
Appendix

A Reparameterization of Φ

To deal with the constraints in Φ, we consider the following reparameterisation that has been considered in

Alfonzetti et al. (2024), which is also similar to the implementation in the state-of-the-art statistical software

Stan (Stan Development Team, 2022):
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where U is defined recursively by
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Here zij “ tanhpγijq is the Fisher’s transformation of GpG´ 1q{2 unconstrained parameters γij .

B Population Parameter Values in Simulations

In this section, we supplement the population values of factor loadings and factor correlations in Section 3.

Under the setting pJ,Gq “ p15, 3q, the loading matrix Λ˚ and Φ˚ in (8) and (9) are given in (B.1), (B.2),
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(B.3) and (B.4) respectively.
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Under the setting pJ,Gq “ p30, 5q, the loading matrix Λ in (8) and (9) are given in (B.5) and (B.6). The

3



correlation matrix Φ in (8) and (9) are given in (B.7) and (B.8).
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C Sensitivity Analysis

In this section, we carry out a sensitivity analysis on the parameters cθ and cσ of the proposed ALM method.

We consider the same exact bi-factor model settings as in Study I of Section 3.1. For each settings, we choose

cθ P t0.25, 0.5, 0.75u and cσ P t5, 10, 15u, resulting in 9 possible combinations of pcθ, cσq. The estimation

of loading matrix, the computation time of ALM, and the results of the recovery of the bi-factor structure

are shown in Table C.1 to Table C.4. From the sensitivity analysis, we can see that the ALM’s results are

relatively stable with respect to the choice of parameters cθ and cσ.

D Extension to Hierarchical Factor Analysis

D.1 Constrained Optimisation for Exploratory Hierarchical Factor Analysis

To further demonstrate the advantages of the constraint-based approach, we discuss how it can be extended

for exploratory hierarchical factor analysis. Following the terminology adopted in Yung et al. (1999), we

6



Table C.1: Sensitivity Analysis of MSE of pΛ.

cσ

cθ
0.25 0.5 0.75

5 2.10 ˆ 10´3 2.10 ˆ 10´3 2.10 ˆ 10´3

10 2.10 ˆ 10´3 2.10 ˆ 10´3 2.10 ˆ 10´3

15 2.10 ˆ 10´3 2.10 ˆ 10´3 2.10 ˆ 10´3

(a) J “ 15, G “ 3, n “ 500

cσ

cθ
0.25 0.5 0.75

5 0.54 ˆ 10´3 0.54 ˆ 10´3 0.54 ˆ 10´3

10 0.54 ˆ 10´3 0.54 ˆ 10´3 0.54 ˆ 10´3

15 0.54 ˆ 10´3 0.54 ˆ 10´3 0.54 ˆ 10´3

(b) J “ 15, G “ 3, n “ 2000

cσ

cθ
0.25 0.5 0.75

5 1.36 ˆ 10´3 1.38 ˆ 10´3 1.39 ˆ 10´3

10 1.36 ˆ 10´3 1.42 ˆ 10´3 1.33 ˆ 10´3

15 1.42 ˆ 10´3 1.36 ˆ 10´3 1.44 ˆ 10´3

(c) J “ 30, G “ 5, n “ 500

cσ

cθ
0.25 0.5 0.75

5 0.30 ˆ 10´3 0.30 ˆ 10´3 0.30 ˆ 10´3

10 0.30 ˆ 10´3 0.30 ˆ 10´3 0.30 ˆ 10´3

15 0.30 ˆ 10´3 0.30 ˆ 10´3 0.30 ˆ 10´3

(d) J “ 30, G “ 5, n “ 2000

Table C.2: Sensitivity Analysis of EMC.

cσ

cθ
0.25 0.5 0.75

5 1.00 1.00 1.00

10 1.00 1.00 1.00

15 1.00 1.00 1.00

(a) J “ 15, G “ 3, n “ 500

cσ

cθ
0.25 0.5 0.75

5 1.00 1.00 1.00

10 1.00 1.00 1.00

15 1.00 1.00 1.00

(b) J “ 15, G “ 3, n “ 2000

cσ

cθ
0.25 0.5 0.75

5 0.86 0.86 0.85

10 0.85 0.84 0.85

15 0.83 0.86 0.83

(c) J “ 30, G “ 5, n “ 500

cσ

cθ
0.25 0.5 0.75

5 1.00 1.00 1.00

10 1.00 1.00 1.00

15 1.00 1.00 1.00

(d) J “ 30, G “ 5, n “ 2000
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Table C.3: Sensitivity Analysis of ACC.

cσ

cθ
0.25 0.5 0.75

5 1.000 1.000 1.000

10 1.000 1.000 1.000

15 1.000 1.000 1.000

(a) J “ 15, G “ 3, n “ 500

cσ

cθ
0.25 0.5 0.75

5 1.000 1.000 1.000

10 1.000 1.000 1.000

15 1.000 1.000 1.000

(b) J “ 15, G “ 3, n “ 2000

cσ

cθ
0.25 0.5 0.75

5 0.998 0.998 0.998

10 0.998 0.997 0.998

15 0.997 0.998 0.997

(c) J “ 30, G “ 5, n “ 500

cσ

cθ
0.25 0.5 0.75

5 1.000 1.000 1.000

10 1.000 1.000 1.000

15 1.000 1.000 1.000

(d) J “ 30, G “ 5, n “ 2000

Table C.4: Sensitivity Analysis of Computation time(s).

cσ

cθ
0.25 0.5 0.75

5 0.13 0.13 0.13

10 0.13 0.13 0.12

15 0.10 0.09 0.08

(a) J “ 15, G “ 3, n “ 500

cσ

cθ
0.25 0.5 0.75

5 0.10 0.09 0.10

10 0.10 0.09 0.09

15 0.07 0.06 0.06

(b) J “ 15, G “ 3, n “ 2000

cσ

cθ
0.25 0.5 0.75

5 0.52 0.51 0.50

10 0.49 0.47 0.41

15 0.36 0.33 0.30

(c) J “ 30, G “ 5, n “ 500

cσ

cθ
0.25 0.5 0.75

5 0.38 0.37 0.37

10 0.37 0.33 0.28

15 0.23 0.22 0.24

(d) J “ 30, G “ 5, n “ 2000
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(a) The path diagram of a three-layer hierarchical factor model.

F1

F2 F3

F4 F5 F6 F7

(b) The corresponding factor hierarchy.

