Appendix

A Reparameterization of ¢

To deal with the constraints in ®, we consider the following reparameterisation that has been considered in
Alfonzetti et al. (2024), which is also similar to the implementation in the state-of-the-art statistical software

Stan (Stan Development Team, 2022):

1 07 1 07
P = ,
0o UT 0o U
where U is defined recursively by
0 if ¢>j;
1if i=75=1,;
Uij: Zij if 1=1<yj;
Z(r?ii)j U(ifl)j(l - 2(21‘71)]')1/2 if 1<i<y;
U1y . L
U=z i 1<i=

Here z;; = tanh(y;;) is the Fisher’s transformation of G(G — 1)/2 unconstrained parameters ;.

B Population Parameter Values in Simulations

In this section, we supplement the population values of factor loadings and factor correlations in Section 3.

Under the setting (J,G) = (15, 3), the loading matrix A* and ®* in (8) and (9) are given in (B.1), (B.2),



(B.3) and (B.4) respectively.
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036 —0.6 —0.05 0.06
089 0.04 064 0.09
094 —0.09 —0.08 0.92
0.90 033 002 —0.09
045 —0.07 —0.90 —0.06
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045 —0.60 —0.09 0.02
A*=1074 005 —0.75 0.09 (B.3)
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Under the setting (J,G) = (30,5), the loading matrix A in (8) and (9) are given in (B.5) and (B.6). The



correlation matrix ® in (8) and (9) are given in (B.7) and (B.8).
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C Sensitivity Analysis

In this section, we carry out a sensitivity analysis on the parameters ¢y and ¢, of the proposed ALM method.
We consider the same exact bi-factor model settings as in Study I of Section 3.1. For each settings, we choose
cp € {0.25,0.5,0.75} and ¢, € {5,10,15}, resulting in 9 possible combinations of (cg,c,). The estimation
of loading matrix, the computation time of ALM, and the results of the recovery of the bi-factor structure
are shown in Table C.1 to Table C.4. From the sensitivity analysis, we can see that the ALM’s results are

relatively stable with respect to the choice of parameters cy and ¢, .

D Extension to Hierarchical Factor Analysis

D.1 Constrained Optimisation for Exploratory Hierarchical Factor Analysis

To further demonstrate the advantages of the constraint-based approach, we discuss how it can be extended

for exploratory hierarchical factor analysis. Following the terminology adopted in Yung et al. (1999), we



Table C.1: Sensitivity Analysis of MSE of A.

co

Co

0.25 0.5 0.75

10
15

2.10 x 1073
2.10 x 1073
2.10 x 1073

210 x 1073 2.10 x 1073
210 x 1073 2.10x 1073

210 x 1073 2.10 x 1073

(a) J =15, G =3, n = 500

Co

Co

0.25 0.5 0.75

10
15

0.54 x 1073
0.54 x 1073
0.54 x 1073

0.54 x 1073
0.54 x 1073 0.54 x 1073
0.54 x 1073 0.54 x 1073

0.54 x 1073

(b) J = 15, G = 3, n = 2000

Co

Co

0.25 0.5 0.75

10
15

1.39 x 1073
1.33 x 1073
1.44 x 1073

1.36 x 1073 1.38 x 1073
1.36 x 1073 1.42 x 1073

1.42 x 1073 1.36 x 1073

(c) J =30, G =5, n =500

Co

Co

0.25 0.5 0.75

10
15

0.30 x 1073
0.30 x 1073
0.30 x 1073

0.30 x 10~3
0.30 x 1073 0.30 x 1073
0.30 x 1073 0.30 x 1073

0.30 x 1073

(d) J =30, G =5, n = 2000

Table C.2: Sensitivity Analysis of EMC.

Co

025 0.5 0.75

Co

Co

0.25

0.5

0.75

1.00
1.00 1.00 1.00
1.00 1.00 1.00

5 1.00 1.00

)
10
15

1.00
1.00
1.00

1.00
1.00
1.00

1.00
1.00
1.00

15, G = 3, n = 500

(b) J =15, G = 3, n = 2000

025 0.5 0.75

Co

Co

0.25

0.5

0.75

5 0.86 0.86 0.85
0.85 0.84 0.85
15 0.83 0.86 0.83

)
10
15

1.00
1.00
1.00

1.00
1.00
1.00

1.00
1.00
1.00

(c) J =30, G =5, n =500

(d) J =30, G =5, n = 2000




Table C.3: Sensitivity Analysis of ACC.

“ 1 025 05 075
Co
5 1.000  1.000 1.000
10 | 1.000 1.000 1.000
15 | 1.000 1.000 1.000
) J = 15, G = 3, n = 2000
“ 1025 05 075
Co
5 1.000  1.000 1.000
10 | 1.000 1.000 1.000
15 | 1.000 1.000 1.000

(d) J =30, G =5, n = 2000

Table C.4: Sensitivity Analysis of Computation time(s).

“ 1 025 05 075
C(T
5 1.000  1.000 1.000
10 | 1.000 1.000 1.000
15 | 1.000 1.000 1.000
(@) J =15, G = 3, n = 500
“ 1025 05 075
Co
5 0.998 0.998 0.998
10 | 0.998 0997 0.998
15 | 0.997 0998 0.997
(¢) J =30,G =5,n=500
“ 1025 05 075
Co
5 013 0.13 0.13
10 |013 013 0.12
15 | 0.10 009 0.08
@) J =15, G =3, n =500
“ 1025 05 075
Co
5 052 051 0.50
10 | 049 047 041
15 | 0.36 0.33 0.30

(c) J =30, G =5, n =500

“ 102 05 075

Co
5 010 0.09 0.10
10 | 010 0.09 0.09
15 | 0.07 0.06 0.06

(b) J = 15, G = 3, n = 2000

“ 1025 05 075

Co
5 038 037 037
10 | 037 033 028
15 023 022 024

(d) J =30, G = 5, n = 2000




(b) The corresponding factor hierarchy.

