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Appendix A: A general family of graded response models

The following item response function (IRF), a generalization of Equation 5 in ? (?)

denoted by fj(θj, k|zi), describes respondent i’s response to a Kj-category ordinal item j by

an ordinal logistic regression on an r-dimensional latent variable Zi:

fj(θj, k|zi) = P{Yij = k|Zi = zi}

=


1−Ψ(αj1 + βj

>zi), k = 0;

Ψ(αj,Kj−1 + βj
>zi), k = Kj − 1;

Ψ(αjk + βj
>zi)−Ψ(αj,k+1 + βj

>zi), otherwise.

(S.1)

In Equation S.1, αjk’s denote strictly ordered intercept parameters, i.e., αj,1 > · · · > αj,Kj−1,

and βj the slopes. All intercept parameters are assumed to be free, whereas some slopes

must be fixed for model identification when r > 1. The r-dimensional latent variables are

assumed to be standard normal, Zi ∼ N (0, Ir×r); this includes unidimensional, bifactor, and

exploratory graded response models (GRMs) as special cases. Inference for models with

unknown covariance structure among latent dimensions (e.g., simple-structure models) is

beyond the scope of the present work. Also note that when Kj = 2, the model reduces to

the binary logistic model discussed in ? (?).

Arguments extending that used for the trichotomous unidimensional example can be

employed to obtain the data generating equation (DGE) and set inverse of general graded

items. The DGE describes how item response Yij ∈ {0, . . . , Kj − 1} is generated from the

multinomial model characterized by Equation S.1:

Yij =

Kj−1∑
k=1

I{Aij ≤ αjk + βj
>Zi}. (S.2)

Assume rj slopes are free (rj ≤ r) for item j. Denote by θj all free item parameters that cali-
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brates this item; the dimension of θj is then qj = rj+Kj−1. Let Θj ⊂ {(αj,1, . . . , αj,Kj−1)> :

αj,1 > · · · > αj,Kj−1} × Rrj ⊂ Rqj be the parameter space of θj. The set inverse function of

Equation S.2 is the following subset of the qj-dimensional parameter space:

Qij(yij, aij, zi) = {θj ∈ Θj : aij > αj1 + βj
>zi, if yij = 0;

aij ≤ αj,K−1 + βj
>zi, if yij = K;

αj,k+1 + βj
>zi < aij ≤ αjk + βj

>zi, otherwise.} (S.3)

Set inverses for individual response entries can be assembled into the overall set inverse for

i.i.d. responses to a multiple-item test in the same manner as described in the previously

discussed three-category example, i.e., Equations 7 and 8 in ? (?). The resulting GFQ is

also defined by Equation 9.

Appendix B: Outline of proof of Theorem 1

The selected extremal point along a predetermined direction d = (dj)
m
j=1 for each possibly

unbounded polyhedron Qj(y(j), a(j), z) is either a vertex1 or infinity. The proof consists of

two major steps. First, we modify the conditioning in the GFQ (Equation 9) to exclude

A? and Z? values that lead to infinite extremal points along d, and show that the modified

fiducial distribution satisfies a Bernstein-von Mises theorem (Lemma S.2). Because the

argument closely resembles that used in ? (?), details are omitted here. Next, we claim that

the modification made to the conditioning set is minor, and thus conclude that the fiducial

distribution with the particular selection rule follows the Bernstein-von Mises theorem as

well.

Let τjk(θj, zi) = αjk + βj
>zi be the linear regression on the latent variable, and set

1With probability one, a unique point (possibly infinity) is selected as the farthest along d; whenever
there are ties, a more rigorous treatment resulting in a unique vertex can be found in Appendix A of Hannig
(2013).
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αj0 =∞ and αjKj = −∞ by convention. With the help of these notations, we simplify the

IRF (Equation S.1) to

fj(θj, k|zi) = Ψ(τjk(θj, zi))−Ψ(τj,k+1(θj, zi)), (S.4)

and the set inverse function (Equation S.3) to

Qij(yij, aij, zi) = {θj ∈ Rqj : τj,yij+1(θj, zi) < aij ≤ τj,yij(θj, zi)}. (S.5)

For each item j, let ij = (ijs)
qj
s=1 be a size-qj sub-sample of observations in which ijs’s are

sorted, e.g., in an ascending order2. Also let kj = (kjs)
qj
s=1 be a binary vector of length qj, each

element of which kjs = 0 or 1 indicates whether the right half-space Q
(0)
ijsj

(yijsj, aijsj, zijs) =

{θj : aijsj ≤ τjyijsj(θj, zijs)} or the left half-spaceQ
(1)
ijsj

(yijsj, aijsj, zijs) = {θj : τj,yijsj+1(θj, zijs) <

aijsj} is selected for each ijs. Each vertex of the possibly unbounded Rqj -polyhedronQj(y(j), a(j), z)

residing in the interior of Θ is the solution of a set of qj linear equations of form aijsj =

τj,yijsj+kjs(θj, zijs), contributed from the qj observations from ij and some suitable choices of

left/right bounds kj. Notationally, we denote such a vertex by vijkj(yij(j), aij(j), zij), in which

yij(j) = (yijsj)
qj
s=1 collects the responses to item j for observations ij, and aij(j) = (aijsj)

qj
s=1

and zij = (zijs)
qj
s=1 are the corresponding logistic and normal variates.

As a side note, if an observation contributes both the left and right bounds when de-

termining a single vertex, then the vertex must be on the boundary of Θj determined by

the order constraint of two adjacent intercepts, i.e., ∂Θj = {θ : αjk = αj,k+1 for some k}.

