A generalized factor rotation framework with

customized regularization

Abstract

Factor rotation is a crucial step in interpreting the results of exploratory factor
analysis. Several rotation methods have been developed for simple structure solu-
tions, but their extensions to bi-factor analysis are often not well established. In this
paper, we propose a mathematical framework that incorporates customized factor
structure as a regularization to produce the optimal orthogonal or oblique rotation.
We demonstrate the utility of the framework using examples of simple structure ro-
tation and bi-factor rotation. Through detailed simulations, we show that the new
method is accurate and robust in recovering the factor structures and latent correla-
tions when bi-factor analysis is applied. The new method is applied to a test data
and a Quality of Life survey data. Results show that our method can reveal bi-factor

structures that are consistent with the theories.
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rotation; oblique rotation; proximal algorithm



1 Introduction

Factor analysis is a popular technique for learning the underlying structure of multivari-
ate data and has wide applications in psychology and the social sciences. Factor analysis
suffers from the rotational indeterminacy issue where the loading matrix and the factors
can be simultaneously rotated under the same model. The rotation procedure is a crucial
step in obtaining an interpretable structure. The prevailing solution seeks the rotation
that renders a simple structure (Thurstone, [1947). Roughly speaking, Thurstone’s simple
structure means that the loading matrix contains as many (approximately) zero entries as
possible, so that each observed variable can be explained by only a few factors. Never-
theless, the simple structure is not the only desired solution, especially when the result
does not admit a perfect simple structure. The bi-factor analysis, for instance, has become
a popular alternative solution for exploring the factor structure (Reise, 2012). A classic
approach to the bi-factor analysis is the Schmid-Leiman (SL; |Schmid and Leiman| |1957)
transformation. However, the SL transformation imposes an unnecessary proportionality
constraint, making the loading matrix inevitably rank-deficient (Waller, |2018). Moreover,
the SL transformation only produces orthogonal factors, leaving the oblique bi-factor anal-
ysis unsolved. Recently, some new strategies have been developed for bi-factor analysis
(Jennrich and Bentler, 2011}, 2012 |/Abad et al., [2017), but their performance has not been
thoroughly discussed, and none of them has been accepted as the conventional approach.
This paper attempts to shed some light on the bi-factor rotation problem, and more
generally, on the factor rotation problem. We provide a mathematical framework to formu-
late and solve the rotation problem (both orthogonal and oblique) in factor analysis. Given
any desired property of the factor structure, our framework incorporates it as a penalty
term or a constraint, and by solving an optimization problem, it produces a rotation that
rotates an initial loading matrix towards the desired property. In the bi-factor analysis,
for example, the rotated loading matrix is expected to have a bi-factor structure. Accord-
ingly, our framework takes the bi-factor structure as a constraint and produces a rotation
that rotates an initial loading matrix into a bi-factor matrix as much as possible. We also
provide a convergent algorithm to solve the optimization problem. Jennrich (2001, 2002)
has devised a gradient-based algorithm for optimizing a general rotation criterion function,
which generates a sequence of monotone iterates. However, the monotone iterates only
guarantee the convergence of some subsequence, and there might exist multiple limiting
points. Indeed, the monotone iterates may oscillate indefinitely and generate paths with

infinite length (see |Absil et al., |2005 for such an example). In contrast, our algorithm



guarantees the convergence of the whole iterates.

Although the problem of simple structure rotation has been extensively studied, we
still demonstrate the utilization of our framework in solving this problem, partly because it
serves as an example of the penalty-type formulation and partly because it provides a new
perspective (and a new algorithm) on solving this problem. Thurstone’s original concept of
simple structure largely concerns the number of zero loadings, but many existing methods
maximize some dispersion of factor loadings so that the loadings tend to be either very high
or very low. As|Nesselroade and Cattell| (2013)) note, “the position that gives merely a lot of
low loadings is different from the exact one that maximizes the number of zero loadings.”
Moreover, these dispersion-based methods raise the scaling issues, such as sensitivity to
outliers and the question of normalization. In contrast, our framework provides a solution
on the basis of the count of zero/nonzero loadings, agreeing with the very notion of simple
structure.

We emphasize that our framework is not limited to the simple structure or bi-factor
rotations. The regularization term in our framework can be customized to represent any
subjective or theoretical assumptions about the factor structure, and our framework iden-
tifies the optimal rotation solution corresponding to the given assumption. This is an
attractive advantage because researchers may have various demands on the exploratory
factor analysis (EFA) across different applications. This regularized formulation also pro-
vides a perspective to unify the rotation procedure and the penalized estimation. We justify
in Section that these two seemingly competing procedures are mathematically almost
equivalent.

The remainder of this paper is organized as follows. Section [2Jand Section [3|describe our
framework for solving the orthogonal and oblique rotation problems, respectively. In each
section, we demonstrate both the simple structure rotation and the bi-factor rotation, along
with their algorithms. In Section[4], we conduct a simulation to compare the performance of
our framework in the exploratory bi-factor analysis with existing methods. The proposed
method is applied to real datasets in Section [5] Section [6] discusses some connections
between our framework and other methods. Section [7] concludes this paper. Technical
derivations and proofs are postponed to the Appendix, which also includes a-supplementary

similation—studysupplementary simulation studies.



2 Orthogonal Rotation

2.1 Rotation to simple structure

Let A € RP**¥ be an initial loading matrix and 7" € R*** an orthogonal matrix. The
concept of simple structure in factor analysis concerns the search of T" such that AT is as
simple as possible. If simplicity is defined as the number of zero loadings, a natural choice
is to minimize ||AT|o, where || - ||o counts the number of nonzero entries. Unfortunately,
AT would not contain many exact zeros in general, especially when the loading matrix is
subject to sampling error. In practice, very small loadings are accepted as zeros. In other
words, AT would be considered simple if it is close to some matrix with many zeros. Thus,
we formulate the objective function as

in AT = S]12 + plS],

(2.1)
st. T'T =1,

where || || is the Frobenius norm, p > 0 is the tuning parameter, the prime denotes matrix
transpose, and THisthe-I, is the k-by-k identity matrix. In practice, we use p = 0.32, and
this choice will be explained in Section [6.1}

2.2 Algorithm

Our objective function introduces a new parameter .S and seems to be more difficult
to optimize than the usual criteria that involve only a rotation parameter 7. However, we
shall show that the introduction of a new parameter not only simplifies the optimization
but also broadens its applicability. The key is the separation of the rotation constraint (on
T) and the desired property (on S). The usual approaches consider the desired sparsity
or its surrogate criterion directly on the rotated loadings, the interlock of which makes the
factor rotation problem challenging. In these two features are individually applied
to T and to S, and they are linked by a simple Frobenius distance function. This makes
the optimization with respect to each parameter very simple. While this might suggest
applying an alternating minimization algorithm to solve , this algorithm suffers from
the same drawback as the gradient-based algorithm: the sequence of parameters generated
by the algorithm is not guaranteed to converge (Powell, |1973)). Therefore, a convergent

algorithm called the proximal alternating minimization (PAM) algorithm (Attouch et al.,
2010)) is employed to solve (2.1]).