Figure D.1: The illustrative example of a three-layer hierarchical factor model.

consider general hierarchical factor models. Such a model has several layers of factors. In each layer, each
observed variable loads on exactly one of the factors in that layer. The numbering of the layers is determined
by the number of factors in the layer, starting from the layer with the largest number of factors. Each factor
in a lower layer is nested within a factor in a higher layer, in the sense that the variables loading on the
lower-layer factor must also all load on a higher-layer factor. All the factors are assumed to be uncorrelated
(i.e., @ is an identity matrix), though this assumption may be relaxed to allow some correlations between
factors within the same layer as in the extended bi-factor model.

Panel (a) of Figure D.1 provides the path diagram of a hierarchical factor model that has three layers,
with factor F} in layer 3, factors F; and F3 in layer 2, and factors Fy-F% in layer 1. The corresponding factor
hierarchy is summarised in Panel (b) of Figure D.1 that takes the form of a tree, where F; and F3 are nested
within F, Fy and Fj are nested within Fy, and Fg and F» are nested within F3. In what follows, we show
how the loading structure of this three-layer hierarchical model can be learned by a constrained optimisation
method, assuming that the factor hierarchy in Panel (b) of Figure D.1 is known while the variables loading
on each factor are unknown. The goal is to learn how the observed variables load on the seven factors.

Following the same notation for bi-factor analysis, the population covariance matrix of observed variables

under the hierarchical factor model can be written as

Y =AAT + 0,

where A is a J x 7 matrix, and ¥ is a J x J diagonal matrix. Note that we no longer need the correlation



matrix ® in the expression as it is now an identity matrix. The constraints implied by the hierarchical factor

structure become:

AjaAjz =0, Ajadje =0, AjeAj7 =0,
AjaAja =0, Aj3A;5 =0, (D.1)
Ajadjs =0, NjgAjr =0, j=1,...,J.
Consequently, the corresponding hierarchical factor model can be learned by minimising the loss function
I(AAT + W(2)); ), subject to the constraints in (D.1).

Although the above discussion focuses on the specific hierarchical factor structure in Figure D.1, when
given a different factor hierarchy, it is easy to derive similar constraints as in (D.1) by induction. Based on
the constraints, the corresponding hierarchical factor model can be learned by an ALM.

Finally, we note that the factor hierarchy is typically unknown in practice. In that case, we need
an algorithm that simultaneously learns the factor hierarchy and the variable loadings on the hierarchical
factors. As there are exponentially many choices for the structure of factor hierarchy, this problem is more
challenging than the setting when the factor hierarchy is known. It is also more challenging than exploratory
bi-factor analysis with unknown group factors, as the bi-factor model has a simple two-layer factor hierarchy

that is completely determined by the number of factors.

D.2 Simulation

In this section, we examine the recovery of the hierarchical structure of our method. For J € {20,40}
and N € {500,2000}, a data generation model is considered, resulting in a total of 4 simulation settings.
With slight abuse of notation, we denote by B;‘ as the true item groups related to the gth factor. In
the data generation model, Bf = {1,...,J}, B¥ = {1,...,J/2}, B¥ = {J/2,...,J}, Bf = {1,...,J/4},
BX ={J/4,...,J/2}, Bf ={J/2,...,3J/4}, B¥ ={3J/4,...,J}. U* =1;,;, and A* follows

Ujk if k=1;
Ny=1 0if k>1,j¢B¢

E

(1 — 2JUjk)Ujk if k> l,j € B;:,p

forj=1,...,Jand k =1,...,G + 1. Here, u;s are i.i.d., following a Uniform(0.2,1) distribution, and z ;s
are i.i.d., following a Bernoulli(0.5) distribution.

The estimated parameters A and ¥ follow the same ALM algorithm in Section 2.2 except that the distance
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between the estimate and the space of the hierarchical factor loading matrices measured by

®
max BOXG ] X ).

where the function % returns the third-largest value of a vector. The estimated hierarchical factor model

structure is then given by

= {.] |AJ g+1| > 52}

We also choose do = 1072 on the following simulation study.

Since label-switching problem exists in factors that are nested within the same hierarchical factor, there
exists 8 possible permutations of labels resulting in the same hierarchical structure. We denote by R as the
set of the 8 permutations. Then, the evaluation criteria for the recovery of the hierarchical structure are

defined as:

e Exact Match Criterion(EMC): maxg,er HgG:1 1(Bs(g) = Bj), which equals 1 when the bi-factor struc-

ture is correctly learned and 0 otherwise.

e Average Correctness Criterion(ACC): max,er Z§=1(|B; N Bo(g)l + |BS, ) 0 BEC))/(JG).

a(g)

For each setting, we first generate A* once and use them to generate 100 datasets. The averaged results
under 100 replication are shown in Table D.1. From the simulation results, we find that our method performs

well on the recovery of hierarchical structure.

Table D.1: Simulation results of the recovery of hierarchical factor structure.