Figure D.1: The illustrative example of a three-layer hierarchical factor model.

consider general hierarchical factor models. Such a model has several layers of factors. In each layer, each

observed variable loads on exactly one of the factors in that layer. The numbering of the layers is determined

by the number of factors in the layer, starting from the layer with the largest number of factors. Each factor

in a lower layer is nested within a factor in a higher layer, in the sense that the variables loading on the

lower-layer factor must also all load on a higher-layer factor. All the factors are assumed to be uncorrelated

(i.e., Φ is an identity matrix), though this assumption may be relaxed to allow some correlations between

factors within the same layer as in the extended bi-factor model.

Panel (a) of Figure D.1 provides the path diagram of a hierarchical factor model that has three layers,

with factor F1 in layer 3, factors F2 and F3 in layer 2, and factors F4-F7 in layer 1. The corresponding factor

hierarchy is summarised in Panel (b) of Figure D.1 that takes the form of a tree, where F2 and F3 are nested

within F1, F4 and F5 are nested within F2, and F6 and F7 are nested within F3. In what follows, we show

how the loading structure of this three-layer hierarchical model can be learned by a constrained optimisation

method, assuming that the factor hierarchy in Panel (b) of Figure D.1 is known while the variables loading

on each factor are unknown. The goal is to learn how the observed variables load on the seven factors.

Following the same notation for bi-factor analysis, the population covariance matrix of observed variables

under the hierarchical factor model can be written as

Σ “ ΛΛJ ` Ψ,

where Λ is a J ˆ 7 matrix, and Ψ is a J ˆ J diagonal matrix. Note that we no longer need the correlation

9



matrix Φ in the expression as it is now an identity matrix. The constraints implied by the hierarchical factor

structure become:

λj2λj3 “ 0, λj2λj6 “ 0, λj2λj7 “ 0,

λj3λj4 “ 0, λj3λj5 “ 0,

λj4λj5 “ 0, λj6λj7 “ 0, j “ 1, ..., J.

(D.1)

Consequently, the corresponding hierarchical factor model can be learned by minimising the loss function

lpΛΛJ ` Ψpψq;Sq, subject to the constraints in (D.1).

Although the above discussion focuses on the specific hierarchical factor structure in Figure D.1, when

given a different factor hierarchy, it is easy to derive similar constraints as in (D.1) by induction. Based on

the constraints, the corresponding hierarchical factor model can be learned by an ALM.

Finally, we note that the factor hierarchy is typically unknown in practice. In that case, we need

an algorithm that simultaneously learns the factor hierarchy and the variable loadings on the hierarchical

factors. As there are exponentially many choices for the structure of factor hierarchy, this problem is more

challenging than the setting when the factor hierarchy is known. It is also more challenging than exploratory

bi-factor analysis with unknown group factors, as the bi-factor model has a simple two-layer factor hierarchy

that is completely determined by the number of factors.

D.2 Simulation

In this section, we examine the recovery of the hierarchical structure of our method. For J P t20, 40u

and N P t500, 2000u, a data generation model is considered, resulting in a total of 4 simulation settings.

With slight abuse of notation, we denote by B˚
g as the true item groups related to the gth factor. In

the data generation model, B˚
1 “ t1, . . . , Ju, B˚

2 “ t1, . . . , J{2u, B˚
3 “ tJ{2, . . . , Ju, B˚

4 “ t1, . . . , J{4u,

B˚
5 “ tJ{4, . . . , J{2u, B˚

6 “ tJ{2, . . . , 3J{4u, B˚
7 “ t3J{4, . . . , Ju. Ψ˚ “ IJˆJ , and Λ˚ follows

λ˚
jk “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ujk if k “ 1;

0 if k ą 1, j R B˚
k´1;

p1 ´ 2xjkqujk if k ą 1, j P B˚
k´1,

for j “ 1, . . . , J and k “ 1, . . . , G` 1. Here, ujks are i.i.d., following a Uniformp0.2, 1q distribution, and xjks

are i.i.d., following a Bernoullip0.5q distribution.

The estimated parameters pΛ and pΨ follow the same ALM algorithm in Section 2.2 except that the distance
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between the estimate and the space of the hierarchical factor loading matrices measured by

max
jPt1,...,Ju

rhp|λ
ptq
j2 |, ..., |λ

ptq
j,G`1|q,

where the function rh returns the third-largest value of a vector. The estimated hierarchical factor model

structure is then given by

pBg “ tj : |λ
pT q

j,g`1| ą δ2u.

We also choose δ2 “ 10´2 on the following simulation study.

Since label-switching problem exists in factors that are nested within the same hierarchical factor, there

exists 8 possible permutations of labels resulting in the same hierarchical structure. We denote by R as the

set of the 8 permutations. Then, the evaluation criteria for the recovery of the hierarchical structure are

defined as:

• Exact Match Criterion(EMC): maxσPR
śG

g“1 1pBσpgq “ B˚
g q, which equals 1 when the bi-factor struc-

ture is correctly learned and 0 otherwise.

• Average Correctness Criterion(ACC): maxσPR
řG

g“1p|B˚
g X Bσpgq| ` |BC

σpgq
X B˚C

g |q{pJGq.

For each setting, we first generate Λ˚ once and use them to generate 100 datasets. The averaged results

under 100 replication are shown in Table D.1. From the simulation results, we find that our method performs

well on the recovery of hierarchical structure.

Table D.1: Simulation results of the recovery of hierarchical factor structure.

J N EMC ACC

20 500 0.94 0.998

2000 1.00 1.000

40 500 0.88 0.988

2000 1.00 1.000
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E Extraversion Scale Item Key

Table E.1: Extraversion Item Key

Item Sign Facet Item

1 +E1 Friendliness Make friends easily.

2 +E1 Friendliness Feel comfortable around people.

3 ´E1 Friendliness Avoid contacts with others.

4 ´E1 Friendliness Keep others at a distance.

5 +E2 Gregariousness Love large parties.

6 +E2 Gregariousness Talk to a lot of different people at parties.

7 ´E2 Gregariousness Prefer to be alone.

8 ´E2 Gregariousness Avoid crowds.

9 +E3 Assertiveness Take charge.

10 +E3 Assertiveness Try to lead others.

11 +E3 Assertiveness Take control of things.

12 ´E3 Assertiveness Wait for others to lead the way.

13 +E4 Activity Level Am always busy.

14 +E4 Activity Level Am always on the go.

15 +E4 Activity Level Do a lot in my spare time.

16 ´E4 Activity Level Like to take it easy.

17 +E5 Excitement-Seeking Love excitement.

18 +E5 Excitement-Seeking Seek adventure.

19 +E5 Excitement-Seeking Enjoy being reckless.