If X = UDV’ is the singular value decomposition of X, then T" = UV’ minimizes
| X — T2 subject to 7L =TT <FT'T =TT =1, (Gower and Dijksterhuis| [2004)). We
denote this projection by Pon(X) = UV'. Let H(X, k) = X o I(|X| > k) be the entrywise
hard-thresholding operator for a matrix X, where o is the entrywise matrix product and
I(|X| > k) is the entrywise indicator function for whether the absolute value of X entries
is greater than a scalar threshold x. The algorithm is presented in Algorithm [1, which
updates T and S alternately using the above operators (see Appendix for the deriva-
tion). The convergence result of this algorithm is summarized in Proposition , whose
proof is given in Appendix The algorithm converges to a stationary pointf| for any
bounded stepsizes sp—and—y, and 7;. In practice, we choose some small values, such as
Fr=1r=00+y =1, = 0.01. Also worth mentioning is the issue of local minima. Like
many other rotation methods, Algorithm [I| may converge to a local minimum because the
rotation problem is non-convex. Therefore, it is recommended to run the algorithm with

multiple random initializations and choose the one with the smallest objective value.

Proposition 1 Assume that the sequences of stepsizes sp—and—rr—y_and n: are bounded
away from zero and infinity, that is, there exists some positive numbers ro > r_ > 0 such

that a9y, . belong to (r—,ry) for all =0t > 0. Then the iterates {F=5%-(13,.5;)
generated by Algorithm || converge to a stationary point of (2.1)).

2.3 Bi-factor rotation

In the simple structure rotation, we maximize the degree of simplicity for the loading
matrix, so our framework formulates the problem as a penalized optimization. When the

loading matrix is desired to satisfy certain restrictions, we formulate it as a constrained

*For a smooth function, a stationary point is a point whose gradient is zero. For a non-smooth function,
the concept of gradient is generalized to the subdifferential set, and a stationary point becomes a point

whose subdifferential set contains zero. The subdifferential set 9f(x) of f at x is defined by

af(x) = {u eRY: Jay — x, f(zr) — f(x) and Juy € 5f(;vk),uk —wu as k — oc}

of(x)={ue R: 3z, =z, f(z) — f(z) and Juy € (,3'\f(zt),ut —uast— oo},

where 0 f (x) is the Fréchet subdifferential, defined as

df(z) = {u e R?: lim inf fy) = ) =y = 2) > 0}.

yFoy—e ly — ||

A local minimum must be a stationary point.



Algorithm 1 PAM for orthogonal simple structure rotation problem (2.1)).

Input: Initial loading matrix A, tuning parameter p.

Output: Rotation matrix T, sparse loading matrix S.
1: Initialize an orthogonal matrix T and let Sy = H(ATy, \/p).

2: fort=0,1,... do

3:  Take 9—>-6-and-eomputery > 0 and compute

Tkitj;l = ’Porth(A,SEt + ,Y]‘:tTﬁt) (22)

4:  Take #—=>-6-and-eomputen, > 0 and compute

ATy + Sk AT i1 + 1y

Sparess = H(

5. end for

1+77k: \,VV\:,I'\,\—J_VZZ;VVW

IO el ). (23)

problem, which can also be efficiently solved by the PAM algorithm. An example of such

a problem is the exploratory bi-factor analysis.

A bi-factor model has a loading matrix of the form

*

*

*

*
0
0
0

*

*x

*

Formally speaking, the loading matrix has a column of free parameters, and besides this

column, it has at most one free parameter in each row. The factor corresponding to the

free column is called a general factor, and the remaining factors are called group factors.

Exploratory bi-factor analysis (Jennrich and Bentler, [2011} |Reise, 2012) can uncover the bi-

factor structure and estimate the loadings simultaneously, unlike the confirmatory bi-factor

analysis that requires the bi-factor structure to be specified in advance. Let Sy; denote the

set of matrices with bi-factor structure. Our method performs exploratory bi-factor analysis

by solving

: Q2
min | AT — S,

(2.4)

s.t. T/T = Ik, S e Sbi-



The algorithm for solving ([2.4)) is very similar to Algorithm [1] and is presented in Algo-
S—

X||p. The evaluation of this projection requires solving a simple combinatorial optimization

rithm . It involves the projection operator onto bi-factor matrices Ppi(X) := arg minges,,

to find the column of general factor loadings and then keeping the largest (in absolute value)
entry in each row of the remaining columns as the group factor loadings (see Appendix

for a detailed description).

Algorithm 2 PAM for orthogonal bi-factor rotation problem ([2.4]).
Input: Initial loading matrix A.

Output: Rotation matrix T, bi-factor loading matrix S.
1: Initialize an orthogonal matrix Ty and let Sy = Pp;(ATp).
2: fort=20,1,... do

3:  Take 9—>-6-and-eomputery > 0 and compute
Tri1t41 = Porn(A'Skt + 11T ha)- (2.5)
4. Take #n—>6-and-eomputeny > 0 and compute

ATy1 + Sk ATy + Ut5t>

S i(
A ET R T

(2.6)

5. end for

3 Oblique Rotation

3.1 Rotation to simple structure

In the orthogonal rotation case, the factors are uncorrelated, and the rotation matrix is
restricted to be an orthogonal matrix. When the factors are allowed to be correlated, the
oblique rotation problem arises. This section provides a counterpart of our framework to
solve the oblique rotation problem, which is similar to the orthogonal case but has some

subtle yet crucial differences.
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ov1id C O

3 a

reason—we—formulatethe-If one is primarily interested in the loading matrix estimation
the oblique version of the simple structure rotation problem as-might be formulated as

min |A(T") ™" = S| + pllS]lo,
, (3.1)
s.t. diag(T'T) = I,

min [A(T) ™" = S| + pllSllo.

s.t. diag(T'T) =1,

where diag(-) keeps the diagonal part of a matrix and assigns zeros to the off-diagonal part-

min |5 — SO — W22,
S,

whefeéﬁ&%kwﬁafﬁpl&eev&ﬂaﬂee%ﬂ%ﬂ%& finds the rotated loading matrix A(7")"!

that is closest to a hypothesized simple loading matrix S. However, in the oblique factor
analysis, S-is-the factor correlation matrix also needs to be estimated, and the rotation 7' is

responsible for both the loading matrix subjeetto-thesimplestruetureregularization—P-is

/
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to-the-erthogonal-or-obliqierotation-eonstrainty—and-A(T") ! and the factor correlation
matrix ® = T'T. In order to get an overall better estimation of the loading matrix and the
factor correlation matrix, we propose to formulate the oblique rotation problem as
in ||A— ST'||? S
wip 4 — ST + plSlo,

(3.2)
s.t. diag(T'T) = I,.

