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This Supplementary Material is organized as follows. Section S.1 provides a measure-

theoretic definition of general-response CDMs. Section S.2 introduces additional examples

of parametric CDMs, such as the exponential family general diagnostic models (ExpGDMs)

for general responses and negative-binomial-based CDMs. Section S.3 presents proofs to all

theoretical results in the main manuscript. Section S.4 illustrates how our EM algorithms

for estimating ExpCDMs can be modified to estimate negative-binomial-based CDMs. Sec-

tion S.5 presents additional simulation details, and a simulation study showing empirical

consistency under our generic identifiability conditions. Finally, we present our real data

pre-processing details and an analysis of the response accuracy data in Section S.6.

S.1 Rigorous definition of the general-response CDMs

In this section, we define the sample space for the responses, Yj, in a more general and

rigorous manner. Here, Yj’s only need to be separable metric spaces for our main Theorems to

hold. We adopt the following measure-theoretic terms to introduce our modeling framework

and identifiability results in full generality; these terms follow from classical probability

theory textbooks such as Durrett (2019).

Let Fj and mj be the Borel sigma-algebra and a base-measure on Yj, respectively. Thus,

for each Yj, we have defined the probability triplet (Yj,Fj,mj). In many concrete model

examples, Fj and mj are naturally defined upon specifying the response type of Yj ∈ Yj. For

instance, as illustrated in the main text, when Yj = R with Yj being a continuous response,
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Fj is the collection of Borel sets in R and mj is the Lebesgue measure on R.

Under this definition of Fj, equation (6) in the main paper (for defining parametric

CDMs) can be generalized as:

Pj,α(Yj ∈ Sj | A = α) =

∫
Sj

g(y;ηj,α)dmj(y). (S.1)

Consequently, the parametric CDMs and ExpCDMs can be defined for such Yj’s.

Our above general assumption on the response types covers binary, polytomous, continu-

ous, count responses, etc. As mentioned in the main paper, we introduce the above abstract

measure-theoretic definitions to illustrate that the model (Definition 1) and identifiability

results (Theorem 1 and 2) can be stated in the most general setting.

S.2 More examples of parametric CDMs

S.2.1 The ExpGDM model for general responses

In this section, we define the exponential family-based general diagnostic models for general

responses, which we call ExpGDMs. ExpGDMs can be viewed as general-response extensions

of the categorical-response GDM proposed by von Davier (2008). In categorical-response

GDM and similar models such as the generalized DINA model (GDINA, de la Torre, 2011)

and the loglinear CDM (LCDM, Henson et al., 2009), the response probabilities depend not

only on the main effects but also on all the interaction effects of the required attributes of

an item. In an ExpGDM, we define the parameter ηj,α in (6) as

ηj,α = h
(
βj,∅ +

∑K

k=1
βj,k {qj,kαk}+

∑
1≤k1<k2≤K

βj,k1k2 {qj,k1αk1} {qj,k2αk2}

+ · · ·+ βj,12···K
∏K

k=1
{qj,kαk} , γj

)
= h

( ∑
S⊆pa(j)

βj,S

∏
k∈S

αk, γj

)
. (S.2)

Here, similar to ExpACDMs, not all the β-coefficients are needed to specify the model; in-

stead, only those corresponding to the main and interaction effects of the required attributes

in pa(j) enter the definition of ηj,α. Therefore, the Q-matrix constraints in (7) are satisfied.
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The mapping h is a link function that maps the main- and interaction-effects of attributes

to the natural parameters ηj,α, and γj is the additional parameter that does not depend on

α. With these notations at hand, we define the ExpGDM as follows.

Definition 1 (ExpGDM). The ExpGDM is an ExpCDM for which the natural parameters

ηj,α satisfy (S.2). The parameters in an ExpGDM model with link h include {βj,S : j ∈

[J ], S ⊆ pa(j)}, {γj : j ∈ [J ]} and proportion parameters p.

Next, we define the lognormal-GDM and Poisson-GDM and provide examples of the

ExpGDM model.

Example 1 (lognormal-GDM). Define the lognormal-GDM by letting g be the lognormal

density with

ηj,α =
(µj,α

σ2
j,α

, − 1

2σ2
j,α

)
, where µj,α =

∑
S⊆pa(j)

βj,S

∏
k∈S

αk, σ2
j,α = γj

with the same link h as in the lognormal-ACDM. This lognormal-GDM is a sub-model of the

C-G-DINA model in Minchen and de la Torre (2018). The C-G-DINA model additionally

considers all effects for the variance parameter as well, i.e.

µj,α =
∑

S⊆pa(j)

βj,S

∏
k∈S

αk, σ2
j,α =

∑
S⊆pa(j)

β′
j,S

∏
k∈S

αk.

This model can also be viewed as an ExpGDM by considering the interaction-effect coefficients

for S ⊆ pa(j) as a two-dimensional vector (βj,S, β
′
j,S)

⊤.

Example 2 (Poisson-GDM). Define the Poisson-GDM by letting g be the Poisson density

with ηj,α = log λj,α, h(λj,α) = log λj,α, and writing

λj,α =
∑

S⊆pa(j)

βj,S

∏
k∈S

αk.