20 +E5 Excitement-Seeking Act wild and crazy.

21 +E6 Cheerfulness Radiate joy.

22 +E6 Cheerfulness Have a lot of fun.

23 +E6 Cheerfulness Love life.

24 +E6 Cheerfulness Look at the bright side of life.

F Real Data Analysis using Bi-factor Rotation Method

In this section, we present the results of the same data in Section 4 by bi-factor rotation method as a

comparison with our proposed method.

Using a candidate set G “ t2, . . . , 12u, the BIC procedure of exploratory factor analysis given in Sec-

tion 3.2 selects eight factors in total, which coincide with the number of factors selected by the BIC procedure

of our proposed method. By applying the bi-factor rotation method(Jennrich and Bentler, 2012), we get the
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rotation solutions pΛoblq in Table F.1 and pΦoblq in equation (F.1).

Table F.1: Estimated loading matrix pΛoblq with seven group factors.

Items Sign General G1 G2 G3 G4 G5 G6 G7

1 +E1 0.86 0.01 -0.06 -0.08 -0.03 -0.04 0.42 -0.08

2 +E1 0.85 0.03 -0.11 0.03 0.06 -0.12 0.07 -0.01

3 ´E1 0.91 -0.02 -0.12 -0.01 0.03 -0.09 -0.02 -0.05

4 ´E1 0.87 -0.14 -0.04 -0.01 -0.10 -0.14 -0.03 -0.20

5 +E2 0.88 0.69 0.00 0.00 -0.02 0.00 -0.01 0.01

6 +E2 0.92 0.25 0.03 -0.12 0.09 0.05 0.22 -0.03

7 ´E2 0.72 -0.06 -0.03 -0.04 -0.08 -0.16 -0.21 -0.12

8 ´E2 0.85 0.22 -0.02 -0.05 -0.06 -0.07 -0.29 -0.08

9 +E3 0.52 0.02 0.02 0.00 0.79 0.02 0.04 -0.03

10 +E3 0.52 0.04 0.00 0.00 0.75 -0.03 0.03 0.01

11 +E3 0.44 -0.03 0.00 0.05 0.62 0.04 -0.08 0.01

12 ´E3 0.55 -0.09 -0.04 -0.02 0.62 -0.05 -0.06 0.06

13 +E4 0.32 0.05 0.01 0.00 0.02 0.82 -0.02 -0.06

14 +E4 0.51 -0.07 0.02 -0.02 -0.01 0.74 0.06 0.06

15 +E4 0.49 0.02 -0.08 0.15 -0.02 0.51 -0.06 0.14

16 ´E4 0.19 -0.14 -0.04 -0.14 0.08 0.37 -0.19 -0.07

17 +E5 0.46 0.09 -0.03 -0.04 0.02 0.02 0.06 0.49

18 +E5 0.53 -0.05 0.02 0.00 0.01 0.03 -0.04 0.62

19 +E5 0.28 0.05 0.48 -0.02 0.02 -0.12 0.00 0.33

20 +E5 0.48 0.00 1.10 0.00 0.00 0.01 0.00 -0.02

21 +E6 0.64 -0.12 0.04 0.26 -0.04 0.01 0.28 -0.01

22 +E6 0.69 0.06 0.11 0.40 -0.01 0.01 0.09 0.08

23 +E6 0.63 0.02 -0.01 0.63 0.03 0.01 -0.05 -0.01

24 +E6 0.58 -0.04 -0.03 0.60 0.00 -0.02 0.01 -0.04

pΦoblq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0

0 1 0.19 ´0.14 ´0.17 ´0.15 0.10 0.05

0 0.19 1 ´0.10 0.00 ´0.07 0.11 0.39

0 ´0.14 ´0.10 1 0.02 0.07 0.06 0.07

0 ´0.17 0.00 0.02 1 0.21 ´0.07 0.11

0 ´0.15 ´0.07 0.07 0.21 1 ´0.09 0.01

0 0.10 0.11 0.06 ´0.07 ´0.09 1 0.00

0 0.05 0.39 0.07 0.11 0.01 0.00 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (F.1)

To help to identify a bi-factor structure from pΛoblq, all loadings whose absolute value is less than 0.2 are
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set to zero, as is done in Jennrich and Bentler (2012). The adjusted loadings are presented in Table F.2. As

expected, the loading structure does not conform strictly to a bi-factor model, with four items loading onto

three factors.

Table F.2: Estimated bi-factor loading matrix with seven group factors.

Items Sign General G1 G2 G3 G4 G5 G6 G7

1 +E1 0.86 0 0 0 0 0 0.42 0

2 +E1 0.85 0 0 0 0 0 0 0

3 ´E1 0.91 0 0 0 0 0 0 0

4 ´E1 0.87 0 0 0 0 0 0 -0.20

5 +E2 0.88 0.69 0 0 0 0 0 0

6 +E2 0.92 0.25 0 0 0 0 0.22 0

7 ´E2 0.72 0 0 0 0 0 -0.21 0

8 ´E2 0.85 0.22 0 0 0 0 -0.29 0

9 +E3 0.52 0 0 0 0.79 0 0 0

10 +E3 0.52 0 0 0 0.75 0 0 0

11 +E3 0.44 0 0 0 0.62 0 0 0

12 ´E3 0.55 0 0 0 0.62 0 0 0

13 +E4 0.32 0 0 0 0 0.82 0 0

14 +E4 0.51 0 0 0 0 0.74 0 0

15 +E4 0.49 0 0 0 0 0.51 0 0

16 ´E4 0 0 0 0 0 0.37 0 0

17 +E5 0.46 0 0 0 0 0 0 0.49

18 +E5 0.53 0 0 0 0 0 0 0.62

19 +E5 0.28 0 0.48 0 0 0 0 0.33

20 +E5 0.48 0 1.10 0 0 0 0 0

21 +E6 0.64 0 0 0.26 0 0 0.28 0

22 +E6 0.69 0 0 0.40 0 0 0 0

23 +E6 0.63 0 0 0.63 0 0 0 0

24 +E6 0.58 0 0 0.60 0 0 0 0

We now analyze the estimated model in detail. In this result, we have adjusted the sign flip and column

swapping to align with the result of the proposed method. All loadings on the general factor are positive,

supporting the existence of a general extraversion factor. We interpret the group factors G3, G4, G5 as the

Cheerfulness, Assertiveness and Activity Level factors respectively. G2, loaded with the items ”19 Enjoy

being reckless” and ”20 Act wild and crazy” is interpreted as the Reckless Excitement-Seeking factor and

consistent with the result from our proposed method. G7 is loaded with items ”4 Keep others at a distance”,

”17 Love excitement”, ”18 Seek adventure” and ”19 Enjoy being reckless”. Even though G2 and G7 are

loaded with item 19 in common, G7 emphasizes more on the pursuit of meaningful experiences. So we still

interpret G7 as the Meaningful Excitement-Seeking factor. Additionally, G2 and G7 are positively correlated,
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as is the case in Section 4.