J N | EMC | ACC
20 | 500 | 0.94 | 0.998
2000 | 1.00 | 1.000
40 | 500 | 0.88 | 0.988
2000 | 1.00 | 1.000
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E Extraversion Scale Item Key

Table E.1: Extraversion Item Key

Item | Sign | Facet Item
1 +E1 | Friendliness Make friends easily.
2 +E1 | Friendliness Feel comfortable around people.
3 —FE1 | Friendliness Avoid contacts with others.
4 —E1 | Friendliness Keep others at a distance.
5 +E2 | Gregariousness Love large parties.
6 +E2 | Gregariousness Talk to a lot of different people at parties.
7 —E2 | Gregariousness Prefer to be alone.
8 —E2 | Gregariousness Avoid crowds.
9 +E3 | Assertiveness Take charge.
10 | +E3 | Assertiveness Try to lead others.
11 +E3 | Assertiveness Take control of things.
12 —E3 | Assertiveness Wait for others to lead the way.
13 | +E4 | Activity Level Am always busy.
14 | +E4 | Activity Level Am always on the go.
15 +E4 | Activity Level Do a lot in my spare time.
16 —E4 | Activity Level Like to take it easy.
17 | +E5 | Excitement-Seeking | Love excitement.
18 +E5 | Excitement-Seeking | Seek adventure.
19 +E5 | Excitement-Seeking | Enjoy being reckless.
20 | +E5 | Excitement-Seeking | Act wild and crazy.
21 +E6 | Cheerfulness Radiate joy.
22 +E6 | Cheerfulness Have a lot of fun.
23 +E6 | Cheerfulness Love life.
24 | +E6 | Cheerfulness Look at the bright side of life.

F Real Data Analysis using Bi-factor Rotation Method

In this section, we present the results of the same data in Section 4 by bi-factor rotation method as a

comparison with our proposed method.

Using a candidate set G = {2,...,12}, the BIC procedure of exploratory factor analysis given in Sec-
tion 3.2 selects eight factors in total, which coincide with the number of factors selected by the BIC procedure

of our proposed method. By applying the bi-factor rotation method(Jennrich and Bentler, 2012), we get the
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rotation solutions A in Table F.1 and ®°"¢ in equation (F.1).

Table F.1: Estimated loading matrix A4 with seven group factors.

Items | Sign | General Gl G2 G3 G4 G5 G6 G7
1| +E1 0.86 | 0.01 | -0.06 | -0.08 | -0.03 | -0.04 | 0.42 | -0.08
2| +E1 0.85 | 0.03 | -0.11 | 0.03 | 0.06 | -0.12 | 0.07 | -0.01
3| —-E1 0.91 | -0.02 | -0.12 | -0.01 | 0.03 | -0.09 | -0.02 | -0.05
4| -E1 0.87 | -0.14 | -0.04 | -0.01 | -0.10 | -0.14 | -0.03 | -0.20
5 | +E2 0.88 | 0.69 | 0.00 | 0.00 | -0.02 | 0.00 | -0.01 | 0.01
6 | +E2 092 | 025| 0.03|-0.12 | 0.09 | 0.05 | 0.22 | -0.03
7| —E2 0.72 | -0.06 | -0.03 | -0.04 | -0.08 | -0.16 | -0.21 | -0.12
8 | —E2 0.85 | 0.22 | -0.02 | -0.05 | -0.06 | -0.07 | -0.29 | -0.08
9| +E3 0.52 | 0.02 | 0.02| 0.00 | 0.79 | 0.02 | 0.04 | -0.03

10 | +E3 0.52 | 0.04 | 0.00 | 0.00 | 0.75 | -0.03 | 0.03 | 0.01
11 | +E3 0.44 | -0.03 | 0.00 | 0.05 | 0.62 | 0.04 | -0.08 | 0.01
12 | —E3 0.55 | -0.09 | -0.04 | -0.02 | 0.62 | -0.05 | -0.06 | 0.06
13 | +E4 0.32 | 0.05| 0.01 | 0.00 | 0.02 | 0.82 | -0.02 | -0.06
14 | +E4 0.51 | -0.07 | 0.02 | -0.02 | -0.01 | 0.74 | 0.06 | 0.06
15 | +E4 0.49 | 0.02 | -0.08 | 0.15 | -0.02 | 0.51 | -0.06 | 0.14
16 | —E4 0.19 | -0.14 | -0.04 | -0.14 | 0.08 | 0.37 | -0.19 | -0.07
17 | +E5 0.46 | 0.09 | -0.03 | -0.04 | 0.02 | 0.02 | 0.06 | 0.49
18 | +E5 0.53 | -0.05 | 0.02 | 0.00 | 0.01 | 0.03 | -0.04 | 0.62
19 | +E5 0.28 | 0.05 | 0.48 | -0.02 | 0.02 | -0.12 | 0.00 | 0.33
20 | +E5 0.48 | 0.00 | 1.10 | 0.00 | 0.00 | 0.01 | 0.00 | -0.02
21 | +E6 0.64 | -0.12 | 0.04 | 0.26 | -0.04 | 0.01 | 0.28 | -0.01
22 | +E6 0.69 | 0.06 | 0.11 | 0.40 | -0.01 | 0.01 | 0.09 | 0.08
23 | +E6 0.63 | 0.02|-0.01 | 063 | 0.03| 0.01 | -0.05 | -0.01
24 | +E6 0.58 | -0.04 | -0.03 | 0.60 | 0.00 | -0.02 | 0.01 | -0.04
1 0 0 0 0 0 0 0