Here, βj,S ≥ 0. This Poisson-GDM model can be viewed as a reparametrization of the

Poisson Diagnostic Classification Model (PDCM; Liu et al., 2022).
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S.2.2 Parametric CDMs with non-exponential family distributions

In this section, we illustrate how the general-response DINA model and ACDM can be defined

when the parametric family P is not an exponential family. In particular, we focus on the

negative binomial distribution and define negative binomial-based DINA model (NegBin-

DINA) and negative binomial-based ACDM (NegBin-ACDM). In addition to the Poisson,

the negative binomial is another popular distribution for modeling count data. The negative

binomial distribution with parameters (r, π) has the following probability mass function:

P(X = x) =

(
x+ r − 1

x

)
(1− π)xπr, x = 0, 1, 2, . . .

where r > 0 and π ∈ (0, 1).

Example 3 (NegBin-DINA). For each item j ∈ [J ], we define different values of (r, π)

for the two classes of α depending on the value of Γj,α =
∏K

k=1 α
qj,k
k . By letting ηj,α =

(rj,Γj,α
, πj,Γj,α

), the distribution Yj | A can be written as

Yj | A = α ∼

NegBin(rj,1, πj,1), if Γj,α = 1,

NegBin(rj,0, πj,0), if Γj,α = 0.
(S.3)

This can be viewed as a reparametrized version of the CDCM-DINA model proposed in Liu

et al. (2023).

Example 4 (NegBin-ACDM). For count data, we believe that it is unreasonable to model

the variance as a constant and the variance may have a linear relationship with the mean.

Hence, we define ηj,α = (rj,α, πj,α) by the link function

ηj,α = h
(
βj,0 +

K∑
k=1

βj,kqj,kαk, γj

)
=

(
γj

1− γj
(βj,0 +

K∑
k=1

βj,kqj,kαk), γj

)
. (S.4)

With this parametrization in (6), Pj,α can be written as

Yj | A = α ∼ NegBin

(
γj

1− γj
(βj,0 +

K∑
k=1

βj,kqj,kαk), γj

)
,

and in particular, we get the desired linear mean and variance with repsect to the required
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attributes:

E(Yj | α) =
rj,α(1− πj,α)

πj,α

= βj,0 +
K∑
k=1

βj,kqj,kαk,

Var(Yj | α) =
rj,α(1− πj,α)

π2
j,α

=
βj,0 +

∑K
k=1 βj,kqj,kαk

γj
.

We remark that for the negative binomial link, some studies have adopted different ways to

model the variance (e.g. Man and Harring, 2019; Liu et al., 2023). These models can all be

covered in our general-response ACDM framework by defining a different link function h.

S.3 Proof of Theorems 1, 2 and Propositions 1, 2, 3, 4

S.3.1 Proof of Theorem 1 and Proposition 1

Our proof is motivated by the proof of Theorem 8 in Allman et al. (2009), which proved the

identifiability of nonparametric mixture models with independent marginals by discretizing

the sample space R into bins. After the discretization, the marginal probability distribu-

tion of the observed variables can be written as a tensor, and identifiability is established by

proving that there exists a unique decomposition of that tensor. Here, we adopt a similar dis-

cretization trick and exploit the uniqueness of the resulting tensor decomposition. However,

technical difficulties arise as (1) we work with general responses rather than the continuous

responses in Allman et al. (2009) and (2) our conditional distributions Pj,α’s are subject

to the equality constraints induced by the Q-matrix while Allman et al. (2009) works with

linearly independent conditional distributions. Our proof mainly consists of the following

four steps:

Step 1. We reduce estimating the nonparametric distribution Pj,α’s into estimating a finite

number of values {Pj,α(Sj) : Sj ∈ Dj}’s. Here, Dj is a finite set that is defined later in

the proof.

Step 2. We write the marginal probability P(Y ∈ ×J
j=1Sj) as a three-way tensor decomposition.

This decomposition naturally arises from (4) by combining (unfolding) the row-indices

of Q1,Q2,Q
⋆.
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Step 3. We apply Kruskal’s theorem and show that the three-way tensor can be uniquely

decomposed.

Step 4. We show that the model components p and {Pj,α} can be recovered from the decom-

posed tensor.

In order to provide rigorous proof that applies to general responses, we adopt measure-

theoretic terminology and notations.

Proof. Suppose that the Q-matrix and the true model components (p, {Pj,α}) satisfy con-

ditions A and B. We next show that there exists no other choice of model components that

satisfy (4) in four steps.

Step 1: Reducing the problem to identifying a finite number of probabilities

We claim that for all j, there exist countable separating classes1 Cj’s that determine the

probability measure Pj,α’s. First, because Yj is a separable metric space, there exists a

countable basis Bj of Yj. For example, one can simply consider open balls centered at a

countable dense set. Let Cj be the finite intersections of Bj. Then, Cj is a countable π-

system such that σ(Cj) contains all open sets in Yj. Because Fj is the Borel σ-algebra (i.e.

the σ-algebra generated by all open sets), Fj ⊆ σ(Cj). Hence, Cj is a separating class by

Theorem 3.3 in (Billingsley, 2013, page 42).