There is a notable difference between the results from the two methods. The result of the ALM method

shows the clear presence of a Friendliness factor (G1) and a Gregariousness factor (G6). However, for the

bi-factor rotation method, these does not seem to exist a clear Friendliness factor. Both G1 and G6 in

the solution of the bi-factor rotation method are related to Gregariousness. Large loadings of the variables

designed to measure Friendliness now spread out among several group factors.

Overall, both methods suggest similar (approximate) bi-factor model structures, and the result from the

proposed method tends to be neater and more interpretable.

G Technical Proofs

G.1 Proof of Theorem 1

Suppose that ΛΦpΛqJ `Ψ “ Λ˚Φ˚pΛ˚qJ `Ψ˚. Under Condition 1, we have ΛΦpΛqJ “ Λ˚Φ˚pΛ˚qJ. For the

simplicity of the notation, we substitute ΛrB˚
g , t1, . . . , G`1us for ΛrB˚

g , :s. The proof consists of three parts:(1)

show the bi-factor structure of B˚
g1 is unique, (2) show that combined with some group g2 P H˚, g2 ‰ g1,

ΛrB˚
g1 , :s is identified up to a sign flip and a group permutation, (3) complete the proof of Theorem 1.

We first consider the equation

ΛrB˚
g1 , :sΦpΛrB˚

g1 , :sq
J “ Λ˚rB˚

g1 , t1, 1 ` g1uspΛ˚rB˚
g1 , t1, 1 ` g1usqJ. (G.1)

Since the matrix on the right side of (G.1) has rank 2, there exist 2 possible bi-factor structures for the matrix

on the left side of (G.1): (1)ΛrB˚
g1 , t1, 1`g1

1uspΛrB˚
g1 , t1, 1`g1

1usqJ “ Λ˚rB˚
g1 , t1, 1`g1uspΛ˚rB˚

g1 , t1, 1`g1usqJ

for some g1
1 P t1, . . . , Gu and (2) There exists a partition of B˚

g1 “ B˚
g1,1 Y B˚

g1,2 and g1
1, g

1
2 P t1, . . . , Gu such

that

¨

˚

˚

˝

λ1 λg1
1

0

λ2 0 λg1
2

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 ϕ1`g1
1,1`g1

2

0 ϕ1`g1
1,1`g1

2
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

λJ
1 λJ

2

λJ
g1
1

0J

0J λJ
g1
2

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

λ˚
1 λ˚

g1

λ˚
2 λ˚

g2

˛

‹

‹

‚

¨

˚

˚

˝

pλ˚
1 qJ pλ˚

2 qJ

pλ˚
g1qJ pλ˚

g2qJ

˛

‹

‹

‚

, (G.2)

where λi “ ΛrB˚
g1,i , t1us, λg1

i
“ ΛrB˚

g1,i , t1 ` g1
ius, λ˚

i “ Λ˚rB˚
g1,i , t1us and λ˚

gi “ Λ˚rB˚
g1,i , t1 ` g1us with

λg1
i

‰ 0 for i “ 1, 2.

Here we consider the second case. Since the matrix on the right side of (G.2) has rank 2, we must

have pλi,λg1
i
q has rank 1 for i “ 1, 2, which leads to the fact that pλ˚

i ,λ
˚
giq has rank 1. However, by
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Condition 2, there exists at least one of pλ˚
1 ,λ

˚
g1q and pλ˚

2 ,λ
˚
g2q has rank 2. Thus, we must have ΛrB˚

g1 , t1, 1`

g1
1uspΛrB˚

g1 , t1, 1` g1
1usqJ “ Λ˚rB˚

g1 , t1, 1` g1uspΛ˚rB˚
g1 , t1, 1` g1usqJ for some g1

1 P t1, . . . , Gu. Without loss

of generation, we assume g1
1 “ g1.

Secondly, there exits some g2 P H˚ and g2 ‰ g1 by Condition 2. We consider the B˚
g1 Y B˚

g2 rows and

B˚
g1 YB˚

g2 columns of ΛΦpΛqJ and Λ˚Φ˚pΛ˚qJ. Since the bi-factor structure of the B˚
g1 rows and B˚

g1 columns

has already been known, there are two possible bi-factor structures: (1) There exists some g1
2 P t1, . . . , Gu

such that

¨

˚

˚

˝

λ1 λg1 0

λ2 0 λg1
2

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 ρ1,2

0 ρ1,2 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

λJ
1 λJ

2

λJ
g1 0J

0J λJ
g1
2

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

λ˚
1 λ˚

g1 0

λ˚
2 0 λ˚

g2

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 ρ˚
1,2

0 ρ˚
1,2 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝
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2 qJ
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g1qJ 0J
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,

(G.3)

where λi “ ΛrB˚
gi , t1us, λg1

i
“ ΛrB˚

gi , t1 ` g1
ius, λ˚

i “ Λ˚rB˚
gi , t1us and λ˚

gi “ Λ˚rB˚
gi , t1 ` g1us for i “ 1, 2.

ρ1,2 “ ϕ1`g1
1,1`g1

2
and ρ˚

1,2 “ ϕ˚
1`g1,1`g2

.

(2) There exists a partition of B˚
g2 “ B˚

g2,1 Y B˚
g2,2 and g1

2 P t1, . . . , Gu such that

¨
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(G.4)

where λ1 “ ΛrB˚
g1 , t1us, λg1 “ ΛrB˚

g1 , t1 ` g1us, λ˚
1 “ Λ˚rB˚

g1 , t1us, λ˚
g1 “ Λ˚rB˚

g1 , t1 ` g1us, λ2,i “

ΛrB˚
g2,i

, t1us, λ˚
2,i “ ΛrB˚

g2,i
, t1us, λ˚

g2,i
“ ΛrB˚

g2,i
, t1 ` g2us for i “ 1, 2, λ2,g1 “ ΛrB˚

g2,1
, t1 ` g1us, λ2,g1

2
“

ΛrB˚
g2,2

, t1 ` g1
2us, ρ1,2 “ ϕ1`g1,1`g1

2
and ρ˚

1,2 “ ϕ˚
1`g1,1`g2

.

