
Web-based Supplementary Materials for “Bayesian Approach for Addressing

Differential Covariate Measurement Error in Propensity Score Methods”

Hwanhee Hong, Kara E. Rudolph, and Elizabeth A. Stuart

1 Full conditional posterior distributions for joint models

The likelihood of the observed data O = (Y,A,W,Z) is written as

L(Y,A,W |α, γ,ψ, ξ, X) ∝ L(A |X,Z,α)L(W |A,X, γ, δ, σw |x,a)L(Y |A,X,Z,ψ, σy |x,a,z), (Web.1)

where α = (α0, α1, α2), ψ = (ψ0, ψ1, ψ2, ψ3), and ξ = (σw |x,a, σy |x,a,z).

Suppose we assume π(θ) ∝ 1, where θ is the set of all model parameters except X and π(·)

is the prior density. The relationship of X and Z in Equation (3) of the main manuscript can be

used as a prior distribution for X, such as π(X |Z)∼N(β0 + β1Z, σ
2
x|z). Please refer to Section 3

of the main manuscript for the prior specification of other parameters. For illustration purposes,

we estimate propensity scores using a probit regression rather than logistic because it allows us to

derive posterior distributions in closed form by utilizing L(A |X,Z,α) ∝
n∏

i=1

exp{−0.5(A∗i − α0 −

α1Xi−α2Zi)
2}, where A∗ is sampled from normally distributed latent continuous data with a unit

variance such that A∗ > 0 when A = 1, and A∗ < 0 otherwise (Albert and Chib, 1993). The full

posterior distribution under all three measurement error scenarios can be written as

q(θ, X |O) ∝ L(Y,A,W |θ, X)π(X |Z,θ). (Web.2)

We can sample the model parameters and X from (Web.2). Selected conditional posterior distri-

butions under the mixed measurement error scenario can be specified as follows:
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q(γ |θ,O)∼N

(
1∑
Ai

∑
i

Ai(Wi −Xi),
σ2w |x,a=1∑

Ai

)

q(σ2w |x,a |θ,O)∼IG

∑ (Ai = a)

2
− 1, 0.5

∑
Ai=a

(Wi −Xi − γAi)
2


q(Xi |θ,O)∼N

(
h(A∗i , Ai, Zi,Wi, Yi)

Di
,

1

Di

)
,

where

Di = α2
1 + σ−2w |x,ai + σ−2y ψ2

2 + σ−2x , and (Web.3)

h(A∗i , Ai, Zi,Wi, Yi) = (σ−2x β0 − α1α0) + α1A
∗
i + (−γσ−2w |x,ai − ψ1ψ2σ

−2
y )Ai

+ (β1σ
−2
x − α1α2 − ψ2ψ3σ

−2
y )Zi + σ−2w |x,aiWi + ψ2σ

−2
y Yi. (Web.4)

Note that we drop the conditional notation on the subscripts of σx and σy for simplicity in (Web.4).

In the conditional posterior distribution of Xi, ψ and σ2y are involved. Specifically, if ψ2 is large

in (Web.3), the posterior distribution variability of Xi would decrease, meaning that the posterior

sample of Xi is more precise. For each draw of α and Xi, we calculate posterior samples of

propensity scores using logit−1(α0 + α1Xi + α2Zi). Similarly, we obtain an estimate of the ATE

using Equation (1) in the main manuscript at each iteration of the MCMC algorithm.

2 Additional results of simulation studies and data analysis

Web Table 1 shows bias, MSE, coverage probability, and the average width of 95% credible

intervals of ATE in the simulation study when there is more imbalance of X and Z between treated

and control groups (i.e., using logit(Pr(A = 1 |X,Z)) = −2 + X + Z). First, the overall trend is

similar to that in Table 3 of the main manuscript for systematic and heteroscedastic measurement

error scenarios. However, joint models tend to produce smaller relative biases (i.e., the ratio of

biases between our models and the True model) than when the imbalance of X and Z between
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two groups is small. Second, in the mixed measurement error scenario, the bias of the ATE under

Joint H is smaller than that under Joint S, while the opposite is true in Table 3. That is, assigning

a point mass prior to δ is more important than to γ when covariates differ a lot between treated

and control groups. All these findings could be because propensity scores more effectively control

for imbalances in X and Z between two groups, so the effect of measurement error on bias in

treatment effect estimation is diminished. Third, it is obvious that two-step models perform poorly

when X is a strong predictor of Y ; TS SH produces much larger bias and MSE with lower coverage

probability than Joint PM.