In large samples, however, this almost never happens. In fact, if there exists more than

one endorsement to a response category k of item j, e.g., y1j = y2j = k, then αj,k+1 <

2We sort the indices to avoid repeatedly counting permutations of i when summing across all possible
subsamples.
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min{A?1j − βj>Z?1, A
?
2j − βj>Z?2} ≤ max{A?1j − βj>Z?1, A

?
2j − βj>Z?2} ≤ αjk, with a strict

inequality attained almost surely by the continuous nature of the logistic and normal vari-

ates. As long as the data-generating values of the item parameters are in the interior of the

parameter space, all the response patterns happen with a positive probability, and thus the

set inverse is eventually bounded away from ∂Θ with probability one. In addition, only a

small fraction of ij and kj combinations are vertex-determining: It only happens when the

qj boundary hyperplanes of the selected half-spaces produce a non-singular linear system.

The selection rule considered in this proof identifies the extremal point of the set inverse

along a fixed direction d = (dj)
m
j=1 in the parameter space Θ. Denote the extremal point

of each polyhedron Qj(y(j), a(j), z) along dj by vdj(y(j), a(j), z). vdj(y(j), a(j), z) is either fi-

nite or infinite. Whenever all the coordinates are finite, vdj(y(j), a(j), z) must be a vertex

vijkj(yij(j), aij(j), zij) indexed by some ij and kj.

Pooling across all m items in the test, write i = (ij)
m
j=1, k = (kj)

m
j=1, ai = (aij(j))

m
j=1,

and zi = (zij)
m
j=1. Also write vik(yi, ai, zi) = (vijkj(yij(j), aij(j), zij))

m
j=1 as the collection of all

vertices determined by i and k, and vd(y, a, z) = (vdj(y(j), a(j), z))mj=1 be the collection of all

polyhedral extrema along d. To avoid dealing with the extended Euclidean space including

infinity, we next propose a modification to the fiducial distribution, for which a Bernstein-von

Mises theorem can be proved.

B.1 A Bernstein von-Mises theorem for a modified fiducial distribution

An additional conditioning on ‖vd(y,A?,Z?)‖∞ < ∞ is introduced to concentrate on

finite extremal points along the pre-specified direction d, in which ‖ · ‖∞ stands for the L∞

norm. In particular, let g̃d
n(θ|y) be the density of the following conditional distribution:

vd(y,A?,Z?) | {Q(y,A?,Z?) 6= ∅, ‖vd(y,A?,Z?)‖∞ <∞}. (S.6)
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We now derive the exact formula of g̃d
n(θ|y).

Lemma S.1. For a fixed data set y, assume that every response category of every item is

selected by at least two respondents. The modified fiducial distribution (Equation S.6) is

absolutely continuous with density3

g̃d
n(θ|y) ∝

∑
i,k

∫
Rnr

m∏
j=1

{
I{vd=vijkj

|Dijkj
}(zij)dijkj(θj, zij)

·
qj∏
s=1

ψ(τj,yijsj+kjs(θj, zi)) ·
∏
i/∈ij

fj(θj, yij|zi)

}
dΦ(z), (S.7)

in which dijkj(θj, zij) =
∣∣∣det(∂τj,yijsj+kjs(θj, zijs)/∂θj)

qj
s=1

∣∣∣ is the Jacobian determinant corre-

sponding to the selected sub-sample ij, Φ(·) denotes a standard normal probability measure4,

and ψ(x) = ex/(1 + ex)2 is the standard logistic density function. In addition, Dijkj(yij(j))

denotes the set on the space of a(j) and z such that vij ,kj(yij(j), aij(j), zij) is interior, and

the indicator function identifies zij values such that vijkj(yij(j), aij(j), zij) is extremal along

direction dj provided a(j) and z are in Dijkj(yij(j)).

Proof. By the law of total probability, we have

P {vd(y,A?,Z?) ≤ θ, Q(y,A?,Z?) 6= ∅, ‖vd(y,A?,Z?)‖∞ <∞}

=
∑
i,k

P {vik(yi,A
?
i ,Z

?
i ) ≤ θ, vd(y,A?,Z?) = vik(yi,A

?
i ,Z

?
i ), Dik(y)} , (S.8)

in which Dik(y) =
⋂m
j=1Dijkj(yij(j)) denotes the event that V?

ik is interior. The remaining

task is to derive each summand on the RHS of Equation S.8 and then differentiate it with

3With a slight abuse of notation, we write i ∈ ij (i /∈ ij) indicating that i is (is not) a component of ij ,
and i ∈ i (i /∈ i) indicating that i ∈ ij (i /∈ ij) for some j (for all j). In addition, integrating with respect to
the probability measure of ai or zi means integrating over the random variates corresponding to the unique
observations in sub-sample i.

4Here, the dimensionality of the random variable is suppressed for succinctness.
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respect to θ.

Consider a single item j first. Set vijkj(yij(j), aij(j), zij) = θ′j. Event Dijkj(yij(j)) requires

that τj,yijsj+kjs(θ
′
j, zijs) = aijsj for the selected half-spaces indexed by (ij, kj), and that θ′j

should not conflict with the remaining half-spaces: i.e., τj,yij+1(θ
′
j, zi) < aij ≤ τj,yij(θ

′
j, zi)

for all i /∈ ij.

Given Dijkj(yij(j)), vijkj(yij(j), aij(j), zij) is extremal along d if and only if the normal

cone of the polyhedral cone
⋂qj
s=1Q

(kjs)
ijsj

(yijsj, aijsj, zijs) with respect to vijkj(yij(j), aij(j), zij)

contains a ray along the direction dj, i.e., for all θj ∈
⋂qj
s=1Q

(kjs)
ijsj

(yijsj, aijsj, zijs), [θj −

vijkj(yij(j), aij(j), zij)]
>dj < 0. For fixed yij(j) and kj, the latter condition only depends on the

normal variates of the selected subsample ij, i.e., zij , because the normal cone is spanned by

the normal vectors of the selected hyperplanes, which has either ±1 or 0 (determined by yi

and k) on the coordinates for intercepts and ±zij on the coordinates for slopes.