Since Pj,α is determined by its values evaluated at Sj ∈ Cj, it suffices to show that

(p, {Pj,α(Sj) : Sj ∈ Dj}) are identifiable for all finite subsets Dj’s of Cj that fully distinguish

different Pj,α’s
2. To this extent, we consider an increasing collection of sets D(t)

j , t ≥ 1

(i.e. D(t)
j ⊊ D(t+1)

j , ∪t≤∞D(t)
j = Cj) and prove that (p, {Pj,α(Sj) : Sj ∈ D(t)

j }) is uniquely

determined, and well-defined across t. For notational simplicity, we drop the superscript (t)

by writing

Dj = D(t)
j = {S1,j, ..., Sκj ,j}

when the meaning is clear. Here, κj = |Dj|. Without the loss of generality, we assume that

Sκj ,j = Yj, i.e. the last element in Dj is the entire range.

1Cj ⊂ Fj is a separating class of Fj if for any two measures P1,P2 on (Yj ,Fj) with P1(E) = P2(E) for
all E ∈ Cj , we have P1 = P2.

2Dj fully distinguishes different Pj,α’s when, for any α ̸= α′ such that Pj,α ̸= Pj,α′ , there exists Sj ∈ Dj

with Pj,α(Sj) ̸= Pj,α′(Sj)
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Step 2: Writing the marginal probability distribution as a tensor decompo-

sition. We start by introducing new notations that are necessary to write the condi-

tional probabilities evaluated at Sl,j ∈ Cj. For j = 1, . . . , 2K, define Λj to be a κj × 2

matrix where Λj(l, αj) = Pj,αj
(Sl,j). For j > 2K, let Ψj be a κj × 2K matrix where

Ψj(l,α) = Pj,α(Sl,j). Also, define N1 to be a κ1...κK × 2K matrix whose ((l1, ..., lK),α)-

th entry is P(Y1 ∈ Sl1,1, ..., YK ∈ SlK ,K | α). Here, we index the 2K columns of Ψj and

N1 using the binary vector α ∈ {0, 1}K . For Λj, the columns are indexed by αj ∈ {0, 1}.

Similarly, we index the rows of N1 by (l1, . . . , lK), where lj ∈ [κj].

Using the assumptions (2), (3), and condition A, we can write

P(Y1 ∈ Sl1,1, ..., YK ∈ SlK ,K | α) =
K∏
j=1

P(Yj ∈ Slj ,j | αpa(j)) =
K∏
j=1

P(Yj ∈ Slj ,j | αj).

Hence, N1 can be decomposed as
⊗K

j=1 Λ
j, where

⊗
denotes the Kronecker product of ma-

trices. Similarly, define N2 be a κK+1 . . . κ2K×2K matrix whose ((lK+1, . . . , l2K),α)-th entry

is P(YK+1 ∈ SlK+1,K+1, ..., Y2K ∈ Sl2K ,2K | α), and N3 be a κ2k+1 . . . κJ × 2K matrix whose

((l2K+1, . . . , lJ),α)-th entry is P(Y2K+1 ∈ Sl2K+1,1, ..., YJ ∈ SlJ ,J | α). Then, we can write

N2 =
⊗2K

j=K+1 Λ
j and N3 = ⊙J

j=2K+1Ψ
j, where ⊙ denotes the columnwise Khatri-Rao prod-

uct. For notational simplicity, let η1 =
∏K

k=1 κk, η2 =
∏2K

k=K+1 κk, η3 =
∏J

k=2K+1 κk. Similar

to N1, we index the rows of N2 and N3 by (lK+1, . . . , l2K) and (l2K+1, . . . , lJ), respectively.

Next, we define the marginal probability tensor P of size κ1 × . . . × κJ by setting

P(l1, . . . , lJ) = P(Y ∈ ×J
j=1Slj ,j). Using (4), we can write

P(Y ∈ ×J
j=1Slj ,j) =

∑
α∈{0,1}K

pαP(Y1:K ∈ ×K
j=1Slj ,j | α)P(YK+1:2K ∈ ×2K

j=K+1Slj ,j | α)

P(Y2K+1:J ∈ ×J
j=2K+1Slj ,j | α)

=
∑

α∈{0,1}K
pαN1((l1, . . . , lK),α)N2((lK+1, . . . , l2K),α)N3((l2K+1, . . . , lJ),α)

Viewing P0 as the unfolded 3-way tensor of P (with size η1 × η2 × η3), P0 can be written as

the tensor product:

P0 = [N1Diag(p),N2,N3].
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Step 3: Applying Kruskal’s Theorem for three-way tensor decomposition. Let

rkk denote the Kruskal rank of a matrix, defined as the maximum value of r such that any r

columns of the matrix are independent (Kruskal, 1977; Derksen, 2013). Now we claim that

under our assumptions A and B,

rkk(N1Diag(p)) + rkk(N2) + rkk(N3) ≥ 2K+1 + 2 (S.5)

holds. Assuming (S.5), we can apply Kruskal’s theorem (this theorem guarantees the unique-

ness of a three-way tensor decomposition; Kruskal, 1977), and the componentsN1Diag(p),N2,N3

are uniquely determined up to a column permutation and scaling (i.e. multiplying each com-

ponent by a constant).

To show (S.5), we prove that

rkk(N1) = 2K , rkk(N2) = 2K , rkk(N3) ≥ 2. (S.6)

Equivalently, we show that N1 and N2 have full column rank of 2K , and any two columns

of N3 are linearly independent.