0 1 019 -014 —017 —0.15 0.10 0.05
0 019 1  —010 000 —0.07 011 0.39
- 0 —014 —0.10 1 002 007 006 007
bl — : (F.1)
0 —017 000 002 1 021 =007 0.11
0 —015 —0.07 007 021 1 =009 001

0 0.10 0.11 0.06 —0.07 —0.09 1 0.00

0 005 039 007 0.11 0.01 0.00 1

To help to identify a bi-factor structure from /AXOblq, all loadings whose absolute value is less than 0.2 are
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set to zero, as is done in Jennrich and Bentler (2012). The adjusted loadings are presented in Table F.2. As
expected, the loading structure does not conform strictly to a bi-factor model, with four items loading onto
three factors.

Table F.2: Estimated bi-factor loading matrix with seven group factors.

Items | Sign | General | G1 | G2 | G3 | G4 | Gb G6 G7
1| +E1 0.86 0 0 0 0 0| 042 0
2 | +E1 0.85 0 0 0 0 0 0 0
3| —E1 0.91 0 0 0 0 0 0 0
4 | —E1 0.87 0 0 0 0 0 0] -0.20
5 | +E2 0.88 | 0.69 0 0 0 0 0 0
6 | +E2 0.92 | 0.25 0 0 0 0] 022 0
7| —E2 0.72 0 0 0 0 0] -0.21 0
8 | —E2 0.85 | 0.22 0 0 0 0] -0.29 0
9 | +E3 0.52 0 0 010.79 0 0 0

10 | +E3 0.52 0 0 0 0.75 0 0 0
11 | +E3 0.44 0 0 0| 0.62 0 0 0
12 | —E3 0.55 0 0 0| 0.62 0 0 0
13 | +E4 0.32 0 0 0 0] 0.82 0 0
14 | +E4 0.51 0 0 0 0] 0.74 0 0
15 | +E4 0.49 0 0 0 0] 0.51 0 0
16 | —E4 0 0 0 0 0] 0.37 0 0
17 | +E5 0.46 0 0 0 0 0 0| 0.49
18 | +E5 0.53 0 0 0 0 0 0] 0.62
19 | +E5 0.28 0] 0.48 0 0 0 0] 0.33
20 | +E5 0.48 0] 1.10 0 0 0 0 0
21 | +E6 0.64 0 0] 0.26 0 0] 0.28 0
22 | +E6 0.69 0 0] 0.40 0 0 0 0
23 | +E6 0.63 0 0] 0.63 0 0 0 0
24 | +E6 0.58 0 0 | 0.60 0 0 0 0

We now analyze the estimated model in detail. In this result, we have adjusted the sign flip and column
swapping to align with the result of the proposed method. All loadings on the general factor are positive,
supporting the existence of a general extraversion factor. We interpret the group factors G3, G4, G5 as the
Cheerfulness, Assertiveness and Activity Level factors respectively. G2, loaded with the items 719 Enjoy
being reckless” and 720 Act wild and crazy” is interpreted as the Reckless Excitement-Seeking factor and
consistent with the result from our proposed method. G7 is loaded with items ”4 Keep others at a distance”,
717 Love excitement”, 718 Seek adventure” and 719 Enjoy being reckless”. Even though G2 and G7 are
loaded with item 19 in common, G7 emphasizes more on the pursuit of meaningful experiences. So we still

interpret G7 as the Meaningful Excitement-Seeking factor. Additionally, G2 and G7 are positively correlated,
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as is the case in Section 4.

There is a notable difference between the results from the two methods. The result of the ALM method
shows the clear presence of a Friendliness factor (G1) and a Gregariousness factor (G6). However, for the
bi-factor rotation method, these does not seem to exist a clear Friendliness factor. Both G1 and G6 in
the solution of the bi-factor rotation method are related to Gregariousness. Large loadings of the variables
designed to measure Friendliness now spread out among several group factors.

Overall, both methods suggest similar (approximate) bi-factor model structures, and the result from the

proposed method tends to be neater and more interpretable.

G Technical Proofs

G.1 Proof of Theorem 1

Suppose that A®(A)T + ¥ = A*®*(A*)T + U*. Under Condition 1, we have A®(A)T = A*®*(A*)T. For the
simplicity of the notation, we substitute A[B}, {1,...,G+1}] for A[B},:]. The proof consists of three parts:(1)
show the bi-factor structure of B} is unique, (2) show that combined with some group g2 € H*, g2 # g1,
A[B;,:] is identified up to a sign flip and a group permutation, (3) complete the proof of Theorem 1.

We first consider the equation

A[B*

g1’

P (A[B

g1’

DT = A8, L1+ g AFIBG, {11+ gn}]) T (G.1)

Since the matrix on the right side of (G.1) has rank 2, there exist 2 possible bi-factor structures for the matrix
{11+ g0 (A*[B, {1, 1+g:1}]) T

for some g; € {1,...,G} and (2) There exists a partition of By = B v By  and ¢i,95 € {1,...,G} such

on the left side of (G.1): (1)A[BE {1, 1+g{}J(A[BE . {1,1+g}}])T = A*[B;:

g1’

g1,1 gi,2
that
1 0 0 AT A
A A 0 AE AL DT (DT
0 1 ¢1+g’1,1+gé A:]rll OT = ) (G2)
>‘2 0 )‘QQ )‘; )‘2;2 (A;l)T ()\Zz)—r
0 P14g1144, 1 0" A,

where A; = A[B?