Now we proceed to deriving the exact formula for each summand of Equation S.8. Fix

ij and kj, and condition on Z? = z. Using the argument articulated in the previous two

paragraphs, we can write

P
{

vijkj(yij(j),A
?
ij(j)

,Z?ij) ≤ θj, vdj(y(j),A
?
(j),Z

?) = vijkj(yij(j),A
?
ij(j)

,Z?ij),

Dijkj(yij(j)) | Z? = z
}

=

∫
θ′j≤θj

I{vd=vijkj
|Dijkj

}(zij) · dijkj(θ
′
j, zij) ·

qj∏
s=1

ψ(τj,yijsj+kjs(θ
′
j, zijs))

·
∏
i/∈ij

[∫ τj,yij (θ
′
j ,zi)

τj,yij+1(θ
′
j ,zi)

ψ(aij)daij

]
dθ′

=

∫
θ′j≤θj

I{vd=vijkj
|Dijkj

}(zij)dijkj(θ
′
j, zij) ·

qj∏
s=1

ψ(τj,yijsj+kjs(θ
′
j, zijs)) ·

∏
i/∈ij

fj(θ
′
j, k|zi)dθ′j.(S.9)

In the first equality of Equation S.9, the Jacobian determinant and the first product are due
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to the change of variables from aij(j) to θ′j, the product of integrals correspond to inequalities

to be satisfied by the unselected half-spaces, and the indicator function decides whether the

fixed zij values render the vertex vijkj the extremal point along dj. Note that a singular

linear system τj,yijsj+kjs(θ
′
j, zijs) = aijsj, s = 1, . . . , qj, is implied by certain (ij, kj) pairs,

which further results in a zero Jacobian determinant regardless of the zij values. Also, the

vertices determined by some response patterns yij(j) combined with kj cannot be extremal

along dj, and hence the indicator function equals to zero for all zij values. In those cases,

the corresponding summand simply vanishes.

Due to the conditional independence assumption,

P {vik(yi,A
?
i ,Z

?
i ) ≤ θ, vd(y,A?,Z?) = vik(yi,A

?
i ,Z

?
i ), Dik(y)}

=

∫
Rnr

m∏
j=1

P

{
vijkj(yij(j),A

?
ij(j)

,Z?ij) ≤ θj, vdj(y(j),A
?
(j),Z

?) = vijkj(yij(j),A
?
ij(j)

,Z?ij),

Dijkj(yij(j)) | Z? = z

}
dΦ(z). (S.10)

Equation S.7 is established by substituting Equation S.9 into Equations S.10 and S.8, and

differentiating with respect to θ.

There are only finitely many combinations of yi and k, and the sub-samples i and i′ such

that yi = yi′ are exchangeable. As a consequence, we can replace the sum over i and k in

Equation S.7, in which the number of summands grows as n increases, by a finite sum over

yi and k:

g̃d
n(θ|y) ∝ Gn

[∑
yi,k

pn(yi)b
d
yik

(θ)

]
fn(θ, y). (S.11)

In Equation S.11, Gn is the total number of i and k combinations, and pn(yi) is the observed

proportion of pattern yi. By the standard theory of U -statistics, pn(yi) converges to the
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expected proportion of yi in Pθ0-probability. fn(θ, y) is the sample likelihood function

fn(θ, y) =

∫ n∏
i=1

m∏
j=1

fj(θj, yij|zi)dΦ(z) (S.12)

and

bd
yik

(θ) =

{∫ m∏
j=1

[
I{vd=vijkj

|Dijkj
(yij(j)

)}(zij)dijkj(θj, zij)

qj∏
s=1

ψ(τj,yijsj+kjs(θj, zi))

·
∏
i∈i\ij

fj(θj, k|zi)

]
dΦ(zi)

}/[∫ ∏
i∈i

m∏
j=1

fj(θj, yij|zi)dΦ(zi)

]
, (S.13)

in which i ∈ i\ij means i ∈ i but i /∈ ij. As we have discussed in the proof of Lemma S.1,

bd
yik

(θ) can be 0, because: a) The linear system determined by yi and k can be singular and

thus the Jacobian determinant is zero for almost surely all zi; and b) the vertices determined

by some yi and k cannot be extremal along d, no matter what the zi values are. When the

sample size is large enough, all yi patterns emerge with probability 1, provided the true θ0

is in the interior of the parameter space; therefore, the modified fiducial density (Equation

S.7) is not degenerate for large enough n.

The term
[∑

yi,k
pn(yi)b

d
yik

(θ)
]

in Equation S.11 functions as a data-dependent prior, and

the proof of Theorem 1 in ? (?) can be straightforwardly extended to establish the following

Bernstein-von Mises result for the modified fiducial density.

Lemma S.2. Under the assumptions of Theorem 1,

∫
Hn

∣∣∣¯̃gd
n(h|Y)− φI−1

0 Sn,I−1
0

(h)
∣∣∣ dh

Pθ0→ 0, (S.14)

in which ¯̃gd
n(h|y) = g̃d

n(θ0 + h/
√
n|y)/

√
n.
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B.2 The extra conditioning

The remaining task is to show that the extra conditioning on ‖vd(y,A?,Z?)‖∞ <∞ does

not change the fiducial distribution substantially. In particular, we want to establish

P{Q(Y,A?,Z?) 6= ∅, ‖vd(Y,A?,Z?)‖∞ <∞}
P{Q(Y,A?,Z?) 6= ∅}

→ 1 (S.15)

in Pθ0-probability5. Because ‖vd(y,A?,Z?)‖∞ =∞ implies that Q(y,A?,Z?) is unbounded,

we have

1 ≥ P{Q(Y,A?,Z?) 6= ∅, ‖vd(Y,A?,Z?)‖∞ <∞}
P{Q(Y,A?,Z?) 6= ∅}

≥ P{Q(Y,A?,Z?) 6= ∅, ‖vd(Y,A?,Z?)‖∞ <∞}
P{Q(Y,A?,Z?) 6= ∅, ‖vd(Y,A?,Z?)‖∞ <∞}+ P{Q(Y,A?,Z?) 6= ∅ but unbounded}

.