We also explore the impact of model misspecification under the mixed measurement error

scenario; the results for outcome model misspecification and propensity score model misspecification

are in Web Figures 1 and 2, respectively. The overall trend is similar to panels (e) and (f) of Figure

2 in the main manuscript. When outcome model is misspecified the bias and MSE are much

larger in the Joint inf and Joint H models with a large X-Y association. This is expected because

misspecification of the outcome model can also impair the imputation of X under the joint model.

The two-step models are not influenced by the outcome model misspecification because the X-Y

association is not incorporated when imputing X. On the other hand, propensity score model

misspecification does not impact much on estimating the ATE as bias and MSE are just slightly

larger than those estimated when propensity score model is correctly specified. These results agree

with findings from Drake (1993).

Web Figure 3 compares prior and posterior distributions of parameters related to differential

measurement error. These figures show whether those parameters really get much updating from

the data or not. We generated a single dataset under mixed measurement error and fitted Joint inf

(using γ∼N(0, 3) and σw |x,a∼Uniform(0.01, 3)), Joint S (σw |x,a∼Uniform(0.01, 3) with a point

mass prior on γ), and Joint H (γ∼N(0, 3) with a point mass prior on σw |x,a). All parameters are

updated pretty well in Joint inf as the posteriors are not the same as their priors. In addition, we

observe that using point mass prior on either parameter helps another parameter converge faster

as dotted-line density plots have slightly less variable than dashed-line plots.
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Web Figure 4 shows the ATE estimates in the illustrative example for each method using

Wsys in Panel (a) and Whet in Panel (b). The pattern of results are similar as seen for Wmix,

which are shown in Figure 5 in the main manuscript. Using mother-reported age, X, as the truth,

the mean posterior ATE is 0.014, 95% CI: 0.005, 0.027, suggesting that living in a disadvantaged

neighborhood is associated with a slightly higher probability of having a prevalent drug use or

dependence disorder.

Using Wsys that represents systematic measurement error in the näıve approach results in a

point estimate and 95% CI that are close to the true estimate: ATE=0.015, 95% CI: 0.004, 0.029.

However, in this particular case, methods to correct for the measurement error do less well. Point

estimates are similar to the truth for Joint S1, Joint S2, Joint S3 (which is the same as Joint S),

and TS S, but the confidence intervals are wider, especially for TS S, and include 0 for all except

Joint S1. Performance is worse when a non-point mass prior is used (Joint inf) as compared with

a point-mass prior.

Using Whet that represents heteroscedastic measurement error in the näıve approach also

results in a point estimate and 95% CI that are similar to the true estimate: ATE=0.018, 95%

CI: 0.007, 0.031. In contrast to the systematic measurement error case, some methods to correct

for measurement error offer slight improvements over the näıve approach. In particular, Joint H3

(which is the same as Joint H) and Joint H4 move the point estimate closer to the true value and

give the same inference. Although the confidence interval widens when a non-point mass prior is

used (Joint inf), the point estimate is closer to the true value.
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Web Table 1: Bias, MSE, coverage probabilities, and average width of 95% credible intervals (95%
CI width) of ATE in the simulation study when logit(Pr(A = 1 |X,Z)) = −2 +X + Z.

X-Y Model Bias MSE Coverage 95% CI
association probability width

Systematic measurement error

Low True 0.019 0.027 0.771 0.372
Naive -0.105 0.103 0.643 0.475
Joint inf 0.031 0.047 0.985 1.319
Joint PM -0.153 0.065 0.928 1.057
TS PM 0.146 0.039 0.935 0.850

High True 0.071 0.268 0.896 1.491
Naive -0.421 1.210 0.772 1.891
Joint inf 0.138 0.469 0.968 2.778
Joint PM 0.056 0.274 0.944 1.859
TS PM 0.585 0.515 0.894 2.696

Heteroscedastic measurement error

Low True 0.019 0.027 0.771 0.372
Naive 0.187 0.050 0.368 0.303
Joint inf -0.219 0.087 0.911 1.176
Joint PM -0.059 0.034 0.947 0.799
TS PM 0.175 0.048 0.886 0.851

High True 0.071 0.268 0.896 1.491
Naive 0.751 0.683 0.325 1.204
Joint inf 0.061 0.338 0.948 1.919
Joint PM -0.002 0.314 0.951 1.813
TS PM 0.705 0.640 0.805 2.671