To compute the rank of N1, recall that N1 =
⊗K

j=1 Λ
j. Here, Λj is a κj × 2 matrix with

full column rank, due to the “fully distinguishable” assumption of Dj. This is because we

assume that P(Yj ∈ Slj ,j | αj = 1) ̸= P(Yj ∈ Slj ,j | αj = 0) for some lj ∈ [κj]. Hence, using

the multiplicative property of ranks under the Kronecker product,

rk(N1) = rk

(
K⊗
j=1

Λj

)
=

K∏
j=1

rk(Λj) = 2K

and N1 has full rank. Hence, rkk(N1) = 2K . Similarly, rkk(N2) = 2K .

Now, we show that rkk(N3) ≥ 2 by checking that any two columns in N3 are linearly

independent. Because the last row of N3 is the all-one vector (since Sκj ,j = Yj), it suffices

to show that all two columns are distinct. Take any two columns indexed by α ̸= α′.

Assumption B implies that there exist j > 2K and lj such that Pj,α(Slj ,j) ̸= Pj,α′(Slj ,j).

Then,

N3((κ2K+1, . . . κj−1, lj, κj+1, . . . , κJ),α) = Pj,α(Slj ,j)
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̸= Pj,α′(Slj ,j) = N3((κ2K+1, . . . κj−1, lj, κj+1, . . . , κJ),α
′)

and the α-th column and α′-th column are distinct.

Step 4: Using the decomposed components to identify model parameters. We

denote P0 = [M1,M2,M3] to be one tensor decomposition, and prove that we can recover

the true components N1,N2,N3. Here, Mi’s are matrices of size ηi × 2K , and are identical

to Ni’s up to a column permutation and scaling.

Because we assume Λj(αj, κj) = Pj,αj
(Sκj ,j) = 1 for all j, the last row of Ni’s is the

one vector for all i = 1, 2, 3. Consequently, we can set the last rows of M2 and M3 as the

one vector, and the scaling issue is resolved. In other words, Mi’s are identified up to a

permutation of the 2K columns. It remains to identify the model parameters from Mi’s. As

we are proving different conclusions, we present separate proofs under the setting in Theorem

1 and Proposition 1.

Under the setting of Theorem 1: In order to identify the model parameters from

M1,M2,M3, we need to represent each column as a binary vector of length K. One subtlety

here comes from the omitted notation (t). Recall that we are working with an increasing

collection of sets D(t)
j , and we desire all estimated Pj,α(Slj ,j) and p

(t)
α ’s to be the same for

all t. Otherwise, the values are not well-defined. This argument is unnecessary for binary

response CDMs (because Dj = {{0}, {0, 1}} and considering a single t is enough), but crucial

for our proof strategy for general-response CDMs.

To assign a distinct binary vector of length K for each column, we focus on the η
(t)
2 × 2K

matrix M
(t)
2 , where the rows are indexed by (lK+1, . . . , l2K) and the columns are indexed by

r ∈ [2K ]. Let

v
(t)
j,r,lj

:=
∑

lj′∈[κj′ ], ∀j′ s.t. K+1≤j′ ̸=j≤2K

M
(t)
2 ((lK+1, . . . , l2K), r)

for all j ∈ {K + 1, . . . , 2K}, r ∈ [2K ], and lj ∈ [κ
(t)
j ]. For fixed j, lj, the set {v(t)j,r,lj

: r =

1, . . . , 2K} can be interpreted as the set of desired probability values {Pj,α(Sj,lj) : α ∈

{0, 1}K}. Since the true Q-matrix corresponding to the items considered in M
(t)
2 is the
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identity matrix IK , Yj only measures αj−K for j = K + 1, . . . , 2K. Therefore, the vector

v
(t)
j,r =

(
v
(t)
j,r,1, . . . , v

(t)
j,r,κj

)
only depends on the value of the j −Kth skill, and {v(t)

j,r}r can take only two values. Based

on this observation, we assign a distinct binary vector of length K to each row of M
(t)
2 ,

denoted as a(t) = (a
(t)
1 , . . . , a

(t)
K ), as follows:

1. If t = 1, for each k ∈ [K], cluster the 2K rows into two disjoint sets V
(1)
k,0 , V

(1)
k,1 , where

each group corresponds to r ∈ [2K ]’s with equal v
(1)
K+k,r.

2. If t ≥ 2, for each k ∈ [K], let M
(t)
k+K be the set of all indices mk+K ∈ [κ

(t)
k+K ] such

that S
(t)
mk+K ,k+K ∈ D(t−1)

k+K . Define V
(t)
k,0 = {s ∈ [2K ] : v

(t)

k+K,s,M
(t)
k+K

= v
(t−1)
k+K,r, ∀r ∈ V

(t−1)
k,0 }

and similarly define V
(t)
k,1 . (Here, v

(t)

k+K,s,M
(t)
k+K

is the sub-vector of v
(t)
k+K,s consisting of

elements indexed by M
(t)
k+K .)

3. For each k ∈ [K], let a
(t)
k = 0 for the rows indexed by V

(t)
k,0 , and 1 for the rows indexed

by V
(t)
k,1 .

Now, for the vectors v
(t)
j,· and matrices M(t)

· , we use the (column-)index a(t). By construc-

tion, a(t) is consistent across t in the sense that v
(t)

k+K,a,l
(t)
k+K

= v
(t′)

k+K,a,l
(t′)
k+K

when S
(t)

l
(t)
k+K ,k+K

=

S
(t′)

l
(t′)
k+K ,k+K

.