(S.16)

Thus it suffices to show the second ratio in Equation S.16 converges to 1 in Pθ0-probability.

We express the numerator of Equations S.15 and S.16, which is also the first term in the

denominator of Equation S.16, as

P{Q(Y,A?,Z?) 6= ∅, ‖vd(Y,A?,Z?)‖∞ <∞}

=
∑
i,k

P{vd(Y,A?,Z?) = vik(Yi,A
?
i ,Z

?
i ), Dik(Y)}

=Gn

∑
yi,k

pn(yi)P{vd(Yyi
,A?,Z?) = vik(yi,A

?
i ,Z

?
i ), Dik(Yyi

)}, (S.17)

using the exchangeability of sub-samples with the same response pattern. The notation

Yyi
= (yi,Yic

>)> is used to denote a data matrix in which the responses for the selected

5Notationally, we use P{·} for probability calculations with respect to A? and Z?, and Pθ0
for the

probability measure of Y.
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sub-sample i are fixed to yi while the remaining responses Yic , ic = {i : i /∈ i}, are deemed

random6. Dik(y) denotes the event that vik(yi,A
?
i ,Z

?
i ) is interior, which has been explicated

in the proof of Lemma S.1. In Equation S.17, the summand can be zero. To see this, write

P{vd(Yyi
,A?,Z?) = vik(yi,A

?
i ,Z

?
i ), Dik(Yyi

)} =

∫
bd

yik
(θ)fn(θ,Yyi

)dθ. (S.18)

Note that Equation S.18 is zero (almost surely) if and only if bd
yik

(θ) is zero for almost every

θ, which is resulted from either a vanished indicator function that selects the extremal vertex

or a degenerate linear system with a zero Jacobian determinant (see Equation S.13).

The second term in the denominator of Equation S.16 can be further bounded by:

P{Q(Y,A?,Z?) 6= ∅ but unbounded}

= P

{
Q(Y,A?,Z?) is unbounded,

⋃
i,k

Dik(Y)

}

≤Gn

∑
yi,k

pn(yi)P{Q(Yyi
,A?,Z?) is unbounded, Dik(Yyi

)}. (S.19)

Some terms in the last summation of Equation S.19 can be zero as well, when the combi-

nations of yi and k fail to produce vertices. In fact, P{Dik(Yyi
)} can be expressed as an

integral in a form similar to Equation S.18:

P{Dik(Yyi
)} =

∫
byik(θ)fn(θ,Yyi

)dθ, (S.20)

in which byik(θ) is almost the same as bd
yik

(θ) (Equation S.13) with the exception that the

indicator functions selecting extremal vertices are dropped. P{Dik(Yyi
)} is then zero (almost

surely) if and only if byik(θ) is constantly zero, which is caused by a singular Jacobian.

6Again by the exchangeability of sub-samples with the same response pattern, we assume without loss of
generality that i always indexes observations at the beginning of the sample.
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Because the sums in Equations S.17 and S.19 are over finitely many terms, it further

suffices to show that for any yi and k such that P{Dik(Yyi
)} > 0 with Pθ0-probability 1,

and any yi′ and k′ such that P{vd(Yyi′
,A?,Z?) = vk′(yi′ ,A

?
i′ ,Z

?
i′), Di′k′(Yyi′

)} > 0 with Pθ0-

probability 1,

P{Q(Yyi
,A?,Z?) is unbounded, Dik(Yyi

)}
P{vd(Yyi′

,A?,Z?) = vk′(yi′ ,A?
i′ ,Z

?
i′), Di′k′(Yyi′

)}

=
P{Q(Yyi

,A?,Z?) is unbounded, Dik(Yyi
)}

P{Dik(Yyi
)}

· P{Dik(Yyi
)}

P{vd(Yyi′
,A?,Z?) = vk′(yi′ ,A?

i′ ,Z
?
i′), Di′k′(Yyi′

)}

→ 0 (S.21)

in Pθ0-probability. The proof of Equation S.21 is presented as the following two lemmas.

Assuming that all the assumptions of Theorem 1 hold, we show that the first ratio in the

second line of Equation S.21 converges to 0 in Pθ0-probability (Lemma S.3), and that the

second ratio is bounded with a Pθ0-probability approaching 1 (Lemma S.4).

Lemma S.3. Fix ε > 0. For any yi and k such that P{Dik(Yyi
)} > 0 with Pθ0-probability 1,

P{Q(Yyi
,A?,Z?) is unbounded | Dik(Yyi

)} → 0 (S.22)

in Pθ0-probability.

Proof. Fix δ > 0 such that the δ-ball around θ0, i.e., Cδ
θ0

= {θ : ‖θ− θ0‖ ≤ δ}, is contained

in the interior of the parameter space. The random quantity on the left-hand side (LHS) of
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Equation S.22 has the following bound:

P{Q(Yyi
,A?,Z?) is unbounded | Dik(Yyi

)}

= P{Q(Yyi
,A?,Z?) is unbounded, vik(yi,A

?
i ,Z

?
i ) ∈ Cδ

θ0
| Dik(Yyi

)}

+ P{Q(Yyi
,A?,Z?) is unbounded, vik(yi,A

?
i ,Z

?
i ) /∈ Cδ

θ0
| Dik(Yyi

)}

≤ P{Q(Yyi
,A?,Z?) is unbounded, vik(yi,A

?
i ,Z

?
i ) ∈ Cδ

θ0
| Dik(Yyi

)}

+ P{vik(yi,A
?
i ,Z

?
i ) /∈ Cδ

θ0
| Dik(Yyi

)} (S.23)

The second term in the last line of Equation S.23 converges to 0 in Pθ0-probability, because

a Bernstein-von Mises theorem, which further implies consistency, can be established for the

density proportional to byik(θ)fn(θ, y) using similar techniques described in ? (?). Also let

uik(θ, y) = P{Q(y,A?,Z?) is unbounded | vik(yi,A
?
i ,Z

?
i ) = θ, Dik(y)}. (S.24)

The first term in the last line of Equation S.23 can be bounded by a constant multiple of∫
Cδθ0

uik(θ,Yyi
)dθ due to the boundedness of Cδ

θ0
. Thus, it suffices to show that

P

{∫
Cδθ0

uik(θ,Yyi
)dθ

}
→ 0 (S.25)

in Pθ0-probability.