For the second case in (G.4), there exists some α such that λ1 “ cosαλ˚
1 ´ sinαλ˚

g1 and λg1 “ sinαλ˚
1 `

cosαλ˚
g1 . Since the B

˚
g2 rows and the B˚

g2 columns of ΛΦpΛqJ and Λ˚Φ˚pΛ˚qJ have rank 2, under the bi-factor

structure of the second case, we have that pλ2,1,λ2,g1 ,λ
˚
2,1,λ

˚
g2,1

q has rank 1 and pλ2,2,λ2,g1
2
,λ˚

2,2,λ
˚
g2,2

q has

rank 1. Noticing that λ˚
g2,1

‰ 0, we assume that λ˚
2,1 “ k1λ

˚
g2,1

, λ2,1 “ k2λ
˚
g2,1

and λ2,g1 “ k3λ
˚
g2,1

. For

the B˚
g2,1

rows and the B˚
g2,1

columns of (G.4), we have 1 ` k21 “ k22 ` k23. For the B˚
g1 rows and the B˚

g2,1
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columns of (G.4), we have

λ˚
1 pλ˚

2,1qJ ` ρ˚
1,2λ

˚
g1pλ˚

g2,1qJ

“λ1pλ2,1qJ ` λg1pλ2,g1qJ

“k2pcosαλ˚
1 ´ sinαλ˚

g1qpλ˚
g2,1qJ ` k3psinαλ˚

1 ` cosαλ˚
g1qpλ˚

g2,1qJ

“pk2 cosα ` k3 sinαqλ˚
1 pλ˚

g2,1qJ ` pk3 cosα ´ k2 sinαqλ˚
g1pλ˚

g2,1qJ.

Then, we have k1 “ k2 cosα ` k3 sinα and ρ˚
1,2 “ k3 cosα ´ k2 sinα, which leads to k21 ` pρ˚

1,2q2 “ k22 ` k23.

Combined with 1`k21 “ k22 `k23, we have |ρ˚
1,2| “ 1, which contradicts to the fact that Φ˚ is positive definite.

Thus, only the first case is allowed. Without loss of generation, we assume g1
2 “ g2.

For the first case in (G.3), there exists some α, β such that λ1 “ cosαλ˚
1 ´ sinαλ˚

g1 , λg1 “ sinαλ˚
1 `

cosαλ˚
g1 , λ2 “ cosβλ˚

2 ´ sinβλ˚
g2 and λg2 “ sinβλ˚

2 ` cosβλ˚
g2 . We then have the following equation

¨

˚

˚

˝

cosα sinα

´ sinα cosα

˛

‹

‹

‚

¨

˚

˚

˝

1 0

0 ρ12

˛

‹

‹

‚

¨

˚

˚

˝

cosβ ´ sinβ

sinβ cosβ

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0

0 ρ˚
12

˛

‹

‹

‚

,

which leads to 1 “ cosα cosβ ` ρ12 sinα sinβ. Since |ρ12| ă 1, we have cosα cosβ “ 1 and sinα sinβ “ 0.

Without loss of generation, we assume cosα “ cosβ “ 1. Then we have λ1 “ λ˚
1 , λg1 “ λ˚

g1 , λ2 “ λ˚
2 ,

λg2 “ λ˚
g2 and ρ12 “ ρ˚

12.

For any group g3 ‰ g1, g2, we consider the B˚
g1 Y B˚

g3 rows and B˚
g1 Y B˚

g3 columns of ΛΦpΛqJ and

Λ˚Φ˚pΛ˚qJ. Similar to the the proof of g2, there exists only one possible bi-factor structure : For some

g1
3 P t1, . . . , Gu, we have

¨

˚

˚

˝

λ1 λg1
1

0

λ3 0 λg1
3

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 ρ1,3

0 ρ1,3 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

λJ
1 λJ

3

λJ
g1
1

0J

0J λJ
g1
3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

λ˚
1 λ˚

g1 0

λ˚
3 0 λ˚

g3

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 ρ˚
1,3

0 ρ˚
1,3 1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

pλ˚
1 qJ pλ˚

3 qJ

pλ˚
g1qJ 0J

0J pλ˚
g3qJ,

˛

‹

‹

‹

‹

‹

‹

‚

where λi “ ΛrB˚
gi , t1us, λg1

i
“ ΛrB˚

gi , t1 ` g1
ius, λ˚

i “ Λ˚rB˚
gi , t1us and λ˚

gi “ Λ˚rB˚
gi , t1 ` g1us for i “ 1, 3.

ρ1,3 “ ϕ1`g1
1,1`g1

3
and ρ˚

1,3 “ ϕ˚
1`g1,1`g3

. We then have

λ˚
1 pλ˚

3 qJ ` ρ˚
1,3λ

˚
g1pλ˚

g3qJ “ λ1pλ3qJ ` ρ1,3λg1pλg1
3
qJ

λ˚
3 pλ˚

3 qJ ` λ˚
g3pλ˚

g3qJ “ λ3pλ3qJ ` λg3pλg3qJ.

Since we have proved λ˚
1 “ λ1 and λ˚

g1 “ λg1 , we then have λ˚
3 “ λ3, λ

˚
g3 “ λg1

3
, ρ˚

1,3 “ ρ1,3 or λ˚
g3 “ ´λg1

3
,
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ρ˚
1,3 “ ´ρ1,3.

Now, since Λ has G group factors, according to the previous proof, each variable belonging to B˚
i loads

on a unique group factor according to Λ and the loadings of the general factor and the group factors are

determined up to a sign flip for i “ 1, . . . , G. Thus, there exist a diagonal sign-flip matrix D P D and a

permutation matrix P P P such that Λ “ Λ˚PD. It is straightforward to further check that Φ “ DPJΦ˚PD.

Thus, the proof is completed.

G.2 Identifiability of Estimated Bi-factor Structure in Real Data Example

For any matrix A, we use rankpAq to denote the rank of A. The following condition is a necessary condition

for the identifiability of the extended bi-factor model under a known bi-factor structure, as proposed in

Theorem 3 of Fang et al. (2021).

Condition 4. |Bg| ě 2 for all g “ 1, . . . , G.

We then propose the following condition for the identifiability of parameters when the true bi-factor

structure is the same as the estimated structure in Section 4.

Condition 5. For any mˆn dimensional submatrix of Φrt2, . . . , 1`Gu, t2, . . . , 1`Gus, 1 ď m,n ď G, it’s

rank is minpm,nq.

Condition 6. For any g such that |B˚
g | ě 3, any 2 rows of Λ˚rB˚

g , t1, 1 ` gus are linearly independent.