When [|A — ST'||& is minimized, the reproduced covariance matrix A(T") 1®T 1A’ + U2 = AA" + P2

will be close to the hypothesized covariance matrix ST'TS’ + U? with a simple loadin
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matrix S, where ¥? is a diagonal matrix of uniqueness. FThe Frobeniousdistanee—in—is

As the covariance

matrix is governed by the loading matrix and factor correlation matrix, achieving closeness
in the covariance matrix facilitates a balanced estimation of these two parameters. The

rotated loading matrix A(T")~! will be approximately simple since A(T")~! =~ ST'(T')~! =

S+—so— AT will-be-approximately—simple; the factor correlation matrix ® = T'T is
suitable for the hypothesized simple structure since ST'TS" + W? is close to the optimal
covariance matrix AA’ + W2, The advantages of (3.2) in estimating the correlation matrix
will be numerically illustrated in Section Band Appendix 71
We-world-also-advoeate{A—STEfor-This nuance does not appear in the orthogonal
rotation formlation—Nonethelessproblem because the orthogonal factor correlation matrix.
Is invariant and the rotation is only responsible for the loading matrix. In effect, for an
orthogonal matrix 7', ||[A— ST'||r = ||(A— ST")T||r = ||AT — S||r, so the two formulations

are equivalent.

As for the algorithm, although the alternating minimization algorithm er-and the PAM

algorithm is-are conceptually applicable to (3.2), it-does not-bearexplicit-updating formulas
fer-they do not lead to a practical algorithm because the iteration steps effor problem (3.2))

and-thus-deoesnotlead-to-a—praecticalalgorithmdo not bear explicit updating formulas with
these algorithms. We employ the proximal alternating linearized minimization (PALM)

algorithm (Bolte et al. 2014)) to solve (3.2]). The resulting algorithm is reported in Al-
gorithm [3, The projection onto oblique rotation matrices Popiq(X) = X {diag(X'X)} /2

stmply—rescales each column of matrix X to unit length. We use an orthogonal matrix

as initialization because, in general, it has empirically better performance than an oblique

one. In practice, we choose the values of v and 7 slightly above one, such as v =n = 1.01.



This algorithm is also convergent, as recorded in Proposition [2| with proof given in Ap-
pendix It is again recommended to run the algorithm multiple times to alleviate the

issue of local minima.

Algorithm 3 PALM for oblique simple structure rotation problem (3.2)).
Input: Initial loading matrix A, tuning parameter p.

Output: Rotation matrix T, sparse loading matrix S.
1: Initialize an orthogonal matrix Ty and let Sy = H(A(T})™', /p)-
2: fort=20,1,... do
3:  Take v > 1 and compute

(A" = T}.S,) Sk (A — TtS,ﬁ)St>

Toiivir = P, (T +
e N A P A T

4:  Take n > 1 and compute

(A Sk k+1)Tk+1 (A ST} t+1 Tt+1

gl k+1Tk+1 I all t+1Tt+1”F

Sk = H(Spt AP T T o)y o/l Ty T 1))

(3.4)

5. end for

Proposition 2 Assume inf=g{{Selir=>0-andsupr=giiSritr<-ocinfizo [ Sz > 0 and sup;g |9 ]lr < 00,
then the iterates {F-5—(1},5;) generated by Algorithm 3| converge to a stationary point

of .

3.2 Bi-factor rotation

As in the orthogonal case, formulation and the PALM algorithm can be used for other
purposes in oblique rotation. We continue to demonstrate the exploratory bi-factor analysis
because it highlights some new issues in the oblique case. We shall show that the bi-factor
model suffers from what we would call group-factor indeterminacy when the factors are
allowed to be correlated. This indeterminacy can be suppressed if we restrict all the group
factors to be uncorrelated with the general factor.

The group-factor indeterminacy ean-be-is illustrated as follows. Let A € RP** be a
bi-factor loading matrix and F' € R* the corresponding factors. Without loss of generality,
we let the first component in F' be the general factor. Let ® = (¢;;) € R¥* be the factor

10



correlation matrix. Construct a transformation matrix I' € R¥** ag
1

dy ¢
I'=|ds 3 (3.5)

dy, Ck

that has zeros at locations other than the main diagonal and the first column. Matrix I"

has an inverse
1

_dQ/CQ 1/62
= | —ds/cs 1/e3

—dy./cx, 1/cy,
whenever it exists. The transformed factor F' = I'F has a covariance matrix ['®T” , whose
diagonal elements are d? + 2¢,¢1,d, + ¢* (except for the first one). We set d, = —c, ¢y, +
V1—=c2(1—¢3,) for all 2 < r < k, so that the transformed factor is standardized. The
¢, can be any nonzero number between —1/1/1 — ¢3, and 1/4/1 — ¢2,. The transformed

loading matrix A = AT! has the same bi-factor structure as A. Thus, we have constructed

a different oblique bi-factor representation AF = AF. Intuitively, each cluster of items
indicated by the group factors forms a micro factor model with two common factors (the
general factor and the corresponding group factor). Under the oblique factor case, the
group factor can be rotated towards or against the general factor within this two-factor
model (we should not rotate the general factor because it is shared by other clusters).
This explains how we construct the transformation matrix I', and we call this phenomenon
group-factor indeterminacy of the oblique bi-factor model. This result is not new and has
been disclosed by |Jennrich and Bentler| (2012)). A natural yet putative strategy to resolve
this indeterminacy is to restrict the group factors to be uncorrelated with the general
factor. We call such a bi-factor representation a semi-oblique bi-factor model. A fully
oblique bi-factor representation can be transformed into a semi-oblique one using I' with
¢, =1/3/1—¢3 and d, = —c, ¢y, for all 2 < r < k.
Even given the indeterminacy and the putative restriction, we can still formulate and

solve the oblique exploratory bi-factor analysis with

wmin |4~ ST'|,

T.5 (3.6)
s.t. diag(T'T) =1, S € Spi.

11



It should be clarified that the fully oblique bi-factor models are not considered false or
invalid. They are simply—different representations of the equivalent bi-factor models. In
effect, this indeterminacy does not affect the feasibility S € &Sy; and the objective value
|A—ST’||%. Consequently, has a continuum of optimal solutions that correspond to a
single model, and we transform the final result into a semi-oblique one to provide a unique
representationﬂ Hence, Algorithm |4| solves the oblique bi-factor problem with the PALM

algorithm, followed by a partial orthogonalization step.

Algorithm 4 PALM for oblique bi-factor problem ([3.6)).
Input: Initial loading matrix A.