g1,i’

{1}, Ay = A[By, AL + gi}], A = A*[B5,  {1}] and A} = A*[B; . {1 + ¢1}] with
Ay #0 fori=1,2.
Here we consider the second case. Since the matrix on the right side of (G.2) has rank 2, we must

have (A;,Ag/) has rank 1 for i = 1,2, which leads to the fact that (Af, A7) has rank 1. However, by
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Condition 2, there exists at least one of (A}, A} ) and (AJ, A¥ ) has rank 2. Thus, we must have A[B}

AL 1+

g1 (A[BE {1,1 +g3 D" = A*[B} {1, 1+ g }J(A*[B5, {1,1 +¢g1}]) " for some ¢} € {1,...,G}. Without loss
of generation, we assume ¢j = g;.
Secondly, there exits some g2 € H* and g2 # g1 by Condition 2. We consider the B} v B rows and

B UB% columns of A®(A)T and A*®*(A*)T. Since the bi-factor structure of the B rows and B% columns

has already been known, there are two possible bi-factor structures: (1) There exists some ¢} € {1,...,G}
such that
1 0 0 Al A 1 0 0 AHT (aHT
Al A, O AT A0
0 1 pa||Al o [= 0 1 piaf|@e)"™ o |
A2 0 Ay A0 AL
0 pr2 1 (O )\;é 0 pi, 1 or  (AR)T
(G.3)

where A; = A[By, {1}], Ay = A[B; {1+ gi}], Af = A*[B},{1}] and X} = A*[B} {1+ g1}] for i = 1,2.
P2 = Origyavgy a0 PTo = OTig, 14,

(2) There exists a partition of By, = By, v By, and g5 € {1,...,G} such that

A1 Ay 0 1 0 0 Al AL Al
)\271 )\27g1 0 0 1 P1,2 A;—l )\T 0—r

2,91

)\272 0 AQ g’ 0 P1,2 1 0T OT AT ’

, 2,
: ” (G.4)
AT AL 0 (1 0 0 DT (AT (5T
=[x, 0 A flo ot e ||laE)T o7 oT |
Als 0 AL )\O pfy 1 0" (AL)T (ALL)T

where Ay = A[Bg,, {1}], Agy = A[Bg, {1 + g1}], AT = A*[Bg {1}], A5, = A*[Bg, {1 + ¢1}], A2 =

917 910
A[Bg, i {131, A5 = AIBg, i, {1}, Ag,: = AIBG, o {1 + g2}] for i = 1,2, Ao g, = A[BG, 1, {1 + g1}, Aoy =
A[B; 92,2 {L+35}], pr2 = b14gi11g, and pi, = ¢1+gl,1+g2-
For the second case in (G.4), there exists some a such that A; = cos @A} —sinaA} and Ay, = sinaAf +
cosaX} . Since the B¥ rows and the B, columns of A®(A) " and A*®*(A*) T have rank 2, under the bi-factor
structure of the second case, we have that (Az1, A2,4,, A3 1, A}, 1) has rank 1 and (Az,2, Az gy, AS 5, A 5) has

rank 1. Noticing that )\ ol * 0, we assume that /\2 1 = k1A% A2 = kg)\g 1 and Ag g, = k3A¥

or

92,17 g2,1"

the B | rows and the B¥ | columns of (G.4), we have 1 + kf = k3 + k3. For the BX rows and the B ,
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columns of (G.4), we have

AT + i (A )
=X (A21) T+ Ay, (Ag,) T
=ka(cos aX} —sinaXk J(A% )7 + ks(sin@Af + cosaX¥ J(AE )T

92,1

)T + (ks cosa — kysina) A% (A5 )T

= (kg cosa + kg sin @) AF (A} .

92,1

Then, we have ki = kycosa + kasina and pf , = ks cosa — kg sin v, which leads to kf + (p} 5)? = k3 + k3.
Combined with 14k} = k3 + k3, we have |pf 5| = 1, which contradicts to the fact that ®* is positive definite.
Thus, only the first case is allowed. Without loss of generation, we assume g5 = go.

For the first case in (G.3), there exists some «, 3 such that A; = cosaA} —sinad} , Ay, = sinaAf +

cos a\®

ws Az = cos BAS —sin fAY and Ay, = sin A + cos BAY,. We then have the following equation

cosa  sina 1 0 cos —sinf 1 0

—sina cosa [ \O pi2) \sinf cosf 0 piy

which leads to 1 = cosacos 8 + piasinasin §. Since |p12| < 1, we have cosacos S = 1 and sinasin 8 = 0.
Without loss of generation, we assume cosa = cos3 = 1. Then we have A; = AT, Ay, = A¥ | Ao = A,
Ago = A;, and p1a = piy.

For any group gs # ¢1,92, we consider the Bj; u Bj; rows and Bj; v By columns of A®(A)T and
A*®*(A*)T. Similar to the the proof of go, there exists only one possible bi-factor structure : For some

g5 €{1,...,G}, we have

1 0 0 AT A 1 0 0 AHT  (AHT
Al Ay O PV S

0 1 puaffA, OF[= 0 1 pig||)T of
As 0 Ay o A5 0 AR . : .

0 prg 1 0 Agé 0 pig 1 0 ()‘;3) )

where A; = A[BE, {1}], Ay = A[BE, {1+ g/}], A¥ = A*[BE, {1}] and XX = A*[BE {1+ g1}] for i = 1,3.