Fix a θ ∈ Cδ
θ0

. Let Hjk be a size-[2(rj + 1)] subsample such that yij = k − 1 for exactly

rj + 1 respondents therein and yij = k for the rest. Let H be a union of disjoint Hjk’s across

all j = 1, . . . ,m, and k = 1, . . . , Kj − 1. Subsamples of form H are referred to as eligible

in the sequel, in the sense that each H may determine a collection of bounded polytopes

(one for each Hjk) that contains θ with a positive probability. For example, a sufficient
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condition for H to determine such a bounded polytope is to require that a) for each Hjk, the

outward normal vectors corresponding to the left half-spaces of {i ∈ Hjk : yij = k − 1} and

the right half-spaces of {i ∈ Hjk : yij = k} fall respectively in the 2(rj + 1) orthants on the

sub-parameter-space of αjk and the free slopes in βj, and that b) conditional on the normal

variates, the logistic variates are chosen such that θ ∈ ∩i∈HjkQij(yij, aij, zi). a) guarantees

boundedness, which is a consequence of an extension of the (iii) ⇒ (i) part of Lemma 4

in ? (?)7; in the meantime, b) ensures the inclusion of θ in the interior of the resulting

intersection.

Without loss of generality, assume i consists of the observations at the beginning of the

sample. Define tn(y) as the number of disjoint eligible sub-samples in ic = {i : i /∈ i}; the

sub-samples are denoted by H1, . . . , Htn(y). Given a sample path y such that tn(y)→∞ as

n→∞, we have

P

{
lim sup
tn(y)→∞

{Htn(y) determines bounded polytopes} | vik(yi,A
?
i ,Z

?
i ) = θ, Dik(y)

}
= 1

(S.26)

by the second Borel-Cantelli Lemma; the independence of events is resulted from our selection

of non-overlapping sub-samples. Moreover, if Htn(y) determines bounded polytopes, then

7In the Lemma 4 of ? (?), the number of half-spaces is fixed at 1 plus the dimension of those half-spaces;
however, the proof of the (iii) ⇒ (i) part therein also applies to larger collections of half-spaces.
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Q(y,A?,Z?) is certainly bounded; therefore, we have

1 = P

{
lim sup
tn(y)→∞

{Htn(y) determines bounded polytopes} | vik(yi,A
?
i ,Z

?
i ) = θ, Dik(y)

}

≤ P

{
lim sup
tn(y)→∞

{Q(y,A?,Z?) is bounded} | vik(yi,A
?
i ,Z

?
i ) = θ, Dik(y)

}

= P

{
lim

tn(y)→∞
{Q(y,A?,Z?) is bounded} | vik(yi,A

?
i ,Z

?
i ) = θ, Dik(y)

}
≤ lim

tn(y)→∞
P {Q(y,A?,Z?) is bounded | vik(yi,A

?
i ,Z

?
i ) = θ, Dik(y)} ,

(S.27)

which implies uik(θ, y) converges to 0 along the subsequence tn(y). In Equation S.27, the

third line follows from the fact that events {Q(y,A?,Z?) is bounded} form a monotonically

non-decreasing sequence as n→∞, and the last inequality is obtained by applying Fatou’s

Lemma. The convergence result holds for every θ ∈ Cδ
θ0

along the same subsequence, and

thus for the integral because Cδ
θ0

is a bounded set. Since the true parameters θ0 are assumed

to lie in the interior of the parameter space, all response pattern probabilities are positive.

Therefore, tn(Y)→∞ in Pθ0-probability as n→∞, from which the desired result follows.

Lemma S.4. Fix yi and k such that P{Dik(Yyi
)} > 0 with Pθ0-probability 1, and yi′ and k′

such that P{vd(Yyi′
,A?,Z?) = vk′(yi′ ,A

?
i′ ,Z

?
i′), Di′k′(Yyi′

)} > 0 with Pθ0-probability 1. There

exists an L > 0 such that

Pθ0

{
P{Dik(Yyi

)}
P{vd(Yyi′

,A?,Z?) = vk′(yi′ ,A?
i′ ,Z

?
i′), Di′k′(Yyi′

)}
≤ L

}
→ 1. (S.28)
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Proof. By Equations S.18 and S.20, the ratio in Equation S.28 can be expressed as

P{Dik(Yyi
)}

P{vd(Yyi′
,A?,Z?) = vk′(yi′ ,A?

i′ ,Z
?
i′), Di′k′(Yyi′

)}
=

∫
byik(θ, yi)fn(θ,Yyi

)dθ∫
bd

yi′k
(θ, yi′)fn(θ,Yyi′

)dθ
. (S.29)

The density proportional to the numerator integrand satisfies a Bernstein-von Mises theorem.

As a consequence,

∫
Cδθ0

byik(θ, yi)fn(θ,Yyi
)dθ ≤

∫
byik(θ, yi)fn(θ,Yyi

)dθ

= (1 + εn)

∫
Cδθ0

byik(θ, yi)fn(θ,Yyi
)dθ, (S.30)

for any δ such that Cδ
θ0

is contained in the interior of the parameter space, in which εn ↓ 0.

Since byik(θ, yi) is a continuous function of θ (see Equation S.13), it is bounded on Cδ
θ0

.