Output: Rotation matrix T, bi-factor loading matrix S.
1: Initialize an orthogonal matrix Ty and let Sy = Pyi(A(Tg) ™).
2: fort=20,1,... do
3:  Take v > 1 and compute

(A" = T}.S,.) Sk (A" = T;.S}) Sy

Toiirir = P, (T + aLal. ) 3.7
e S N PR P o

4:  Take 7 > 1 and compute

(A B SleLH)TkH (A — StTt,+1)Tt+1
Skeress = Pos( Sk + L ). 3.8
R T I T Tenlle T Tonlle .
5: end for

6: Partially orthogonalize T, and S, to T, I” and S,,I'"! with T" in (B.5), ¢, =
1//1—=¢3., d. = —c,¢, for all 2 < r < k, and & = T/ T, provided that the

general factor is rearranged to the first column.

4 Simulation

We have proposed a general framework to formulate and solve the rotation problem in
factor analysis and demonstrated it through the examples of simple structure rotation and
exploratory bi-factor analysis. Because the simple structure rotation problem has been

extensively studied and mature solutions have been developed, our simulation experience

It is possible to formulate the optimization problem that constrains the rotation T' to be semi-oblique,

but the algorithm would become impractical because the semi-obliquerotation-set of semi-oblique rotations
does not have a simple projection solution.
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shows considerable similarity between our method and the existing popular methods in
terms of numerical performance (see Appendix for the simulation results). Here, we
exhibit the simulation results for the exploratory bi-factor analysis.

We compare our proposed method with eight existing methods: (a) the SL (the Schmid-
Leiman procedure; |Schmid and Leiman, [1957); (b) the SLt (the SL followed by a partially
specified target rotation; Reise et al), 2010)); (c¢) the SLi (the SL followed by iterated
target rotations; Abad et all 2017); (d) the DSL (the Direct Schmid-Leiman method;
Waller| [2018)); (e) the DBF (the Direct Bi-Factor method; Waller, 2018)); (f) the PEBI (the
orthogonal or oblique Pure Exploratory Bl-factor analysis; |Lorenzo-Seva and Ferrando,
2019); (g) the BQ.orth (the orthogonal Bi-Quartimin method;|Jennrich and Bentler} [2011));
and (h) the BQ.oblq (the oblique Bi-Quartimin method; Jennrich and Bentler, 2012). We
basically follow the simulation settings from |Abad et al. (2017) and |Giordano and Waller
(2020). Specifically, we consider a total of 22 items clustered into four groups, with four,
five, six, and seven items in each group. We examine four types of bi-factor structures: (a)
the independent cluster (IC) structure that is a perfect bi-factor loading matrix; (b) the
independent cluster basis (ICB) structure that contains cross-loadings; (c¢) the independent
cluster pure (ICP) structure where some items have nonzero loadings only on the general
factor; and (d) the independent cluster basis pure (ICBP) structure that contains both
cross-loadings and pure items. In our simulation, the group factor loadings take either high
or low values. When they take high values, they are randomly selected from the interval
[0.6,0.9]; for the low value case, they are selected from the range [0.3,0.6]. When cross-
loadings are present, the last item in each cluster has a cross-loading of 0.4 on the next
group factor. For pure items, the item in the middle position of each cluster has a loading
of 0.01 on the corresponding group factor. The loadings on the general factor are randomly
selected so that every item has communality no greater than 0.81. When necessary, some
rows of loading vector are rescaled to prevent excessively large communality caused by the
cross-loadings. Finally, every loading entry is randomly assigned a positive or negative

sign. An example of simulated loading matrices is presented in Table

13
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Given the simulated loading matrix A, we generate the population correlation matrix
R = A®PN + T2,

where ® is the factor correlation matrix and ¥2 is a diagonal matrix of uniqueness, chosen
to constrain the diagonal elements of R to one. In the orthogonal bi-factor case, ¢ will
be an identity matrix. In the semi-oblique case, the correlations among group factors
are randomly selected from the interval [0.2,0.6]. If the generated correlation matrix is
not positive definite, we re-generate a new one until it is positive definite. The final step
generates the data from a multivariate normal distribution with zero mean and covariance
matrix R, with a sample size N € {200, 500,2000}. The simulation is replicated 50 times
for each scenario.

The accuracy of the rotation methods is evaluated by the root mean squared error

(RMSE) between the population and estimated bi-factor loading matrices:

RMSE(A, A) = IA— A, (4.1)

1
\/ﬁl
after the estimated factors are aligned and orientated with respect to the population factors.
The initial loading matrix is extracted using the maximum likelihood method. The results
of our regularized rotation methods (REGL.orth and REGL.oblq) and the competitors are
shown in Figures[1] 2| and 8] We also include an oracle method that rotates (orthogonally
or obliquely) the initial loading matrix towards the true loading matrix A, that is, the
oracle orthogonal rotation minimizes ||A7 — Al|r and the oracle oblique rotation minimizes
|A(T")~* — Al|p. This oracle method can be considered the optimal rotation for loading
estimation and is used as a reference.

Under the orthogonal bi-factor models (Figure , our methods and the Bi-Quartimin
methods perform best, but our methods are slightly better at recovering the ICB and
ICBP structures. Since the orthogonal model is a special case of the oblique model, the
oblique versions of these two methods have almost the same performance as their orthogonal
counterparts. The SLi method has comparable results to the best ones. We contend that
the success of SLi should attribute to the iterating steps. To illustrate this, we replace
the SL initialization in the SLi procedure with a random bi-factor loading initialization,
and the resultant RANDi method remains successful. Note also the similarity between its
iterative spirit and the PAM algorithm. All the other SL-based methods fail to recover the
loading matrix.

As for the oblique bi-factor models (Figure, our proposed oblique rotation method and
the oblique Bi-Quartimin method are the only successful methods, while the oblique PEBI
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method and all other orthogonal methods fail to provide reasonable estimates. Compared
to the Bi-Quartimin method, our method again has an advantage in recovering the ICB
and ICBP structures, indicating its robustness. This superiority is more evident when
the group loadings take high values. Moreover, our method provides better estimation of
the factor correlation matrix than the Bi-Quartimin method, as shown in Figure [3, The

accuracy of factor correlation estimation is measured by

RMSE(®, ®) = ——[|® — ®||r.