_ % %
P1,3 = ¢1+g/171+g’3 and P13 = ¢1+g1,1+g3' We then have

MED T +pFaAE (AE)T = A1(Xs) T + p13Ag (Ag) "

AT T HALA5)T = Xs(Xs) T+ Agy(Ng)

Since we have proved A = A1 and Ay = Ay, we then have AJ = X3, Ay, = Ay, pi3 = p13or A = —Ag,
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p>1k73 = —P1,3

Now, since A has G group factors, according to the previous proof, each variable belonging to B} loads
on a unique group factor according to A and the loadings of the general factor and the group factors are
determined up to a sign flip for ¢ = 1,...,G. Thus, there exist a diagonal sign-flip matrix D € D and a
permutation matrix P € P such that A = A*PD. It is straightforward to further check that ® = DPT®*PD.

Thus, the proof is completed.

G.2 Identifiability of Estimated Bi-factor Structure in Real Data Example

For any matrix A, we use rank(A) to denote the rank of A. The following condition is a necessary condition
for the identifiability of the extended bi-factor model under a known bi-factor structure, as proposed in

Theorem 3 of Fang et al. (2021).
Condition 4. |By| > 2 forallg=1,...,G.

We then propose the following condition for the identifiability of parameters when the true bi-factor

structure is the same as the estimated structure in Section 4.

Condition 5. For any m x n dimensional submatriz of ®[{2,...,1+G},{2,...,1+G}], 1 <m,n < G, it’s

rank is min(m,n).
Condition 6. For any g such that |B}| = 3, any 2 rows of A*[Bj,{1,1+ g}] are linearly independent.

Remark 4. Condition 5 restricts that the correlation matrix of group factors does not degenerate. In
Theorem 2, we restrict the parametric space of ® to the space satisfying Condition 5. We note that A
in Section 4 satisfies Condition 5. Condition 6 is easy to check in practice and A in Section 4 satisfies

Condition 6.

Theorem 2. Suppose the true bi-factor structure follows A in Section 4. Let A*, ®* and U* be the true
parameters such that Conditions 4 -6 are satisfied. For any parameters A, ® and ¥ that satisfy Conditions 4
and § and A*®* (A*)T +U* = A®(A)T + U, there exists a diagonal sign-flip matriz D € D and a permutation

matriz P € P such that A = A*PD, ® = DPT®*PD and U* = U,

Proof of Theorem 2 : Without loss of generation, we assume that |B¥| = |BX| =5, |B¥| = |Bf| =4
and |B¥| = |BE| = |B#| = 2. Suppose that there exists A, ® and ¥ and ¥ = A®AT + ¥ such that X = £*.
The proof consists of two parts: (1) Show that A[u}_;Bf,:] and A*[Ul ,BF,:] has the same bi-factor
structure. Without loss of generality, we further assume that A[B}, {1 +i}] # 0 for i = 1,...,4. We show

that there exists some 5 x 5 sign flip matrix D such that Alui B {1,...,5}] = A*[ul BF {1,..., 5D,
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®[{1,...,5}{1,...,5}] = D®*[{1,...,5},{1,...,5}]D and v; = ¢¥ for j € UL, BF. (2) Show that A and
A* have the same bi-factor structure for the rest of the variables and complete the proof.

We now prove the first part. Let F; = {g : A[B},{1 + g}] # 0} U {1} be the set of factors such that the
variables belonging to B load on these factors for i = 1,...,4. We note that |F;| > 2 fori =1,...,4. When

|Fi| = 2, all variables that belong to B} load on the same group factor. We claim that
rank(A[BF, F;]) = |F| if |F| < |Bf| for i=1,...,4. (G.5)

If [F;| < [B}|, there exists some g; € F;, g; # 1 and jg,, jg, € B such that A;, 144, # 0 and Ajr 144, # 0.

For 1 <14’ < 4,4 # i, consider the equation X[{j,,,jy.}, Bii] = X*[{Jg., 5, }, Bi], which is equivalent to

A[{Jyujglgl}v {L 1+ gi}](I)[{L 1+ gi}vfi’](A[Bzv}-i’])T

=N [{Ggir Jg, 1o A1 1+ A [{L, 1 +d}, {1, 1+ }(A*[BE {1, 1+ 3]) T

(G.6)

Noticing that by Condition 5 and 6 hold for ®* and A*,
A [{gedo 3 AL T+ @ [{1,1 + i}, {1, 1 + ¢ }(A*[BE, {1, 1+ '}]) T

has rank 2. Thus, A[{jg,,Jg,},{1,1 + g;}] should have rank 2. Otherwise, A[{ji,ji},{1,1 + g;}]®[{1,1 +
gi}, Firl(A[B%, Fir]) T has at most rank 1, which contradicts (G.6). Then, since for each g} € F;, g # 1, there
exists some jg; such that A; o # 0, it is easy to check that (G.5) holds.

Then, consider the equation X[Bf, Bf| = ¥*[B}, B}] for 1 < i # ¢’ < 4, which is equivalent to
A[BF, F®[Fi, Ful(A[BE, Fol) T = A¥[BF, {1,1 +d}]®[{1,1 + i}, {1, 1+ i'})(A[BE, {1,1 +4}])".