Because bd
yik

(θ, yi) is also bounded on Cδ
θ0

by continuity, it follows that

∫
byik(θ, yi)fn(θ,Yyi

)dθ∫
bd

yi′k
(θ, yi′)fn(θ,Yyi′

)dθ
≤

supθ∈Cδθ0
byik(θ, yi)

infθ∈Cδθ0
bd

yi′k
(θ, yi′)

(1 + εn). (S.31)

Note that the infimum in the denominator of Equation S.31 is bounded away from 0, because

the selection of yi′ and k′ guarantees that an extremal point along d is produced with a

positive probability. This concludes the proof of Lemma S.4.

Appendix C: Conditional sampling of A?
ij

Fix observation i and item j. The goal of this step is to obtain an updated A?ij such that

the implied half-spaces have a non-empty intersection with the interior polytope determined

by all but the ith observations evaluated at the current values of the corresponding random

components; the latter is readily available from Line 5 of Algorithm 1 in ? (?). Here,

we only describe the case when a middle category on the response scale is selected: i.e.,
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0 < yij < Kj − 1. The workaround we implement to reduce the impact of a long-tailed

fiducial distribution (see the later discussion in Appendix G) amounts to augmenting the

actual response scale with two “phantom” extreme categories that have no endorsement in

the observed data. This effectively turns every actual response option into a middle category,

and thus the discussion here suffices.

For notational convenience, we use a superscript 0 to highlight the dependency solely on

the current values of random components at this particular sampling step, and a superscript

1 to denote the involvement of the updated one. Let a0
−i(j) and z0−i be the current values of the

logistic and normal variates without the ith observation, a1(j) be the logistic variates including

the updated ith component, and y−i(j) = (yi′j)i′ 6=i be the corresponding item responses to

the same item. The updated value a1ij should yield a non-empty polytope: i.e.,

Qj(y(j), a
1
(j), z

0) = Qj(y−i(j), a
0
−i(j), z

0) ∩Qij(yij, a
1
ij, z

0) 6= ∅. (S.32)

Denoted V 0
−ij the collection of vertices of Qj(y−i(j), a

0
−i(j), z

0). Due to convexity, Equation

S.32 is further identical to the existence of at least one element of V 0
−ij being consistent with

each of the two updated half-spaces: i.e.,

a1ij > τj,yij+1(θj, z
0
i ) (S.33)

for some θj ∈ V 0
−ij, and

a1ij ≤ τjyij(θj, z
0
i ), (S.34)

for some θj ∈ V 0
−ij as well. It follows that A?ij = a1ij should be generated from a stan-

dard logistic distribution truncated to [minθj∈V 0
−ij
τj,yij+1(θj, z

0
i ),maxθj∈V 0

−ij
τjyij(θj, z

0
i )]. An

implementation of the updating step is described in Algorithm S.1.
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Algorithm S.1 Updating A?ij
1: set m =∞ and M = −∞
2: for θj ∈ V 0

−ij do
3: compute m1 = τj,yij+1(θj, z

0
i )

4: if m1 < m then
5: m = m1

6: end if
7: compute m2 = τjyij(θj, z

0
i )

8: if m2 > M then
9: M = m2

10: end if
11: end for
12: generate A?ij = a1ij from the logistic distribution truncated to [m,M ]

Samples from truncated logistic distributions (Line 12) are obtained by an implementa-

tion of the slice sampler (Neal, 2003), which is by itself an MCMC algorithm; five cycles

are performed for each call of the sampler, which appears to behave well in a pilot study.

We also found that slice sampling outperforms the inverse cumulative distribution function

(cdf) approach when the truncation bounds are extreme.

Appendix D: Conditional sampling of Z?id

The conditional sampling of Z?
id is slightly more involved than that of A?ij, because a single

Z?
id may be associated with multiple items. Z?

id = z1id should be sampled from a suitably

truncated standard normal distribution ensuring for each associated item that the updated

interior polytope is not empty.

Fix i and d. Let z0i,−d = (z0ie)e 6=d be the current values of all but the dth dimension of the

normal variates, and θj,−d be the item parameters without the dth slope. Also write

τ djk(θj,−d, z
0
i,−d) = αjk +

∑
e6=d

βjez
0
ie. (S.35)
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For all items j loading on dimension d, the updated value z1id should satisfy

βjdz
1
id < a0ij − τ dj,yij+1(θj,−d, z

0
i,−d) (S.36)

for some θj ∈ V 0
−ij, and

βjdz
1
id ≥ a0ij − τ djyij(θj,−d, z

0
i,−d) (S.37)

for some θj ∈ V 0
−ij as well. Let Jd be the collection of items that are associated with Z?

id;

equations S.36 and S.37 together yield the desirable truncation:

Z?
id ∈

⋂
j∈Jd

 ⋃
θj∈V 0

−ij

{z1id : βjdz
1
id < a0ij − τ dj,yij+1(θj,−d, z

0
i,−d)}


∩

 ⋃
θj∈V 0

−ij

{z1id : βjdz
1
id ≥ a0ij − τ djyij(θj,−d, z

0
i,−d)}

 . (S.38)

Both equations S.36 and S.37 define one-sided intervals for z1id, the direction of which is

contingent upon the sign of βjd for each vertex in V 0
−ij. As a consequence, Equation S.38

might be an interval or a union of disjoint intervals. The foregoing updating mechanism is

summarized as Algorithm S.2.