Compared to the true latent skill pattern α, which we used to denote the column index

of N2, a is identical up to a sign flip for each coordinate. Hence, there exists permutations

τk ∈ S{0,1} such that

Pj,α(S
(t)
lj ,j

) = v
(t)
j,(τ1(α1),...,τK(αK)),lj

for all j ∈ [K + 1, 2K],α ∈ {0, 1}K , t ≥ 1. So, we have identified Pj,α(S
(t)
lj ,j

) for j ∈

[K + 1, 2K]. Then, p is also identified up to the permutations τk’s, as this is exactly the

last row of M1. For j ̸∈ [K + 1, 2K], {Pj,α(S
(t)
lj ,j

) : lj ∈ [κj]} is also determined by

marginalizing out all other rows in the M1,M3. Hence, for all t, the model components

(p, {Pj,α(Slj ,j) : Slj ,j ∈ D(t)
j }) can be uniquely determined up to the permutation τk’s.

Under the setting of Proposition 1: Here, we assume that the responses are real-valued

with Yj ⊆ R. By the conclusion of Theorem 1, Pj,α’s are determined up to a sign flip. For
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k = 1, . . . , K, the kth item is measured only by the kth attribute, and (17) can be simplified

as

E(Yk | Ak = 1) > E(Yk | Ak = 0).

This assumption enables us to distinguish between Ak = 1 and 0, and fixes the sign of Ak.

Hence, the columns of M1’s uniquely determine the latent configuration α ∈ {0, 1}K . Now,

the proportion parameter pα’s can be determined by observing the last row of M1. Also, for

any j ∈ [J ], lj ∈ [κj], Pj,α(Sj) can be obtained by marginalizing out the other rows. Hence,

all model components can be identified.

S.3.2 Proof of Proposition 2

Proof. Suppose that Q∗ contains IK . Without the loss of generality, assume that

Q∗ = [IK ,Q
†]⊤.

For any α ̸= α′, there exists k ∈ [K] such that αk ̸= α′
k. By our assumption, the 2K + kth

item only measures Ak, and the (2K+k)th row of the Q-matrix is the standard basis vector

ek. Then, the definition of theQ-matrix gives P2K+k,α ̸= P2K+k,α′ and condition B holds.

S.3.3 Proof of Proposition 3

Proof. Recall that Pj,α for the ExpACDM can be written as a parametric density g(y; βj,0+∑K
k=1 βj,kαk, γj). For any α ̸= α′, Pj,α ̸= Pj,α′ if and only if

∑K
k=1 βj,kαk ̸=

∑K
k=1 βj,kα

′
k, and

condition B reduces to B2.

S.3.4 Proof of Theorem 2

Proof. In this proof, we use the notations introduced in the main manuscript and the proof

of Theorem 1. Recall that in the proof of Theorem 1, N1 is defined as a (κ1...κK)×2K matrix

whose ((l1, ..., lK),α)-th entry is P(Y1 ∈ Sl1,1, ..., YK ∈ SlK ,K | α) =
∏K

k=1 P(Yk ∈ Slk,k | α).

In this proof, we further assume that Pj,α’s follow an ExpACDM with parameters (β, γ), and

that conditions A⋆ and B⋆ hold. We claim that it suffices to show that N1,N2,N3 satisfy

(S.6) for generic parameters. Assuming this, (S.5) holds, and Step 3 in the proof of Theorem

11



1 holds almost surely. Consequently, we can apply Step 4 in the proof of Theorem 1, and

the model components are identifiable up to a measure zero set.

Now, we present the proof of (S.6) for generic parameters. We separately show that

rkk(N1) = 2K and rkk(N3) ≥ 2. This proof is motivated by existing works that show generic

identifiability for binary CDMs (Gu and Xu, 2020; Chen et al., 2020).

Proof of rkk(N1) = 2K. Note that N1 can be seen as a function of β1:K,0:K , γ1:K and we

abuse the notation and also write N1 in the functional form N1(β1:K,0:K , γ1:K). We prove

that if the first K rows of the Q-matrix are given as Q1 in Theorem 2, N1 generically has

full column rank. Because N1 has full column rank if and only if det(N⊤
1 N1) ̸= 0, it suffices

to show that

{β1:K,0:K ∈ Ω(β1:K,0:K , γ1:K ;Q1) : det(N
⊤
1 N1) ̸= 0}

is a measure 0 set in Ω(β1:K,0:K , γ1:K ;Q1).

First, we consider the case when Q1 = IK . We can use the calculation of the previous

theorem to see thatN1(β1:K,0:K , γ1:K) has full column rank for all β1:K,0:K ∈ Ω(β1:K,0:K ;Q1 =

IK) = {β1:K,0:K : βj,j ̸= 0, βj,k = 0 for all 1 ≤ j ̸= k ≤ K} and any γ1:K .

Next, for any Q∗ whose diagonal entries are ones, suppose that the true Q1 is Q∗.

Consider the mapping

(det(N⊤
1 N1))(β1:K,0:K , γ1:K) : Ω(β1:K,0:K , γ1:K ;Q1 = Q∗) → R. (S.7)

Observe that det(N⊤
1 N1) defined in (S.7) is a polynomial of entries of N1(β1:K,0:K , γ1:K).