1
el
Interestingly, our method can even outperform the oracle method when the underlying
model is strictly a bi-factor model. This is because the oracle method minimizes || A(7") ™! —
A|lr which emphasizes the discrepancy of the loading matrix, and the estimated rotation
does not necessarily produce an optimal factor correlation matrix. In contrast, our method
sisdiscrepancy.
of the covariance matrix, resulting in a rotation that balances the estimation of the load-

minimizes || A—ST"||r which is compatible with the

ing matrix and the factor correlation matrix. Hence, our method can better estimate

the factor correlation matrix even though it does not use the true loading matrix A. A

detailed comparison of the two formulations in estimating the loading matrix and the factor
correlation matrix is given in Appendix [A. 7l

5 Real Data Examples

5.1 Holzinger’s fourteen tests data

We now apply the proposed exploratory bi-factor analysis approach to Holzinger’s fourteen
tests data. This data was used by |[Holzinger and Swineford (1937) to illustrate bi-factor
analysis. The correlation matrix was provided in Holzinger and Swineford, (1937)), and their
preliminary analysis divided the fourteen tests into four groups to reflect spatial, mental
speed, motor speed, and verbal factors (see Table IV in Holzinger and Swineford, [1937)).
This bi-factor structure is consistently recovered by our orthogonal and oblique bi-factor

analyses, as shown in Table [2] except that the oblique bi-factor model has two crossing
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loadings. The estimated factor correlation matrix in the oblique model is

0o 0 0 0
a7 37 .67
710 46 .36
37 46 1 17
67 36 .17 1

i
I
o o o o =

Since both orthogonal and oblique bi-factor analyses recover the desired structure, deter-

mining which model is more appropriate may depend on domain knowledge.

Table 2: Exploratory bi-factor rotation results of the proposed methods applied to the

Fourteen Tests data (loadings > .20 in absolute value are bolded).

Item Orthogonal bi-factor loadings Oblique bi-factor loadings

T1 .56 .28 A7 .03 —.08 .21 .38 .33 .01 —.11
T2 .80 33 —10 —.04 .07 37 94 —.12 .01 —.08
T3.4 .59 .56 .04 .01 14 .05 .68 A2 —.01 .08
T6 .64 .04 .39 14 —.01 41 —.19 .69 A1 10
T28 .51 .10 .35 .00 —.12 29 —.04 .64 —.05 —.07
T29 .61 —05 .35 —.05 —.00 A7 —.15 .64 —.09 .08
T32 A2 A5 —.12 A41 13 —.06 A3 —.25 A7 15
T34 41 —.09 .02 .60 —.14 .29 04 —.02 .69 —.13
T35 12 12 13 .49 —.12 —-06 —.14 A8 .50 —.05
T36a .54 —.16 .04 37 .05 46 —.02 .06 .45 .10
T13 .62 .06 —.05 .03 .53 42 A3 —.05 .07 .61
T18 .63 —.13 —-.09 —-.04 .56 56 .06 —.11 03 .65
T25b .43 14 02 —.04 .61 .24 —.08 .08 —.04 .76
T77 .45 07 .02 —-.07 .58 31 —.10 08 —.06 .72

5.2 Quality of life data

When applied to another data set, our methods demonstrate the necessity of oblique bi-
factor analysis. |Chen et al. (2006) have applied a confirmatory bi-factor analysis to a
Quality of Life data set. This data set contained 403 observations for 17 items answered
on a 5-point Likert scale from 1 (all of the time) to 5 (never), with high scores on the

scale indicating a high quality of life. These items were hypothesized to reflect a common
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general factor (Quality of Life) and four group factors (Cognition, Vitality, Mental Health,
and Disease Worry). We apply both the proposed orthogonal and oblique exploratory
bi-factor analyses to this data set, with results shown in Table In the orthogonal bi-
factor case, not all loadings on the group factor are significant for the third hypothesized
cluster (Mental Health), consistent with the published studies (Chen et al. |2006; Jennrich
and Bentler, |2011; Abad et al., 2017)). Additionally, we identify a possible cross-loading
for the “pep” item, which is also reported by Abad et al. (2017). The results become
promising in the oblique case, where our method produces a bi-factor structure consistent
with the hypothesized structure, except for a potential cross-loading for the “nerv” item.

The estimated factor correlation matrix is

0o 0 0 0

Sl .65 45
Sl 1 .64 51,
60 .64 1 .65
45 51 65 1

LSk
I
o o o o &

and the group factors have moderate correlations. This might explain the failure of the

orthogonal bi-factor models to recover the hypothesized structure.

6 Discussion

6.1 Relation to other methods

The rotation to simple structure has been a classic problem in factor analysis, and a number
of methods have been proposed in the literature. Although we develop the solution from a
different perspective, it is mathematically related to some existing methods. We discuss the
connection to Jennrich| (2004))’s component loss function (CLF) method and Kiers| (1994))’s
simplimax method.

Jennrich| (2004)) has investigated a class of rotation criteria based on the CLF including
the family of right constant CLF, to which we now demonstrate our method is equivalent.
Let A = AT be the rotated loading matrix with entries \;.. The CLF method finds the

rotation 7" that minimizes the component loss criterion Q(A), defined as

Q) = 33O
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Table 3: Exploratory bi-factor rotation results of the proposed methods applied to the
Quality of Life data (loadings > .20 in absolute value are bolded).

[tem Orthogonal bi-factor loadings Oblique bi-factor loadings

diff .56 .64 —01 —-.08 —.04 .16 718 —.01 A1 —.03
slo .46 .47 .07 -.03 .03 19 .58 .08 —.03 .05
con .53 .67 .04 .07 .04 .28 86 —.01 -.09 .04
for 44 .67 .02 .01 —-.01 A7 .86 —.03 —.08 —.03
dcon 57 .61 —-00 —-.01 -.02 .23 .76 —.02 .08 —-.01
tired .67 .04 b2 —.02 —-.06 42 —.00 .76 .03 —.07
ener .56 —.00 .38 .01 .04 37 —.03 .54 .02 .06
worn .66 07 .54 -—.11 .03 .35 04 .79 —.06 .05
pep 66 —.01 .43 .21 .00 60 —.01 .56 .03 —.03
calm 273 —01 —.04 .41 .02 72 03 —.10 .45 .01
blue 83 —-04 -.10 .05 —.03 48 —.10 —-.03 .74 .05
hap .66 —.05 .09 .38 -—-.01 .68 —.02 08 .34 —-.03
nerv .68 19 —.04 .01 .02 .35 .21 —.00 .40 .09
down .82 01 —.08 —-.08 —.16 .35 —.08 .05 .85 —.10
afr .69 00 —-.09 —-.08 .55 35 —.01 —-.08 .08 .82
frust .69 .00 .09 01 .42 .44 —.00 13 .01 .60
wor .61 —.00 .00 .06 .54 43 02 —-.03 -.10 .76

with some component loss function h(:). One particular CLF is the right constant function

(A/b)?,if [A] <,
1, if |A| > b.

h(A\?) =

The component loss criterion with this right constant function is equivalent to (2.1]) for
p = b%. To see this, we rewrite (2.1)) as a partial minimization problem

min { min (AT — S|13 + [1S]l) }. (6.1)

The inner minimization problem over S has an explicit solution S = S(T") := H(AT, \/p).
Thus, if we let A = AT, (6.1)) becomes

min [|AT = S(T) [l + ol S(T) o

—mln ZZ{)\ IO < p)+pIl(N) > p)},
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which is exactly b*Q(A) with the right constant CLF and p = b%. This equivalence has
several consequences. First, the desirable properties of the right constant CLF provided by
Jennrich| (2004)) directly apply to our method, such as the ability to recover perfect simple
structure or Thurstone’s simple structure whenever they exist. Second, it suggests choosing
the tuning parameter p as the square of the threshold b, such as p = 0.3%. Finally, our
method provides a natural justification and interpretation for the right constant CLF, and
we also offer a simple and convergent algorithm for the equivalent methods.