Remark 4. Condition 5 restricts that the correlation matrix of group factors does not degenerate. In

Theorem 2, we restrict the parametric space of Φ to the space satisfying Condition 5. We note that pΛ

in Section 4 satisfies Condition 5. Condition 6 is easy to check in practice and pΛ in Section 4 satisfies

Condition 6.

Theorem 2. Suppose the true bi-factor structure follows pΛ in Section 4. Let Λ˚, Φ˚ and Ψ˚ be the true

parameters such that Conditions 4 -6 are satisfied. For any parameters Λ, Φ and Ψ that satisfy Conditions 4

and 5 and Λ˚Φ˚pΛ˚qJ `Ψ˚ “ ΛΦpΛqJ `Ψ, there exists a diagonal sign-flip matrix D P D and a permutation

matrix P P P such that Λ “ Λ˚PD, Φ “ DPJΦ˚PD and Ψ˚ “ Ψ.

Proof of Theorem 2 : Without loss of generation, we assume that |B˚
1 | “ |B˚

2 | “ 5, |B˚
3 | “ |B˚

4 | “ 4

and |B˚
5 | “ |B˚

6 | “ |B˚
7 | “ 2. Suppose that there exists Λ, Φ and Ψ and Σ “ ΛΦΛJ ` Ψ such that Σ “ Σ˚.

The proof consists of two parts: (1) Show that ΛrY4
i“1B˚

i , :s and Λ˚rY4
i“1B˚

i , :s has the same bi-factor

structure. Without loss of generality, we further assume that ΛrB˚
i , t1 ` ius ‰ 0 for i “ 1, . . . , 4. We show

that there exists some 5 ˆ 5 sign flip matrix rD such that ΛrY4
i“1B˚

i , t1, . . . , 5us “ Λ˚rY4
i“1B˚

i , t1, . . . , 5us rD,
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Φrt1, . . . , 5u, t1, . . . , 5us “ rDΦ˚rt1, . . . , 5u, t1, . . . , 5us rD and ψj “ ψ˚
j for j P Y4

i“1B˚
i . (2) Show that Λ and

Λ˚ have the same bi-factor structure for the rest of the variables and complete the proof.

We now prove the first part. Let Fi “ tg : ΛrB˚
i , t1 ` gus ‰ 0u Y t1u be the set of factors such that the

variables belonging to B˚
i load on these factors for i “ 1, . . . , 4. We note that |Fi| ě 2 for i “ 1, . . . , 4. When

|Fi| “ 2, all variables that belong to B˚
i load on the same group factor. We claim that

rankpΛrB˚
i ,Fisq “ |Fi| if |Fi| ď |B˚

i | for i “ 1, . . . , 4. (G.5)

If |Fi| ď |B˚
i |, there exists some gi P Fi, gi ‰ 1 and jgi , j

1
gi P B˚

i such that λjgi ,1`gi ‰ 0 and λj1
gi

,1`gi ‰ 0.

For 1 ď i1 ď 4, i1 ‰ i, consider the equation Σrtjgi , j
1
giu,B

˚
i1 s “ Σ˚rtjgi , j

1
giu,B

˚
i1 s, which is equivalent to

Λrtjgi , j
1
giu, t1, 1 ` giusΦrt1, 1 ` giu,Fi1 spΛrB˚

i1 ,Fi1 sqJ

“Λ˚rtjgi , j
1
giu, t1, 1 ` iusΦ˚rt1, 1 ` iu, t1, 1 ` i1uspΛ˚rB˚

i1 , t1, 1 ` i1usqJ.

(G.6)

Noticing that by Condition 5 and 6 hold for Φ˚ and Λ˚,

Λ˚rtjgi , j
1
giu, t1, 1 ` iusΦ˚rt1, 1 ` iu, t1, 1 ` i1uspΛ˚rB˚

i1 , t1, 1 ` i1usqJ

has rank 2. Thus, Λrtjgi , j
1
giu, t1, 1 ` gius should have rank 2. Otherwise, Λrtji, j

1
iu, t1, 1 ` giusΦrt1, 1 `

giu,Fi1 spΛrB˚
i1 ,Fi1 sqJ has at most rank 1, which contradicts (G.6). Then, since for each g1

i P Fi, g
1
i ‰ 1, there

exists some jg1
i
such that λjg1

i
,g1

i
‰ 0, it is easy to check that (G.5) holds.

Then, consider the equation ΣrB˚
i ,B˚

i1 s “ Σ˚rB˚
i ,B˚

i1 s for 1 ď i ‰ i1 ď 4, which is equivalent to

ΛrB˚
i ,FisΦrFi,Fi1 spΛrB˚

i1 ,Fi1 sqJ “ Λ˚rB˚
i , t1, 1 ` iusΦrt1, 1 ` iu, t1, 1 ` i1uspΛrB˚

i1 , t1, 1 ` i1usqJ.

With the same argument, Λ˚rB˚
i , t1, 1`iusΦrt1, 1`iu, t1, 1`i1uspΛrB˚

i1 , t1, 1`i1usqJ has rank 2. By Sylvester’s

rank inequality, we have

rankpΛrB˚
i ,FisΦrFi,Fi1 spΛrB˚

i1 ,Fi1 sqJq

ěrankppΛrB˚
i ,Fisq ` rankpΦrFi,Fi1 sq ` rankpΛrB˚

i1 ,Fi1 sq ´ |Fi| ´ |Fi1 |.

(G.7)

We consider the following case

1. |Fi| ď |B˚
i | for all 1 ď i ď 4. In this case, according to claim (G.5) and Condition 5, inequality (G.7)
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leads to

rankpΛrB˚
i ,FisΦrFi,Fi1 spΛrB˚

i1 ,Fi1 sqJq ě minp|Fi|, |Fi1 |q,

for any 1 ď i ‰ i1 ď 4. We then have minp|Fi|, |Fi1 |q “ 2. By applying this argument to all pairs pi, i1q,

1 ď i ă i1 ď 4, we conclude that there exists at most one Fi such that |Fi| ě 3 for 1 ď i ď 4.

If there exists some i such that |Fi| ě 3 for i “ 1, . . . , 4. Without loss of generality, we assume |F1| ě 3

and |Fi| “ 2 for i “ 2, 3, 4. We claim that |F2 YF3| “ 3, in other words, the variables belonging to B˚
2

and B˚
3 load on different factors. Otherwise, |F2 Y F3| “ 2. Consider the equation

ΣrB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s “ Σ˚rB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s,

which is equivalent to

ΛrB˚
2 Y B˚

3 ,F2 Y F3sΦrF2 Y F3,F2 Y F3spΛrB˚
2 Y B˚

3 ,F2 Y F3sqJ ` ΨrB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s

“Λ˚rB˚
2 Y B˚

3 , t1, 3, 4usΦ˚rt1, 3, 4u, t1, 3, 4uspΛ˚rB˚
2 Y B˚

3 , t1, 3, 4usqJ ` Ψ˚rB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s.

