with colored
dots.
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Avg. relative bias x 100 RMSE Coverage prob. (%)

Parameter Our approach Tran et al. Our approach Tran et al. Our approach Tran et al.

λ1 -0.57 -0.66 0.03 0.04 97 96
λ2 -0.39 -0.41 0.04 0.05 94 96
λ3 -0.46 0.50 0.02 0.03 94 92
λ4 -0.15 0.46 0.05 0.08 92 94

σ2
u1

-1.46 0.83 0.11 0.12 95 96
σ2
u2

-1.71 1.37 0.20 0.20 91 92
σ2
u3

0.75 1.71 0.15 0.16 93 94
σ2
u4

-0.36 7.10 0.15 0.35 93 92

σ2
e1 -0.43 0.28 0.02 0.02 95 97

σ2
e2 -0.73 -0.04 0.04 0.04 94 96

σ2
e3 -0.04 0.49 0.01 0.01 97 94

σ2
e4 -1.96 -2.89 0.12 0.14 96 96

θOU11
1.02 40.47 0.17 1.25 96 95

θOU21
2.49 28.02 0.64 1.92 93 88

θOU12
1.89 37.94 0.19 0.62 96 96

θOU22
2.68 32.27 0.81 2.64 94 86

ρ -0.02 -0.81 0.02 0.03 97

Supplementary Table 12: Comparison of estimates from fitting the dynamic factor model
using our proposed block-coordinate descent algorithm and the Bayesian approach presented
in Tran et al. (2021). We report average relative bias ((estimate - truth) / truth), root mean
squared error (RMSE), and coverage probabilities for models fit using each method to the
same 100 simulated datasets. Note that relative bias is scaled up by a factor of 100 and
coverage probability is reported as a percent.
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Model AIC BIC Free parameters
Random slope/random intercept model 133,531 134,478 108
Dynamic factor model with 1 factor 123,309 123,791 55
Dynamic factor model with 2 factors 121,069 121,577 58
Dynamic factor model with 3 factors 124,957 125,509 63

Supplementary Table 13: AIC, BIC, and numbers of free parameters for mixed models and
dynamic factor models fit to the motivating mHealth data. The lowest (best) value of AIC
and BIC is indicated with bold text. For the dynamic factor models, the number of free
parameters takes into account the identifiability constraints.

C.3 Comparison with standard mixed models

To provide an additional comparison of the dynamic factor model with existing methods, we
compare our model’s fit to a fitted model with both random slopes and random intercepts.
We fit a mixed model with a correlated random slope and random intercept separately to
each of the 18 outcomes. Assuming the outcomes are independent, we can multiply the
likelihoods of all 18 models and use this quantity to calculate the models’ combined AIC
and BIC, which we then compare to those from our dynamic factor models from the original
paper; see Supplementary Table 13. In Supplementary Table 13, we also report the number
of free parameters in each model. For the dynamic factor models, the free parameters
correspond to the total number of parameters minus the constraints. AIC and BIC both
indicate that all three dynamic factor models fit better than the random slope/random
intercept model, which has nearly twice as many parameters as the best fitting factor model.
Among the factor models considered, AIC and BIC indicate that the two-factor model fits
the best.

This result emphasizes the importance of capturing the correlation between related out-
comes, which the dynamic factor model does by summarizing the outcomes as a smaller
number of correlated latent factors. In this comparison, the importance of modeling the
correlation outweighs any information lost due to the dimension-reduction aspect of the
dynamic factor model.
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