Another related method is the simplimax rotation (Kiers, [1994)). Although the simpli-
max method is proposed for oblique rotation, the idea can be analogously applied to the
orthogonal rotation. Given a number m, the simplimax maximizes the simplicity by mini-
mizing the sum of m smallest squared entries of the rotated loading matrix. It is derived
from the formulation:

min || AT - 53,

s (6.2)

s.t. [|S|lo < pk —m,
where T is either an orthogonal or an oblique rotation matrix. Thus, the simplimax
can be viewed as a constrained version of , while is a penalized version. The
PAM algorithm is still applicable to the constrained problem , in which is re-
placed by a truncation operation that sets the m smallest (in absolute value) entries of
AL 95 (AL +m.5:) /(1 + 1) to zero. The constrained version is
appropriate when the number of zero loadings is pre-specified, while the penalized ver-
sion is appropriate when the threshold for small loadings is given, which is typically
the case.

In developing the approach of exploratory bi-factor analysis, |Jennrich and Bentler| (2011,
2012)) proposed constructing the rotation criterion as an index that measures the depar-
ture of a loading matrix from a bi-factor structure. If such departure is measured by the
Frobenius distance to the set of bi-factor loading matrices, one naturally derives our formu-
lation (2.4)). Formulation (3.6) measures a distance not directly under the loading matrix
scale but under the covariance matrix scale. This scale has the benefit of balancing the
estimation accuracy for the loading matrix and the factor correlation matrix, hence the

better performance shown in Figure

6.2 Bridging simple structure rotation and penalized estimation

Penalized estimation is a popular technique in statistics and machine learning for incorpo-

rating prior knowledge about parameters. When the parameters are assumed to be sparse,
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sparsity-promoting penalties such as the Lasso (Tibshirani, [1996]) are incorporated into the

loss functions (e.g., the likelihood function) to produce sparse estimates. This technique has
been introduced to the EFA for the estimation of sparse loadings and has been suggested

as an alternative to the factor rotation procedure because it produces sparser loadings

rose and Yamamoto| [2015; Scharf and Nestler, 2019). We now show via our framework

that the factor rotation procedure and the penalized estimation are two sides of the same
coin. Their relation is summarized in Table El In the REGL formulation , the optimal
value for S given a fixed T is H(AT,/p), and the optimal value for T" given a fixed S is
PorertAS=-argmingrrr=r AT —r Porn(A'S) = arg mingr.pr1,3 |AT — S|lg. Thus,
the penalized estimate S is a truncated matrix of the rotated loading AT, and the rotated
loading AT is an untruncated version of S. The difference between the rotation procedure

and penalized estimation is merely a matter of choosing the output between AT and S.

Table 4: Classification of estimation procedures

output
objective function AT or A(T')™! S
likelihood/squared loss/etc. penalized estimation/CFA
approximated loss function EFA/REGL REGL

While one may argue that our sparse estimates S in and are not exactly
the penalized likelihood estimations discussed in the literature, the difference swould-be
peripheral—Whereasthe-is peripheral. The classic penalized estimation minimizes seme-a_
loss function (e.g., the likelihood function or seuaredloss-phis-thepenalty-termthe squared
loss) d(3,SPS' + U?), which represents the discrepancy between the sample covariance
matrix 3 and the model covariance matrix S®S’+ ¥, along with a penalty term for

—||A — ST'||Z plus a penalty

S._In contrast, we minimize

term.

nizing ‘ i m&mmcwmm
quadratically approximated (up to constant scaling and shifting) by ||AA’ — S®S'||z, as.
AA' + U2 is the minimizer of the loss function. Taking the “square root” of the matrices.
AA" and S®S' = ST'TS’, we can further approximate ||AA’ — S®S'||2 by ||A — ST'||3.
Therefore, our formulas and are approximated penalized loss functions, and

our sparse estimates S are approximate solutions ef-to the standard penalized estimation.

Ideally, it would be best to solve the penalized loss function directly because the initial

loading matrix A is only an intermediate estimator. We formulate-the-problemrunderthe
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frame the problem within the rotation paradigm partly because factor rotation procedures
have historically been central to the EFA and partly because the rotation of a given matrix

is—presents an algebraic problem of independent interest. Additionatly—the—method—of

Moreover, employing a penalized loss function presents—a—ehallenge-introduces challenges
in solving the optimization problem, as our algorithm is neither practical nor necessarily

convergent when applied to it. The study—exploration of efficient algorithms for minimizing

the penalized loss function in factor analysis isdeft-as-a-futurereseareh-topieremains a topic
for future research.

We can further draw a connection with the confirmatory factor analysis (CFA). In the
CFA, the likelihood function (or a loss function in general) is minimized under the restric-
tion where seme—certain loading entries are pre-specified with fixed values or restrieted-by
subject to equality constraints. This approach constitutes constrained estimation. As—in
Similar to the penalized formulation, our REGL framework provides a mathematical corre-

spondence between the rotation procedure and the constrained estimation. The constrained

estimate—estimates produced by our framework is-again—an—appreximate—selution—ofthe

are again approximate solutions for CFA estimation by replaecine-substituting the standard
loss function with -||A — ST"||#. Although the exploratory and confirmatory factor analysis

analyses are usually considered twe-distinct disciplines with different purpesesobjectives,

our framework reveals the-a mathematical connection between their estimates.

7 Conclusion

We have proposed a general framework to solve the rotation problem in factor analysis.
The problem is formulated as either a penalized or a constrained optimization, depending
on the type of rotation purpose. This regularized formulation can incorporate any desired
assumptions about the factor structure, and the optimization process finds the optimal
rotation aeeording-based on these assumptions. The optimization problem is solved using
simple and convergent algorithms. This framework swerks-fer-is applicable to both orthogo-
nal and oblique rotations. We use-the-illustrate the penalized and constrained formulations

using examples of simple structure rotation and the-bi-factor rotationpreblem-as-examples
tHuastr i at strad tons, respectively.