(G.8)

Since Λ˚ satisfies Condition 6, noticing that |B˚
2 | ě 4 and |B˚

3 | ě 4, it is easy to check that the

matrix Λ˚rB˚
2 Y B˚

3 , t1, 3, 4us satisfies the condition for Theorem 5.1 of Anderson and Rubin (1956),

that is, if any row of Λ˚rB˚
2 Y B˚

3 , t1, 3, 4us is deleted, there still remains two disjoint submatrices of

Λ˚rB˚
2 Y B˚

3 , t1, 3, 4us with rank 3. By applying Theorem 5.1 of Anderson and Rubin (1956), we have

ΨrB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s “ Ψ˚rB˚
2 Y B˚

3 ,B˚
2 Y B˚

3 s. Thus, we further have

ΛrB˚
2 Y B˚

3 ,F2 Y F3sΦrF2 Y F3,F2 Y F3spΛrB˚
2 Y B˚

3 ,F2 Y F3sqJ

“Λ˚rB˚
2 Y B˚

3 , t1, 3, 4usΦ˚rt1, 3, 4u, t1, 3, 4uspΛ˚rB˚
2 Y B˚

3 , t1, 3, 4usqJ.

(G.9)

If |F2 Y F3| “ 2, then the rank of the matrix in the first line of (G.9) is 2, which contradicts the

fact that the rank of the matrix in the second line of (G.9) is 3. Thus, |F2 Y F3| “ 3. We note that

with a similar argument used in (G.8) and (G.9), we also have |F2 Y F4| “ 3, |F3 Y F4| “ 3 and

| Yi“2,3,4 Fi| “ 4. Then, consider the equation

ΣrB˚
1 ,B˚

2 Y B˚
3 s “ Σ˚rB˚

1 ,B˚
2 Y B˚

3 s,
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which is equivalent to

ΛrB˚
1 ,F1sΦrF1,F2 Y F3spΛrB˚

2 Y B˚
3 ,F2 Y F3qJ

“Λ˚rB˚
1 , t1, 2usΦ˚rt1, 2u, t1, 3, 4uspΛ˚rB˚

2 Y B˚
3 , t1, 3, 4usqJ.

(G.10)

We note that the rank of the matrix in the second line of (G.10) is 2. According to Sylvester’s rank

inequality

rankpΛrB˚
1 ,F1sΦrF1,F2 Y F3spΛrB˚

2 Y B˚
3 ,F2 Y F3qJq

ěrankpΛrB˚
1 ,F1sq ` rankpΦrF1,F2 Y F3sq ` rankpΛrB˚

2 Y B˚
3 ,F2 Y F3sq ´ |F1| ´ 3

“|F1| ` minp|F1|, 3q ` 3 ´ |F1| ´ 3

“3,

which contradicts (G.10).

Thus, in the case, |Fi| “ 2 for i “ 1, . . . , 4. Consider the equation

ΣrYi“1,...,4B˚
i ,Yi“1,...,4B˚

i s “ Σ˚rYi“1,...,4B˚
i ,Yi“1,...,4B˚

i s. (G.11)

By the similar argument discussed in (G.8), (G.9) and further applying Theorem 1 to (G.11), we con-

clude that in this case, ΛrY4
i“1B˚

i , :s and Λ˚rY4
i“1B˚

i , :s has the same bi-factor structure. Without loss

of generality, we further assume that Fi “ t1, 1` iu for i “ 1, . . . , 4. Then, there exists some 5ˆ 5 sign

flip matrix rD such that ΛrY4
i“1B˚

i , t1, . . . , 5us “ Λ˚rY4
i“1B˚

i , t1, . . . , 5us rD, Φrt1, . . . , 5u, t1, . . . , 5us “

rDΦ˚rt1, . . . , 5u, t1, . . . , 5us rD and ψj “ ψ˚
j for j P Y4

i“1B˚
i .

2. There exists some 1 ď i ď 4 such that |Fi| “ 1 ` |B˚
i | ě 5. In this case, according to (G.7)

rankpΛrB˚
i ,FisΦrFi,Fi1 spΛrB˚

i1 ,Fi1 sqJq ě 3 if |Fi1 | ě 4.

Thus, |Fi1 | ď 3 ă |B˚
i1 | for all 1 ď i1 ď 4, i1 ‰ i. Without loss of generality, let i “ 1. For i1 “ 2, 3, 4,

by the same argument in case 1, we have F2 “ t1, 1 ` g2u, F3 “ t1, 1 ` g3u and F4 “ t1, 1 ` g4u for

different g2, g3 and g4. Moreover, rankpΛrYi“2,3,4B˚
i ,Yi“2,3,4Fisq “ 4.

Then, consider the equation ΣrB˚
1 ,Yi“2,3,4B˚

i s “ Σ˚rB˚
1 ,Yi“2,3,4B˚

i s, which is equivalent to

ΛrB˚
1 ,F1sΦrF1,Yi“2,3,4FispΛrYi“2,3,4B˚

i ,Yi“2,3,4Fisq
J

“Λ˚rB˚
1 , t1, 2usΦ˚rt1, 2u, t1, 3, 4, 5uspΛrYi“2,3,4B˚

i , t1, 3, 4, 5usqJ

(G.12)
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It is straightforward that Λ˚rB˚
1 , t1, 2usΦ˚rt1, 2u, t1, 3, 4, 5uspΛrYi“2,3,4B˚

i , t1, 3, 4, 5usqJ has rank 2 ac-

cording to Condition 5 and 6. While, since | Yi“2,3,4 Fi| “ 4 ă |F1|, according to Sylvester’s rank

inequality,

rankpΛrB˚
1 ,F1sΦrF1,Yi“2,3,4FispΛrYi“2,3,4B˚

i ,Yi“2,3,4Fisq
Jq

ěrankpΛrB˚
1 ,F1sq ` rankpΦrF1,Yi“2,3,4Fisq ` rankpΛrYi“2,3,4B˚

i ,Yi“2,3,4Fisq ´ |F1| ´ 4

“|F1| ´ 1 ` 4 ` 4 ´ |F1| ´ 4

“3,

which contradicts to equation (G.12). Thus, this case does not exist.