Again, the technique of slice sampling is used in Line 23 of Algorithm S.2. As mentioned

earlier, the truncation T can be either a bounded interval, or a disjoint union of bounded

intervals. In the latter case, the sampling is done in three steps: a) computing probabilities

of the intervals under a standard normal distribution and normalizing to a total sum of one;

b) randomly selecting an interval with probabilities computed in step a); c) slice sampling

on the selected interval.
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Algorithm S.2 Updating Z?
id

1: set T = (−∞,∞)
2: for items j = 1, . . . ,m do
3: if βjd is fixed to 0 then
4: cycle the item loop
5: else
6: set Tj = ∅
7: for θj ∈ V 0

−ij do
8: if βjd = 0 then
9: cycle the vertex loop

10: else
11: compute m1 = [a0ij − τ djyij(θj,−d, z

0
i,−d)]/βjd

12: compute m2 = [a0ij − τ dj,yij+1(θj,−d, z
0
i,−d)]/βjd

13: if βjd > 0 then
14: update Tj = Tj ∪ [m1,m2]
15: else
16: update Tj = Tj ∪ [m2,m1]
17: end if
18: end if
19: end for
20: end if
21: update T = T ∩ Tj
22: end for
23: generate Z?

id = z1id from the standard normal distribution truncated to T

Appendix E: Updating interior polytopes

Inside the observation loop of Algorithm 1, all interior polytopes need to be renewed

after the logistic and normal variates are updated. Geometrically, it amounts to cutting the

old polytope formed by the rest of the observations, i.e., Qj(y−i(j), a
0
−i(j), z

0), by the two new

half-spaces τj,yij+1(θj, z
1
i ) < a1ij and τjyij(θj, z

1
i ) ≥ a1ij; the resulting intersection is certainly

non-empty due to the truncation enforced for A?ij’s and Z?
id’s.

The updating algorithm requires an effective representation of the Rqj -polytopeQj(y−i(j), a
0
−i(j), z

0)

for each item j. It is well-known that a convex polytope is uniquely determined by its ver-

tices; so we need to record V 0
−ij. With a slight abuse of notation, we now consider V 0

−ij as a

set of doublets Vj = (θj, ij), in which ij indexes the observations that are used to solve for
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θj. If a half-space, say τjyij(θj, z
1
i ) ≥ a1ij, is known to cut the polytope, vertices in V 0

−ij can

be partitioned into two groups by whether or not they are consistent with the cutting half-

space: Those satisfying τjyij(θj, z
1
i ) ≥ a1ij are still feasible, and the rest become infeasible. In

addition to vertices, we also track the edges of the old polytope, denoted E0
−ij. Each edge

connects a pair of vertices sharing qj−1 observations, i.e., Ej = (Vj,V ′j), in which Vj = (θj, ij),

V ′ = (θ′j, i
′
j), and |ij ∩ i′j| = qj − 1; in other words, the shared observations determines this

particular edge. One advantage of keeping the edges is that new vertices introduced by the

cutting half-space can be easily obtained: An edge together with the cutting hyperplane

τjyij(θj, z
1
i ) = a1ij produce a vertex if and only if the edge connects a feasible-infeasible pair

of vertices, provided the resulting linear system is non-singular. In addition, the vertex and

edge lists need to be updated; entries that are no longer feasible should be removed, and

the new ones produced by the cutting half-space should be appended. A pseudo-code of

the polytope-cutting procedure is provided as Algorithm S.3; in Line 12 of Algorithm 1, two

executions of Algorithm S.3 are needed for the left and right half-spaces corresponding to a

single observation, respectively.

Recording edges facilitates finding new vertices, i.e., Line 16-19 of Algorithm S.3; however,

the algorithm may fail whenever the linear system determined by observations (ij ∩ i′j)∪ {i}

(Line 16) is singular. When Kj > 2, it could happen occasionally; it corresponds to the case

that the new half-space cuts the polytope exactly along the edge. In theory, this loophole can

be redressed by treating all vertices satisfying τjyij(θj, z
1
i ) − a1ij = 0 as infeasible; it follows

that the edge being cut along is first removed in Line 14, and then added back in Line 24

with the new observation included in the index set. In the presence of numerical errors, a

slacking constant ε > 0 should be used instead of the exact zero in practice; in the current

implementation of the algorithm, ε is chosen to be 10−10.

In terms of data structure, we recommend the use of linked lists (i.e., adjacent units are



FIDUCIAL GRM 21

Algorithm S.3 Cutting Qj(y−i(j), a
0
−i(j), z

0) by τjyij(θj, z
1
i ) ≥ a1ij

1: for Vj = (θj, ij) ∈ V 0
−ij do . check feasibility

2: if τjyij(θj, z
1
i ) ≥ a1ij then

3: cycle the vertex loop (Vj feasible)
4: else
5: remove Vj (Vj infeasible)
6: end if
7: end for
8: if all vertices are feasible then
9: terminate the program

10: end if
11: create an empty vertex list V 1

ij and an empty edge list E1
ij

12: for Ej = (Vj,V ′j) ∈ E0
−ij do . obtain new vertices

13: if both Vj and V ′j are feasible then cycle the edge loop
14: else if neither Vj nor V ′j is feasible then remove E
15: else
16: set i′′j = (ij ∩ i′j) ∪ {i}
17: calculate the new vertex determined by i′′j , denoted θ′′j
18: append V ′′j = (θ′′j , i

′′
j ) to V 1

ij

19: in Ej, replace the infeasible vertex by V ′′j
20: end if
21: end for
22: for Vj, V ′j ∈ V 1

ij do . obtain new edges
23: if |ij ∩ i′j| = qj − 1 then
24: add (Vj,V ′j) to E1

ij

25: end if
26: end for
27: append V 1

ij to V 0
−ij

28: append E1
ij to E0

−ij

concatenated via pointers) instead of arrays (i.e., adjacent units are stored in consecutive

memory locations) as containers of vertex and edge lists, for the reason that the former eases

removal and addition of elements to arbitrary locations in the list, which appears frequently

in Algorithm S.3.



FIDUCIAL GRM 22

Appendix F: Starting values

The proposed sampler requires initial values of the logistic and normal variates, denoted

by a(0) and z(0), which imply a non-empty and bounded polytope Qj(y(j), a
(0)
(j), z

(0)) for each

j. There is certainly more than one way to achieve this. Our algorithm, described in this

section, requires user-input of starting values θ(0) and factor score estimates z(0). The logistic

variates a(0) are subsequently generated using Algorithm S.1, in which each interior polytope

comprises only one vertex θ
(0)
j ; the non-emptiness and boundedness of polytopes are ensured

by the truncated sampling.