Simulation studies show that, for exploratory bi-factor analysis, our method performs
better than most other methods under many conditions, and mostly equally well as Bi-
Quartimin, except in the conditions ICB and ICBP, where it performs better than Bi-

Quartimin. When applied to real data sets, our method uncovers bi-factor structures that
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are consistent with the hypothesized theory. Our framework also provides insight into the
mathematical relationship among exploratory factor rotation, penalized estimation, and
confirmatory factor analysis.

Finally, we want to point out that we are essentially providing a numerical iterative
approach to an algebraic problem: given a matrix A, how to find its approximate factoriza-
tion ST” where S and T satisfy certain structures or properties. This matrix factorization

framework micht—alse—be—valuableto—other—diseiplineshas potential applications beyond
factor analysis and could be valuable in other fields. For example, in the-context-of-dictio-

nary learning (Rubinstein et al., 2010; |Zhai et al., [2020)), the problem of sparse represen-

tation modeling problem—ean-be-studied-similarly—can be approached in a manner similar
to (2.1)) for orthogonal dictionaries or (3.2]) for general dictionaries. The conneetion—and

extenston—potential connections and extensions of our algebraic fermulation—and-sohition

to—other{framework to related problems may be explored in future work. A reviewer has

ineired—abont-raised a question regarding the performance of formulation for the

oblique rotation problem. We have not feund-yet identified a convergent algorithm for

findings are presented in Appendix[A.7 A comprehensive and systematic study of s
¢ represents another promising direction for future research.
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Figure 1: Estimation—errer-Boxplot of the estimation error
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Appendix

A.1 Derivation of Algorithm

For the problem ([2.1)), the PAM algorithm (Attouch et al., [2010) reads

Tpr = arg_min (AT = Syl +pllSucllo + 7T - T}, (A1)
Suesr = argmin {|ATy 1 = S| + oSl + mucllS = Siell2}. (4.2

Step (A.1) is a proximal version of Procrustes problem, and can be converted to a standard

one:
arg min [|AT — S;||7 + pllSillo + 7| T — T:|13
T'T=1,
= arg_min trace[(T"A" — S;) (AT — S,)| + ytrace[(T" — T, )(T — T,)]
=I

= arg Tl/(ni_n trace(—2S;AT) + yitrace(—2T,T)

= arg Tyr%iin trace[—2(S;A + v, T))T]

= arg T%I:Iik |T — (A'S, + 1) |3

Thus L ="Porat ASe+F Lot = Patn(A'S: + 1 1;). Step (A.2)) can be rearranged to

argmin ATy 41 — S|l + pllSllo +mellS = Silli

ATy 1 + Sy

2

P
L 8,
1+, 150

F 1+7]t

= arg min HS —

which can be optimized entry-wisely. In general, function (z —t)? + k||x||o is minimized at
x=0if [t| < v/k and at = = ¢ otherwise, that is, the minimizer is x = H(t, /x). Hence,

ATjpr + S ATi1 + 1S Vol + nv/o/ 0+ m))

Sy :’H<
e Lt 1+m

A.2 Proof of Proposition

This convergence result is a direct application of Theorem 3.2 in |Attouch et al.| (2010). In
particular, Theorem 3.2 of |Attouch et al. (2010)) requires that the objective function has
the Kurdyka—Lojasiewicz property and that its smooth part has a Lipschitz continuous
gradient. A function f(z) is called Lipschitz continuous if there exists a constant L >
0 such that ||f(z) — f(y)|| < L||x — y|| for all x and y. The constant L is called the
Lipschitz modulus. The function ||[AT — S||% in is a quadratic function of 7" and
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S, so it is continuously differentiable and has a Lipschitz continuous gradient on bounded
subsets. Theorem 3 in [Bolte et al.| (2014) shows that semi-algebraic functions must have
the Kurdyka—Lojasiewicz property (both definitions can be found in |Attouch et al., 2010
or Bolte et al.; 2014). Semi-algebraic functions are ubiquitous. In particular, polynomial
functions, the Stiefel manifold (i.e., the set of orthogonal matrices), and || - ||o are all semi-
algebraic (see the Appendix in [Bolte et all 2014). Hence, the objective function has
the Kurdyka—Lojasiewicz property.

Theorem 3.2 in |Attouch et al.| (2010]) implies that any bounded sequence converges to
a stationary point. We now show that our sequence is bounded. The orthogonal matrix 45
T; is bounded. The iteration implies that

AT, 1 + S,
ISl = || (22 o) ) |
1+ F
< AT, + Sy
- 1+77t F
< ATy +H NSt
— I+ llr L+nllF
1 Tl
=—||Allgp + S
Al S
1 UG
< —— max{||A||r, ||.S + max{||Al|g, ||
S {1l l[Selle} T {I1Al[e, [[Selle}

= max{||Allr, [|5¢][¢}-

This is valid for any #¢. Therefore,

[Se41llp < max{||Al[g, [|S¢[|r}
< max {||Al|p, max{||A|lr, || Si—1]|r} }
= max{||Allr, || Se-1//r}
< ...

< max{||Allr, [|So]|r}-

Hence our sequence {#5+-5:-(13},.S;) is bounded and thus converges to a stationary point.

A.3 Projection onto bi-factor loadings

Algorithms [2| and 4] involve projecting a matrix onto the set of bi-factor loading matrices
Pui(X) = argminges,, ||[S—X||r. To find this projection, one needs to identify which column
of S corresponds to the general factor. Suppose that the r-th column of S represents the

general factor loadings; then this column is free and should be equal to the r-th column
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of X in order to minimize the Frobenius distance. After that, simple algebra shows that
the group factor loadings in S should be identical (in both value and location) to the
largest (in absolute value) entry in each row of the remaining X sub-matrix. By letting
every column be a potential general factor loading, we obtain k candidates for the bi-factor
loading matrices. The projection will be the one with the largest Frobenius norm, because
in this case ||S — X||Z = || X |2 — ||S||? for those candidate matrices S.

A.4 Derivation of Algorithm

For the minimization of H(T,S) + f(T') + g(S), the PALM algorithm (Bolte et al., 2014)

reads

: ¢
Tjt41 = arg min {{T' = Tk, Vo H(T}, Skt Si)) + i—t||T Trllp + (1)}, (A3)

. dy d
Ski+1 = arg mm {(S — Skt VsH (T1, Sﬁt» + *k—t”S Skt”F +9(S )}- (A.4)

In our case (3.2), H(T,S) = ||A— ST'||%, g(S) = p||S|lo, and f(T) is the indicator function

for the constraint diag(F'Fy=1Idiag(T'T) = Iy, i.e., f(T) = 0if T belongs to the constraint,
and f(7T) = 400 otherwise. We have