Because g is a density of an exponential family, g(Y ;η) is an analytic function in η. Also,

recall that we assume h is also analytic. Therefore, all entries of N1(β1:K,0:K , γ1:K) can be

written as a composition of analytic functions, and is also analytic. Consequently, the map

det(N⊤
1 N1) is a polynomial of analytic functions, and is also analytic. Also note that the

domain of (S.7) is an open, connected subset of a Euclidean space of appropriate dimension.

Finally, we claim that det(N⊤
1 N1) is not identically zero, i.e. there exists (β⋆

1:K,0:K , γ
⋆
1:K)

such that det(N⊤
1 N1)(β

⋆
1:K,0:K , γ

⋆
1:K) ̸= 0. This follows from noting that there exists (β†

1:K,0:K , γ
†
1:K) ∈

Ω(β, γ;Q1 = IK) that has a nonzero determinant, and we can find (β⋆
1:K,0:K , γ

⋆
1:K) arbitrarily

close to (β†
1:K,0:K , γ

†
1:K) because det(N⊤

1 N1) is a continuous mapping. Hence, we conclude

12



that

{β1:K,0:K , γ1:K ∈ Ω(β1:K,0:K , γ1:K ;Q1 = Q∗) : (det(N⊤
1 N1))(β1:K,0:K , γ1:K) = 0}

is a null set in Ω(β1:K,0:K , γ1:K ,Q1 = Q∗) by the following Lemma. This is true for any

Q1 = Q∗, so the proof is complete. We can apply the same argument to show rkk(N2) = 2K

as well.

Lemma 1 (Lemma 5 of Chen et al. (2020); see Mityagin (2020) for a proof). Let f : Ω → R

be a real analytic function defined on a open, connected domain Ω ∈ Rd that is not identically

zero. Then, the set of zeros of f has Lebesgue measure 0.

Proof of rkk(N3) ≥ 2. In the proof of the previous theorem, we have proved rkk(N3) ≥ 2

under assuming condition B. Hence, it suffices to show that condition B2 (in proposition

3) holds under generic parameters. Recall that Pj,α can be written as a parametric density

g(y; βj,0 +
∑K

k=1 βj,kαk, γj). For any α ̸= α′, we prove that there exists j > 2K such that∑K
k=1 βj,kαk ̸=

∑K
k=1 βj,kα

′
k for generic parameters in Ω(β2K+1:J,1:K ;Q3).

Fix α ̸= α′. Then, there exists k such that αk ̸= α′
k. By condition B’, there exists j such

that qj,k = 1. Then,

{βj,1:K ∈ Ω(βj,1:K ;Q3) :
K∑
l=1

βj,lqj,l(αl − α′
l) = 0}

is a
∑

l ̸=k qj,l-dimensional (or lower dimensional) Euclidean subset of the
∑

1≤l≤K qj,l-dimensional

Euclidean space Ω(βj,1:K ;Q3). Hence, this is a measure 0 set in Ω(β2K+1:J,1:K ;Q3). The finite

union of measure 0 sets also has measure 0, and condition B holds almost surely.

Remark 1. In the proof, we use the exponential family assumption only to deduce that g

is an analytic function. Hence, the statement can be relaxed to general-response ACDMs

without the exponential family assumption as long as the probability mass/density function

g(Y ;η) is analytic in η.
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S.3.5 Proof of Proposition 4

Proof. Write θ = (η,p). By Theorem 10.1.6 in Casella and Berger (2021), the MLE θ̂ =

(η̂, p̂) is consistent under the following regularity conditions:

(C1) The parameter θ is identifiable.

(C2) The densities P(Y | θ) have common support and is differentiable in θ.

(C3) The parameter space contains an open set of which the true parameter value θ0 is an

interior point.

It suffices to check the three regularity conditions hold. Condition C1 follows from Theorems

1 (under the first set of assumptions) or 2 (under the second set of assumptions). Condition

C2 holds because g(· | η) is an exponential family distribution. Condition C3 is exactly the

assumption we impose on θ0 = (η0,p0), and the proof is complete.

S.4 EM algorithm for the negative binomial-based CDMs

As we have stated the EM Algorithms 1 and 2 assuming exponential family distributions

for modeling Yj | A = α, we briefly sketch how they can be modified to non-exponential

family distributions. In particular, we display the algorithms for the negative binomial

distribution. Recall that we have defined NegBin-DINA and NegBin-ACDM in Section A.2

of this Supplementary Material.

EM algorithm for the NegBin-DINA Model The algorithm is similar to the one

for exponential family-based DINA model. The main difference is the specific form of the

parametrization and the updates for the item parameters. For the sake of completeness, we

display the steps in Algorithm 1. Here, we write

P(Y | r, π) =
(
Y + r − 1

Y

)
(1− π)Y πr

to simplify the presentation. Note that there are no closed updates for the item parameters

in the M step and here we solve a two-dimensional equation. One may choose to directly

apply an optimization software instead in the M step.
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Algorithm 1: EM algorithm for the NegBin-DINA

Data: response Y, Q-matrix Q
Initialize rj, πj, pα’s.
while log-likelihood has not converged do

In the (t+ 1)th iteration,
for (i,α) ∈ [N ]× {0, 1}K do

φ
(t+1)
i,α = P(Ai = α | Y, r(t),p(t), π(t))

=
p
(t)
α

∏
j P(Yi,j | rj,0, πj,0)

(1−Γj,α)P(Yi,j | rj,1, πj,1)
Γj,α∑

α′ p
(t)
α′
∏

j P(Yi,j | rj,0, πj,0)
(1−Γj,α′ )P(Yi,j | rj,1, πj,1)

Γj,α′
;

for α ∈ {0, 1} do

p(t+1)
α =

∑
i φ

(t+1)
i,α∑

i,α′ φ
(t+1)
i,α′

;

for j ∈ [J ], h ∈ {0, 1} do
Solve the series of equations for (rj,h, πj,h):∑

i,α φi,α(1− Γj,α)
1−hΓh

j,α∑
i,α φi,α(1− Γj,α)1−hΓh

j,α(Yi,j + rj,h)
= πj,h,

∑
i,α

φi,α(1− Γj,α)
1−hΓh

j,α

log(πj,h) +

Yi,j−1∑
m=0

1

rj,h +m

 = 0.