With the same argument, A*[B5, {1, 1+i}]®[{1, 1+4}, {1, 1+4'}](A[BF, {1,1+i'}]) T has rank 2. By Sylvester’s

rank inequality, we have

rank(A[B}, Fi|®[F;, Fo |(A[BE, Fo)T)

Srank((A[BE, F]) + rank([Fy, Fy]) + rank(A[BS, Fo]) — || — |Ful.
We consider the following case

1. |Fi| < |Bf| for all 1 < < 4. In this case, according to claim (G.5) and Condition 5, inequality (G.7)
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leads to

rank(A[Bf, F)®[F;, Fy ] (A[BS, Fo])T) = min(|Fi], | Fo ),

for any 1 <4 # i’ < 4. We then have min(|F;|, |Fi/|) = 2. By applying this argument to all pairs (¢,4’),
1 <i <4 <4, we conclude that there exists at most one F; such that |F;| = 3 for 1 <14 < 4.
If there exists some ¢ such that |F;| = 3 for i = 1,...,4. Without loss of generality, we assume | F;| = 3

and |F;| = 2 for i = 2,3,4. We claim that |F2 u F3| = 3, in other words, the variables belonging to B3

and B3 load on different factors. Otherwise, |F2 U F3| = 2. Consider the equation

Y[By v B, By v BY] = X*[By v BY, By B3,

which is equivalent to

A[BS U BE, Fo U F3]|®[Fa u Fs, Fo U F3|(A[B U BE, Fo u F3]) | + U[Bs U B, Bi U Bi] as
=A*[B3 U Bf,{1,3,4}]®*[{1,3,4}, {1,3,4}](A*[B} U B%, {1,3,4}]) " + U*[B} U BE, B U Bi]. o
Since A* satisfies Condition 6, noticing that |Bi| > 4 and |B¥| > 4, it is easy to check that the
matrix A*[BS u B¥, {1, 3,4}] satisfies the condition for Theorem 5.1 of Anderson and Rubin (1956),
that is, if any row of A*[B5 U Bi,{1,3,4}] is deleted, there still remains two disjoint submatrices of
A*[B3 v B¥,{1,3,4}] with rank 3. By applying Theorem 5.1 of Anderson and Rubin (1956), we have
U[Bs uBi, Bs U B =U*[By v B, BS U B¥]. Thus, we further have

A[B3 L B, Fp U F3]®[Fa U F3, Fp U F3)(A[Bs 0 B, Fo u Fs])' o)
G.9

=A*[B © B, {1,3,4}]0*[{1,3,4}, {1,3,4}](A*[B} v BS, {1,3,4}]) .
If |72 u F3| = 2, then the rank of the matrix in the first line of (G.9) is 2, which contradicts the
fact that the rank of the matrix in the second line of (G.9) is 3. Thus, |Fy U F3| = 3. We note that
with a similar argument used in (G.8) and (G.9), we also have |Fo U Fy| = 3, |F3 u F4| = 3 and

| Uiz2,3.4 Fi| = 4. Then, consider the equation

N[BT, By v B3] = X¥[BY, By v B3],

20



which is equivalent to

A[BF, F1]®[F1, Fo u F3](A[BE u BE, Fou F3) ' (10)
.10
=A*[Bf,{1,2}]®*[{1,2},{1,3,4}](A*[Bf v B3, {1,3,4}])".

We note that the rank of the matrix in the second line of (G.10) is 2. According to Sylvester’s rank

inequality

rank(A[BF, F1|®[F1, Fo u Fa|(A[BE U BE, Fou F3)T)
>rank(A[BY, F1]) + rank(®[Fy, Fo U Fs]) + rank(A[B5 U By, Fo u F3]) — | F1| — 3
:|]:1| + mln(|f1|,3) + 3— ‘]‘—1‘ -3

=3,

which contradicts (G.10).

Thus, in the case, |F;| = 2 for i = 1,...,4. Consider the equation

Y iz, aBf, Uiz, 4Bl ] = X% [Uim1, 4B viz 1B} (G.11)

By the similar argument discussed in (G.8), (G.9) and further applying Theorem 1 to (G.11), we con-
clude that in this case, A[uf_;B¥,:] and A*[U?_, B}, :] has the same bi-factor structure. Without loss
of generality, we further assume that F; = {1,144} for i = 1,...,4. Then, there exists some 5 x 5 sign
flip matrix D such that A[ui B {1,...,5}] = A*[ub B¥ {1,..., 5}]137 o[{1,...,5},{1,...,5}] =
D®*[{1,...,5},{1,...,5}]D and ¢; = ¥¥ for j € UL B

. There exists some 1 <4 < 4 such that |F;| =1+ |Bf| = 5. In this case, according to (G.7)
rank(A[B}, Fi|®[F;, Fo J(A[BE, Fu])T) = 3 if |Fu| = 4.

Thus, |Fir| <3 < |B}| for all 1 < ¢’ <4, ¢ # i. Without loss of generality, let ¢ = 1. For ¢’ = 2,3,4,
by the same argument in case 1, we have 75 = {1,1 + go}, F3 = {1,1 + g3} and Fy = {1,1+ g4} for
different g2, g3 and g4. Moreover, rank(A[u;—2 3 485, Ui—a 34F;]) = 4.