VrH(T,S)=—-2(A"-TS")S, and VgH(T,S) = —2(A — ST")T.
For these functions,
IVeH (T4, S) = VoH (T, §) e = 207 — T2)S'S|ls < 2|71 — Tolls|S'S e
and
IVsH(T, Sy) = VsH(T, S2)|lp = [12(81 — S2)T'T[|r < 2/[Sy = Sellel| 7T [,

so they are Lipschitz continuous with moduli L;(S) = 2||S"S||r and Lo(T) = 2||T'T ||, re-
spectively. The PALM algorithm requires that ¢ ¢ = vL1(S)

and d; = nLo(T;.,) for some v > 1,17 > 1. Thus, (A.3) becomes
arg min (T — T, —2(A' = 1,8)S,) + IS5l el T = T2

diag(T'T)=1},
, (A" = T,S})S: 2
=arg min T—-T,———0—1| .
& diag(T"T)—Ty ! Y SiSelle ME

Therefore,

(A" —T.5,.)Sk (A" — TtSlﬁ)St)

T = Pobl (Tk+
e T T T S Skl ANISiSele_
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Step (A.4) becomes

arg msin<5' — S, =2(A = ST/ 1) Toa) + 0l Ty Te e 1S — Sellg + pl1S]lo
(A= ST{)Tia
| T¢ 1 Tisa ||

2
)
+ 15]lo-
Foonl| T Tallr

= argmsin HS — St —

Hence

(A - SkTIQH)TkH (A - StTtlJrl)Tt+1
T Telle AT Tille_

Sk = H (St AP O Tt [ o/l T T ).

A.5 Proof of Proposition

This convergence result is a direct application of Theorem 1 in Bolte et al.| (2014). Specif-
ically, the constraint diag{7"F}=I-diag(1T'T) = I; is defined by a series of polynomial
equations, so it is semi-algebraic by definition. Similar to the proof of Proposition [1| the
other terms in are also semi-algebraic. Therefore, has the Kurdyka-Lojasiewicz
property. The Assumptions 1 and 2 required in Bolte et al.| (2014]) can be easily verified
to be true for (3.2)). Thus, the bounded iterates {£35-5%)-(1},S;) converge to a stationary

point.

A.6 Simulation on simple structure rotation

This section provides the simulation results of the proposed method and existing methods
for recovering simple structure in EFA. The simulation setting is very similar to that of the
bi-factor rotation simulation in Section [} There are a total of 22 items, and they admit a
factor model with a perfect simple structure. There are four latent common factors, and
these common factors have nonzero loadings on four, five, six, and seven items, respectively.
The nonzero loadings are randomly selected from the intervals [0.3,0.6] or [0.6,0.9], and
then each entry is randomly assigned a positive or negative sign. The population correlation

matrix is generated as

R = A®PN + T2,

where @ is the factor correlation matrix and ¥? is a diagonal matrix of uniqueness, chosen to
constrain the diagonal elements of R to one. In the orthogonal model, ® will be an identity
matrix. In the oblique model, the correlations among common factors are randomly selected
from the interval [0.2,0.6]. If the generated correlation matrix is not positive definite, we
re-generate a new one until it is positive definite. The final step generates the data from a

multivariate normal distribution with zero mean and covariance matrix R, with a sample
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size N € {200,500,2000}. The simulation is replicated 50 times for each scenario. The
estimation accuracy is evaluated by the RMSE (4.1)).

We compare our proposed methods with the conventional rotation methods, namely,
the Varimax for orthogonal rotation and the oblimin for oblique rotation. The results are
shown in Figures 4] and [5| The oracle method rotates the initial loading matrix towards
the true loading matrix, so it is optimal in the sense of minimizing the RMSE of loading
matrix estimation. Under the orthogonal model, all the methods achieve nearly optimal
performance. Under the oblique model, these oblique methods (REGL.oblq and oblimin)
are as good as the oracle method. Nonetheless, as shown in Figure [5] our method has
better performance in estimating the factor correlations. Our method exhibits outliers in

Figures [] and [§] because it gets trapped in local minima in these cases.
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Figure 4: Estimation—errer-Boxplot of the estimation error for loading matrix under factor

models with perfect simple structure.

A.7 Comparing two formulations of oblique rotation
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Figure 5: Estimatien—errer—Boxplot of the estimation error for factor correlation matrix

under oblique factor models with perfect simple structure.

This section investigates the performance of two different formulations of the oblique
rotation problem through simulations. The simulation settings are exactly the same as

those in Section ll The two formulations are

. n—1_ @2
min |AT)™ — Sk,

(A.5)
s.t. diag(T'T) =1, S € Sy,
and
min ||A — ST'||3,
.S (A.6)

s.t. dlag(T’T) = Ik, S e Sbi'

(A.5) is solved by the alternating minimization algorithm and the updating of 7' given

a fixed S is achieved by |Jennrich| (2002))’s gradient projection algorithm. (|A.6|) is_solved
by Algorithm [ Both solutions are partially orthogonalized to the semi-oblique bi-factor
results. The two corresponding oracle methods are

min [ A(T)" - AJ1,

(A7)
s.t. diag(T'T) = I,
and
min [|A — AT'||Z,
T (A.8)

s.t. diag(T'T) = 1,
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where A is the true loading matrix. (|A.7) and (A.8) are solved by the gradient projection

algorithm.
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Figure 6: Boxplot of the estimation error for loading matrix under semi-oblique bi-factor

models.

The results of the four methods in estimating the loading matrix and factor correlation

always has_the optimal
loading matrix estimation, as it minimizes the loading matrix RMSE (#.1). The CovOracle
produces comparable results for loading matrix_estimation when the loadings are.
high but performs slightly worse when the loadings are low. The extremely poor results of
CovOracle under ICP and ICBP conditions arises from a nearly singular estimate of the
matrix 7, with which A(7")"! will be extremely biased. A reversed trend is observed for
the estimation of the factor correlation matrix. While LoadingOracle and CovOracle yield
similar results when the loadings are high, CovOracle demonstrates superior estimation
of the factor correlation matrix when the loadings are low. This outcome highlights the
benefit of minimizing the covariance distance, even though it sacrifices some accuracy in
the loading matrix estimation.

The pattern follows for the two practical methods, CovREGL (A.6) and LoadingREGL
(A.5). These methods perform comparably in estimating the loading matrix when the
loadings are high, but CovREGL shows slightly worse performance when the loadings are
low. For factor correlation matrix estimation, the two methods are comparable when the
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Figure 7: Boxplot of the estimation error for factor correlation matrix under semi-oblique

bi-factor models.

loadings are high, but CovREGL outperforms LoadineREGL when the loadings are low

particularly under IC and ICP conditions. However, under ICB and ICBP conditions, the
advantage of CovREGL over LoadingREGL in estimating the correlation matrix diminishes.
This deterioration is likely due to model misspecification, as A ¢ Si; under these conditions.
Surprisingly, CovREGL occasionally outperforms its oracle counterpart under IC and ICP.
conditions. In particular, the issue of extreme bias observed with CovOracle is no longer
present with CovREGL.
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