Output: rj, πj, pα’s.

EM algorithm for the NegBin-ACDM For the NegBin-ACDM, we continue working

with the parametrization of (βj, γj). Recall that we have defined the negative binomial

parameters in terms of (βj, γj) in (S.4). Even though the negative binomial is not an

exponential family, h defined in (S.4) plays the exact same role as h in the context of

exponential families. Hence, (rj,α, πj,α) in (S.4) are linear combinations of the latent skills,

and plays an almost identical role as the natural parameter ηj,α in Algorithm 2. The other

parts of the algorithm are almost identical, and we present the details in the following

Algorithm 2.
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Algorithm 2: EM algorithm for the main-effect model with negative binomial link

Data: response Y, Q-matrix Q
Initialize βj, γj, pα’s.

while log-likelihood has not converged do
In the (t+ 1)th iteration,
for j ∈ [J ],α ∈ {0, 1}K do

r
(t)
j,α = h(βj,0 +

∑
k βj,kqj,kαk, γ

(t)
j ) =

γ
(t)
j

1−γ
(t)
j

(β
(t)
j,0 +

∑
k β

(t)
j,kqj,kαk)

for (i,α) ∈ [N ]× {0, 1}K do

φ
(t+1)
i,α = P(Ai = α | Y,β

(t)
j , γ

(t)
j , p(t)α ) =

pα
∏

j P(Yi,j | r(t)j,α, γ
(t)
j )∑

α′ pα′
∏

j P(Yi,j | r(t)j,α′ , γ
(t)
j )

;

for α ∈ {0, 1} do

p(t+1)
α =

∑
i φ

(t+1)
i,α∑

i,α′ φ
(t+1)
i,α′

;

for j ∈ [J ] do

(βj, γj)
(t+1) = argmax

βj ,γj

∑
i,α

[
log

(
Yi,j + rj,α − 1

Yi,j

)
+ rj,α log γ

]
φ
(t+1)
i,α +

∑
i

Yi,j log(1− γ)

subject to βj,k = 0 if and only if qj,k = 0.
Here, rj,α = h(βj,0 +

∑
k βj,kqj,kαk, γ).

Output: βj, γj, pα’s.

S.5 Simulation details and additional simulations

S.5.1 Simulation details

In Tables S.1, S.2, S.3, we display the average root mean squared error (RMSE) values in

all simulation studies described in Section 5 of the main manuscript. In all simulations,

the proportion parameters p are initialized as Dirichlet random variables with parameters

(1, 1, . . . , 1). The item parameters are initialized by adding a uniform random noise to the

true parameters. We set the convergence criterion of the EM algorithm by terminating it

when the increment of the log-likelihood is smaller than 0.05. Typically, this criterion is met

before 10 EM iterations, regardless of which model is considered.

Also, we report the number of iterations and computation time under the lognormal
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Link function Model N RMSE(p̂) RMSE(µ̂ or β̂) RMSE(σ̂ or γ̂)

Transformed-Normal

ExpDINA

100 0.0196 0.230 0.357
500 0.0080 0.071 0.104
1000 0.0056 0.050 0.075
1500 0.0045 0.041 0.059
2000 0.0039 0.036 0.053

ExpACDM

100 0.0177 0.185 0.146
500 0.0080 0.083 0.065
1000 0.0057 0.057 0.045
1500 0.0045 0.046 0.036
2000 0.0039 0.041 0.032

Table S.1: RMSE for the estimated transformed-Normal parameters, (p̂, µ̂, σ̂) under Exp-

DINA and (p̂, β̂, γ̂) under ExpACDM.

Link Model N RMSE(p̂) RMSE(λ̂ or β̂)

Poisson

ExpDINA

100 0.0252 0.281
500 0.0115 0.122
1000 0.0081 0.085
1500 0.0065 0.069
2000 0.0055 0.061

ExpACDM

100 0.0278 0.311
500 0.0124 0.127
1000 0.0086 0.089
1500 0.0070 0.072
2000 0.0055 0.062

Table S.2: RMSE for the estimated Poisson parameters, (p̂, λ̂) under ExpDINA and (p̂, β̂)
under ExpACDM.

link in Table S.4. One can see that the computation time increases with the sample size

N , whereas the number of iterations does not depend on N . The estimation time for the

ExpACDM is larger compared to the ExpDINA because we utilize the optimization toolbox

in Matlab for the M-step of Algorithm 2. Nonetheless, the average computation time is still

less than 15 seconds for each iteration, even when the sample size is as large as N = 2000.
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Link Model N RMSE(p̂) RMSE(r̂ or β̂) RMSE(π̂ or γ̂)

NegBin

ExpDINA

100 0.0248 1.26 0.132
500 0.0113 0.75 0.067
1000 0.0078 0.55 0.048
1500 0.0064 0.45 0.040
2000 0.0056 0.41 0.035

ExpACDM

100 0.0352 0.463 0.103
500 0.0194 0.219 0.048
1000 0.0140 0.151 0.033
1500 0.0115 0.125 0.027
2000 0.0097 0.105 0.022

Table S.3: RMSE for the estimated negative binomial parameters, (p̂, r̂, π̂) under ExpDINA

and (p̂, β̂) under ExpACDM.