Then, consider the equation X[B¥, U;—0 3 48] = ¥*[B}, U;—2,3.4B], which is equivalent to

A[BF, Fi]®[Fi, Vica 3.4 Fi] (M Uize 3485, Uica 3 4 Fi])
(G.12)

=A*[BF, {1,2}]®*[{1,2},{1,3,4,5}](A[Ui=2,34BF,{1,3,4,5}])
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It is straightforward that A*[Bf, {1,2}]®*[{1,2}, {1,3,4,5}](A[ui=234B8,{1,3,4,5}]) T has rank 2 ac-
cording to Condition 5 and 6. While, since | U;—234 F;| = 4 < |F1|, according to Sylvester’s rank

inequality,

rank(A[BF, F11®[F1, Uiz2 3 aFi | (A[Uiz2 3, 4BF, Uica 34 Fi])T)
>rank(A[BT7 ]‘—1]) + rank(@[}'h U¢=273’4.7:i]) + rank(A[ui=273,4Bf‘, Ui=2,3,4}—i]) — ‘fl‘ —4
=|Fl-1+4+4—|F|—-4

=3,

which contradicts to equation (G.12). Thus, this case does not exist.

Next, we prove the second part. We denote by BE = {js,j6}, B& = {Jj7,Js} and B¥ = {jg, j1o}. Since
A, ® and ¥ satisfy Condition 4, there exists three types of possible of bi-factor structure of Bs, Bg and By
and we discuss the three cases one by one. Without loss of generality, we assume D’ given in the first part

equals the identity matrix.

1. None of the bi-factor structures of the variables belonging to B, i = 5,6, 7, is correct. Without loss
of generality, we assume Bs = {J5, ji0}, Bs = {Js,J7} and By = {Js, jo}. In this case, we consider the
equation

E[ TaBg] = E*[BTaBg]v

which is equivalent to

A[BTa {1}]/\j571 + ¢276A[BT7 {2}]>‘j576 = A*[Bfa {1}])‘;‘(5,1 + d);GA*[ T? {2}])‘;:5,67

A[BY, {1} Aje 1 + 2,7 AIBT, {21 Ao 7 = A*[BY, {1}AS, 1 + 03 6A*[BT, {2}, 6-

Since the first part is proved, we have assumed that A[BF,{1}] = A*[BF,{1}] and A[B},{2}] =
A*[BF, {2}]. Noticing that A*[BY, {1}] and A*[BY, {2}] are linearly independent, we have A;; 1 = A% |
and Aj,1 = A% ;. Similarly, by considering the equations X[BY, B§| = ¥*[Bf, B§] and (B}, B7] =

¥ [BF, B¥], we have Aj, 1 = AL 1 Njed = AJoas Ajo1 = A g and Aj o1 =AY .

By considering the equation

Z[j5uj6] = Z*[j5aj6]7

which is equivalent to )\j5;1>\j671 + ¢6,7)\j576Aj677 = /\;{5’1)\%)1 + /\;’(5,6)‘;5,6' We further have

¢6,7)‘j5,6/\j677 = /\;‘576)\;2)6. (G13)
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We can similarly have the equations

— * * *

P6,7Nj5,6Njz, 7 = Do A 6N T
_ * % *

$6,70j10,6Nj6,7 = D6.8N710,8Njs,60 (G.14)
_ %y k %

$6,7j10,60j7.8 = D780 8], 7

By combining the equations (G.13) and (G.14), we have ¢ ¢f 3 = ¢ 5. In a symmetric manner, we

further have ¢f 307 s = ¢§ 7 and of ;07 5 = &f 5. Since ¢F 7, Of s and ¢7 g # 0, we have [f O 307 5

1, which leads to |¢f ;| = [¢§ s| = |#% 3| = 1 and violates the assumption that ®* is positive definite.

Thus, this case does not exist.

. Only one of the bi-factor structures of the variables belonging to Bf, ¢ = 5,6,7, is correct. Without
loss of generality, we assume Bs = {js5,76}, Bs = {Jjr7,Jo} and By = {Js,ji0}. By the same argument
in the first case, we have \;, 1 = /\;'2,1 for ¢ = 5,...,10. Next, consider the equations on the diagonal

entries of

Y[Bg v B, BE U BY =X*[Bg v B, BE L BE.

we have the following 6 equations

G7.8Nj7,7Njs .8 = AJy 2 AT 7
)‘j7,7>‘j9,7 = ¢$,8>‘;7,7)\;<9,8’
¢7,8)‘j7,7>\j1078 = QS?,S/\;ZJ)\;O,S’
D7.8Njs 8Njo.7 = D7 g Ajs 1AL s
Njs,8Nj10,8 = 97805 7AT10.85

ok %
$7,8X0,7Nj10,8 = AJy 8AJ 08¢

According to the first equation above, we have ¢7 g # 0. By the 6 equations, we also have (¢$,8)4¢$,8 =

¢% 5. Then we have |¢% ¢ = |78

= 1, which violates the assumption that ®* is positive definite.

Thus, this case does not exist.

. The bi-factor structure is correct. Without loss of generality, we assume Bs = {js,js}, Bs = {j7,Js}
and By = {jg,jio}. Similar to the previous argument, we first have A;,; = A¥ | for i = 5,...,10.
Moreover, we have ¢2 656 = (b;ﬁ)\;ﬁ, $2,606,6 = ¢;‘76A§76 and A5 666 = A% g 2’3‘76. These 3 equations
leads to ¢2,6 = #36, As.6 = A5 and Ag6 = Af g OF P26 = —P3 6, As,6 = —Alg and Ag 6 = —A§ . With

the same argument, the loadings and correlations related with the variables belonging to Bf and B3
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are also determined up to a sign flip. The check of 9; = 1/);‘ for j € Bf, i =5,6,7 are straight forward.
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