The boundedness requirement is unnecessary in theory; for each fixed y the polytope

can be unbounded with a positive probability. However, the sampling algorithm, especially

the polytope-updating part (Algorithm S.3), only applies to bounded cases. As a result, an

arbitrarily specified initial bounding box is needed (similar configurations can be found in

Cisewski and Hannig, 2012, and ?, ?). For the GRM, we define the following bounding box

for θj:

αj1 ≥ −M,αj,K−1 ≤M

αjk ≥ αj,k+1, for all k = 1, . . . , K − 2

−M ≤ βjd ≤M, for all d = 1, . . . , r. (S.39)

The parameter bound M is a tuning parameter of the sampling algorithm. We found in

Section 4.1 that the choice of M (20 versus 200) does not have a substantial impact on the

results. In general, we recommend using the value M = 20, which led to reliable and efficient

point and interval estimates in various simulation studies we have conducted. Based on the

foregoing discussion, we outline the starting value program as Algorithm S.4.

In practice, θ(0) can be provided by computationally economical limited information
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Algorithm S.4 Starting values

1: for items j = 1, . . . ,m do
2: set V 0

−ij and E0
−ij to represent the initial bounding box

3: for observations i = 1, . . . , n do
4: generate A?ij = a

(0)
ij from Logistic(0, 1) truncated to [τj,yij+1(θ

(0)
j , z

(0)
i ),

τjyij(θ
(0)
j , z

(0)
i )]

5: Update the jth polytope (Algorithm S.3)
6: end for
7: end for

estimators, such as various weighted least square methods based on polychoric correlations

(e.g., Muthén, 1978; Gunsjö, 1994). Alternatively, one could use naive starting values such as

ordered constants for intercepts and 1 for slopes. z(0) can be generated from the conditional

distribution of the latent variables given y and θ(0) or point estimates (e.g., EAP) derived

from such distribution. z(0) can also be generated from a standard normal distribution

unconditionally. The naive starting values are indeed nowhere near the true item parameters

and factor scores, nor the center of the fiducial distribution, but they work reasonably well

in our Monte Carlo experiments. From our experience, the generated Markov chain appears

stationary after about a thousand iterations, and the final results are not significantly affected

by the choice of initial status.

Appendix G: Long-tailedness and a workaround

When the sample size is small relatively to the generating parameter values, the fiducial

distribution tends to be long-tailed: It produces spikes on the trace plot (see the left panel

of Figure S.1 for an illustration) which subsequently leads to excessively wide CIs and undue

dependency of the inferential results on the size of the initial bounding box.
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Figure S.1: Trace plot for a slope parameter before (left) and after (right) implementing
the workaround. The data set used for illustration is composed of 50 observations and five
3-category items. The arbitrary bound M is set to 20, which is highlighted by the horizontal
dashed lines.

? (?) proposed a workaround in the context of binary IRT modeling; their approach

can be straightforwardly generalized to accommodate the ordinal case. In fact, the tuning

operation has an interesting interpretation under the GRM. The idea is to introduce two

“phantom” response categories outside the actual response scale (from 0 to Kj − 1), coded

as yij = −1 and Kj, in company with two additional intercept parameters αj0 and αjK .

This extra configuration converts the actual extremal responses 0 and Kj − 1 into middle

categories; therefore, the modified set inverse for Yij involves two-sided inequalities for all

observable responses, i.e.,

Q̃ij(yij, aij, zi) = {θj ∈ Θj : αj,k+1 + βj
>zi < aij ≤ αjk + βj

>zi} (S.40)

It follows that each observation provides both lower and upper bounds for each slope pa-
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rameter. No endorsement of the phantom categories can be found in the observed data, so

estimates of the extra intercepts are not meaningful. Moreover, freely estimating αj0 and

αjK increases the dimension of the parameter space, and results in longer computation time.

Therefore, we fix αj0 = M and αjK = −M in the current implementation, which has proved

to reduce the influence of long-tailedness in our pilot investigation (see the right panel of

Figure S.1).

Appendix H: Additional simulation results

More detailed comparisons among the five candidate interval estimators in the reported

simulation studies (Sections 4.2 and 4.3) can be found in Figures S.2 to S.7, in which the

coverage and median log length ratio (MLLR) results are summarized for each individual

parameter.
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Figure S.2: Empirical coverages and median log length ratio (MLLR) of the four types of interval
estimators (shown in different colors) under a unidimensional GRM. Here, the sample size n = 100
and the number of items m = 9. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI.
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Figure S.3: Empirical coverages and median log length ratio (MLLR) of the four types of interval
estimators (shown in different colors) under a unidimensional GRM. Here, the sample size n = 500
and the number of items m = 9. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI.
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Figure S.4: Empirical coverages and median log length ratio (MLLR) of the four types of interval
estimators (shown in different colors) under a unidimensional GRM. Here, the sample size n = 100
and the number of items m = 18. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI. The blue-colored numbers indicate the median length ratios for the
cross-product-type Wald CI.
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Figure S.5: Empirical coverages and median log length ratio (MLLR) of the four types of interval
estimators (shown in different colors) under a unidimensional GRM. Here, the sample size n = 500
and the number of items m = 18. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI.
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Figure S.6: Empirical coverages and median log length ratio (MLLR) of the five types of interval
estimators (shown in different colors) under a bifactor GRM. Here, the sample size n = 200 and
the number of items m = 8. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI.
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Figure S.7: Empirical coverages and median log length ratio (MLLR) of the five types of interval
estimators (shown in different colors) under a bifactor GRM. Here, the sample size n = 500 and
the number of items m = 8. Each row corresponds to one type of parameter, in which coverage
is plotted in the upper panel and median length relative to the fiducial percentile CI in the lower
panel, and parameters belonging to different items are separated by vertical dotted lines. The two
horizontal dashed lines on the upper panel gives a 95% normal-approximation confidence band for
the nominal level 0.95. The horizontal dashed line on the lower panel indicates the median length
of the fiducial percentile CI.