Link Model N runtime (s) # of iterations

Lognormal

ExpDINA

100 0.08 4.60
500 0.35 4.13
1000 0.73 4.16
1500 1.27 4.15
2000 1.67 4.20

ExpACDM

100 5.22 2.97
500 8.54 2.71
1000 11.83 2.61
1500 12.35 2.59
2000 15.12 2.60

Table S.4: The average number of iterations and runtime for CDMs with lognormal link

S.5.2 Additional simulations under generic identifiability

Here, we conduct additional simulation studies under a generic identifiable model to empiri-

cally assess estimation consistency. Similar to Section 5.1, we still consider the transformed-

Normal ACDM with K = 5, J = 20. But now we consider a Q-matrix that only satisfies the

generic identifiability conditions in Theorem 2 (see the entries in bold font below), but does

not satisfy the strict identifiability conditions in Theorem 1. More specifically, we assume
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that each row of the Q-matrix has exactly two nonzero entries:

Q :=


Qsub

Qsub

Qsub

Qsub
1:2

 , where Qsub =



1 0 0 1 0

0 1 0 1 0

0 0 1 0 1

0 0 1 1 0

1 0 0 0 1

0 1 0 0 1


,

where Qsub
1:2 denotes the first two rows of Qsub. All continuous parameters are specified in

the same way as in Section 5.1 in the main paper. With the above Q-matrix, the model

does not satisfy the strict identifiability conditions in Theorem 1 since the Q-matrix does

not contain an identity matrix.

Table S.5 presents the estimation results. We observe that the RMSEs of the continuous

parameters decrease as the sample size N increases, actually similarly at a 1√
N

rate as in the

strictly identifiable case. This result empirically demonstrates that this generic identifiable

transformed-Normal ACDM can still be consistently estimated by our EM algorithm 2. We

also remark that the structure of the Q-matrix we consider here is similar to the one used

in the real data analysis in Section 6, by viewing the first three attributes as content skills,

and the next two as cognitive skills. Hence, the results in Table S.5 also suggest consistent

parameter estimation for our real data analysis.

Link Model N RMSE(p̂) RMSE(β̂) RMSE(γ̂)

Transformed-Normal ExpACDM

100 0.0206 0.156 0.156
500 0.0100 0.066 0.070
1000 0.0067 0.047 0.048
1500 0.0054 0.038 0.040
2000 0.0049 0.033 0.034

Table S.5: RMSE for the estimated transformed-Normal ACDM parameters.
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S.6 Data preprocessing details and analysis of the bi-

nary response accuracy

S.6.1 Data preprocessing details

Before analyzing the TIMSS 2019 dataset in Section 6 in the main manuscript, we preprocess

the data to deal with outliers. The left panel in Figure S.1 shows that there are two small

groups of outliers at the far left and far right of the histogram. We conjecture that the outliers

with small response times result from randomly guessing or running out of time, while the

outliers with large response times result from taking breaks during the exam. We truncate

the log response times to be between 0 and 6; that is, for any log response time smaller

than 0, we truncate it to be zero, for any log response time greater than 6, we truncate it

to be 6. Moreover, among the 622 students in the dataset, we exclude two students who did

not respond to any questions. The preprocessed dataset consists of N = 620 students. The

mean and the median of the total response time are approximately 30 minutes, as shown in

the right panel of Figure S.1. Thus, we believe that a majority of the students completed

the exam well within the 45-minute limit.

Figure S.1: Histograms of response time in seconds. The left panel shows the log response
time for item number 1, and the right panel shows the total response time of the entire exam.

S.6.2 Analysis of the binary response accuracy

We analyze the binary response accuracy in the TIMSS 2019 dataset and compare the

estimated item parameters to those presented in Section 6 in the main paper. We consider
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the response accuracy for the same students as in Section 6, and fit the ACDM for binary

responses (de la Torre, 2011).

The estimated ACDM item parameters are displayed in Figure S.2. Interestingly, we

observe that the larger entries in Figure 6 tend to correspond to smaller entries in Figure

S.2. In particular, the intercepts {βj,0}j∈[J ] in the binary-response ACDM (the first column

of Figure S.2) also show a discrepancy between the items belonging to the two different

types: constructed-response items versus multiple-choice items. Note that intercept param-

eters in a binary-response ACDM can be interpreted as the guessing probability for those

students lacking any required skills of an item. Therefore, it is very interpretable that the

constructed-response items (such as items 2, 4, 7) have much smaller intercepts compared to

those multiple choice items, which have intercepts fluctuating around the theoretical guess-

ing probability of 1/4 (since there are four options in these multiple-choice items, random

guessing will yield a 1/4 correct response rate).

Figure S.2: Heatmap of the ACDM coefficients estimated from the binary response accuracy.
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