Next, we prove the second part. We denote by B˚
5 “ tj5, j6u, B˚

6 “ tj7, j8u and B˚
7 “ tj9, j10u. Since

Λ, Φ and Ψ satisfy Condition 4, there exists three types of possible of bi-factor structure of B5, B6 and B7

and we discuss the three cases one by one. Without loss of generality, we assume D1 given in the first part

equals the identity matrix.

1. None of the bi-factor structures of the variables belonging to B˚
i , i “ 5, 6, 7, is correct. Without loss

of generality, we assume B5 “ tj5, j10u, B6 “ tj6, j7u and B7 “ tj8, j9u. In this case, we consider the

equation

ΣrB˚
1 ,B˚

5 s “ Σ˚rB˚
1 ,B˚

5 s,

which is equivalent to

ΛrB˚
1 , t1usλj5,1 ` ϕ2,6ΛrB˚

1 , t2usλj5,6 “ Λ˚rB˚
1 , t1usλ˚

j5,1 ` ϕ˚
2,6Λ

˚rB˚
1 , t2usλ˚

j5,6,

ΛrB˚
1 , t1usλj6,1 ` ϕ2,7ΛrB˚

1 , t2usλj6,7 “ Λ˚rB˚
1 , t1usλ˚

j6,1 ` ϕ˚
2,6Λ

˚rB˚
1 , t2usλ˚

j6,6.

Since the first part is proved, we have assumed that ΛrB˚
1 , t1us “ Λ˚rB˚

1 , t1us and ΛrB˚
1 , t2us “

Λ˚rB˚
1 , t2us. Noticing that Λ˚rB˚

1 , t1us and Λ˚rB˚
1 , t2us are linearly independent, we have λj5,1 “ λ˚

j5,1

and λj6,1 “ λ˚
j6,1

. Similarly, by considering the equations ΣrB˚
1 ,B˚

6 s “ Σ˚rB˚
1 ,B˚

6 s and ΣrB˚
1 ,B˚

7 s “

Σ˚rB˚
1 ,B˚

7 s, we have λj7,1 “ λ˚
j7,1

, λj8,1 “ λ˚
j8,1

, λj9,1 “ λ˚
j9,1

and λj10,1 “ λ˚
j10,1

.

By considering the equation

Σrj5, j6s “ Σ˚rj5, j6s,

which is equivalent to λj5,1λj6,1 ` ϕ6,7λj5,6λj6,7 “ λ˚
j5,1

λ˚
j6,1

` λ˚
j5,6

λ˚
j6,6

. We further have

ϕ6,7λj5,6λj6,7 “ λ˚
j5,6λ

˚
j6,6. (G.13)
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We can similarly have the equations

ϕ6,7λj5,6λj7,7 “ ϕ˚
6,7λ

˚
j5,6λ

˚
j7,7,

ϕ6,7λj10,6λj6,7 “ ϕ˚
6,8λ

˚
j10,8λ

˚
j6,6,

ϕ6,7λj10,6λj7,8 “ ϕ˚
7,8λ

˚
j10,8λ

˚
j7,7.

(G.14)

By combining the equations (G.13) and (G.14), we have ϕ˚
6,7ϕ

˚
6,8 “ ϕ˚

7,8. In a symmetric manner, we

further have ϕ˚
6,8ϕ

˚
7,8 “ ϕ˚

6,7 and ϕ˚
6,7ϕ

˚
7,8 “ ϕ˚

6,8. Since ϕ
˚
6,7, ϕ

˚
6,8 and ϕ˚

7,8 ‰ 0, we have |ϕ˚
6,7ϕ

˚
6,8ϕ

˚
7,8| “

1, which leads to |ϕ˚
6,7| “ |ϕ˚

6,8| “ |ϕ˚
7,8| “ 1 and violates the assumption that Φ˚ is positive definite.

Thus, this case does not exist.

2. Only one of the bi-factor structures of the variables belonging to B˚
i , i “ 5, 6, 7, is correct. Without

loss of generality, we assume B5 “ tj5, j6u, B6 “ tj7, j9u and B7 “ tj8, j10u. By the same argument

in the first case, we have λji,1 “ λ˚
ji,1

for i “ 5, . . . , 10. Next, consider the equations on the diagonal

entries of

ΣrB˚
6 Y B˚

7 ,B˚
6 Y B˚

7 s “ Σ˚rB˚
6 Y B˚

7 ,B˚
6 Y B˚

7 s.

we have the following 6 equations

ϕ7,8λj7,7λj8,8 “ λ˚
j7,7λ

˚
j8,7,

λj7,7λj9,7 “ ϕ˚
7,8λ

˚
j7,7λ

˚
j9,8,

ϕ7,8λj7,7λj10,8 “ ϕ˚
7,8λ

˚
j7,7λ

˚
j10,8,

ϕ7,8λj8,8λj9,7 “ ϕ˚
7,8λ

˚
j8,7λ

˚
j9,8,

λj8,8λj10,8 “ ϕ˚
7,8λ

˚
j8,7λ

˚
j10,8,

ϕ7,8λj9,7λj10,8 “ λ˚
j9,8λ

˚
j10,8.

According to the first equation above, we have ϕ7,8 ‰ 0. By the 6 equations, we also have pϕ˚
7,8q4ϕ47,8 “

ϕ27,8. Then we have |ϕ˚
7,8| “ |ϕ7,8| “ 1, which violates the assumption that Φ˚ is positive definite.

Thus, this case does not exist.

3. The bi-factor structure is correct. Without loss of generality, we assume B5 “ tj5, j6u, B6 “ tj7, j8u

and B7 “ tj9, j10u. Similar to the previous argument, we first have λji,1 “ λ˚
ji,1

for i “ 5, . . . , 10.

Moreover, we have ϕ2,6λ5,6 “ ϕ˚
2,6λ

˚
5,6, ϕ2,6λ6,6 “ ϕ˚

2,6λ
˚
6,6 and λ5,6λ6,6 “ λ˚

5,6λ
˚
6,6. These 3 equations

leads to ϕ2,6 “ ϕ˚
2,6, λ5,6 “ λ˚

5,6 and λ6,6 “ λ˚
6,6 or ϕ2,6 “ ´ϕ˚

2,6, λ5,6 “ ´λ˚
5,6 and λ6,6 “ ´λ˚

6,6. With

the same argument, the loadings and correlations related with the variables belonging to B˚
6 and B˚

7
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are also determined up to a sign flip. The check of ψj “ ψ˚
j for j P B˚

i , i “ 5, 6, 7 are straight forward.
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