Mixed measurement error

Low True 0.019 0.027 0.771 0.372
Naive -0.029 0.070 0.665 0.428
Joint inf -0.037 0.057 0.989 1.486
Joint S -0.219 0.084 0.931 1.184
Joint H -0.030 0.050 0.988 1.410
Joint SH -0.055 0.034 0.944 0.790
TS SH 0.176 0.048 0.887 0.839

High True 0.071 0.268 0.896 1.491
Naive -0.115 0.748 0.806 1.704
Joint inf 0.019 0.464 0.974 3.016
Joint S 0.064 0.286 0.942 1.920
Joint H 0.038 0.384 0.982 3.032
Joint SH 0.004 0.273 0.945 1.810
TS SH 0.702 0.648 0.800 2.665
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Web Figure 1: ATE estimates from the simulation study when the outcome model is misspecified
under mixed measurement error.
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Web Figure 2: ATE estimates from the simulation study when the propensity score model is
misspecified under mixed measurement error.
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Web Figure 3: Comparison of prior and posterior distributions of γ, σw |x,a=0, and σw |x,a=1 in
Joint inf, Joint S, and Joint H under mixed measurement error

8



● ●

●

●
●

●
●

●

●

●

−0.05

0.00

0.05

Tr
ue

Naiv
e

Jo
int

_in
f

Jo
int

_S
1

Jo
int

_S
2

Jo
int

_S
3

Jo
int

_S
4

Jo
int

_S
5

Jo
int

_S
TS_S

E
st

im
at

ed
 A

T
E

(a) Systematic measurement error

●

●

●
●

●

●
● ●

●

●

−0.025

0.000

0.025

0.050

0.075

Tr
ue

Naiv
e

Jo
int

_in
f

Jo
int

_H
1

Jo
int

_H
2

Jo
int

_H
3

Jo
int

_H
4

Jo
int

_H
5

Jo
int

_H
TS_H

E
st

im
at

ed
 A

T
E

(b) Heteroscedastic measurement error

Web Figure 4: Estimated ATE and 95% CIs by method in the illustrative example using (a)
Wsys and (b) Whet. The ATE is the average effect of living in a disadvantaged neighborhood on
probability of past-year drug abuse or dependence. N=1,000.
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3 JAGS code

## JAGS code to fit the Joint model

## when there is mixed differential measurement error in a covariate

## To fit Two-Step model, comment out "outcome models"

## z: correctly measured continuous covariate, observed

## x: correctly measured continuous covariate, not observed

## w: mismeasurement of x, observed

## t: treatment assignment, binary

## y: outcome, continous

model{

for(i in 1:N) {

t[i] ~ dbern(p[i])

logit(p[i]) <- beta[1] + beta[2]*x[i] + beta[3]*z[i]

w[i] ~ dnorm(mu_w[i], prec_w[t[i]+1])

mu_w[i] <- x[i] + gamma*t[i]

x[i] ~ dnorm(mu_x[i], prec_x)

mu_x[i] <- alpha[1] + alpha[2]*z[i]

y[i] ~ dnorm(mu_y[i], prec_y)

mu_y[i] <- psi[1] + psi[2]*t[i] + psi[3]*x[i] + psi[4]*z[i]

}

for (j in 1:3) { beta[j] ~ dnorm(0, 1/3) }

# Assume weakly-informative prior on gamma

gamma ~ dnorm(0, 1/3)

# When assuming point-mass prior on gamma

#gamma <- 1 # assign a proper number here

for (j in 1:2) { alpha[j] ~ dnorm(0, 1/3) }

for (j in 1:4) { psi[j] ~ dnorm(0, 1/3) }

for (j in 1:2) {

prec_w[j] <- 1/pow(sig_w[j],2)

sig_w[j] ~ dunif(0.01, 3)

}

prec_x <- 1/pow(sig_x, 2)

sig_x ~ dunif(0.01, 3)

prec_y <- 1/pow(sig_y, 2)

sig_y ~ dunif(0.01, 3)

delta <- (sig_w[2]/sig_w[1])-1
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for (i in 1:N) {

ate_weight[i] <- ifelse(t[i]==1, 1/p[i], 1/(1-p[i]))

ate_num0[i] <- y[i]*(1-t[i])*ate_weight[i]

ate_den0[i] <- (1-t[i])*ate_weight[i]

ate_num1[i] <- y[i]*t[i]*ate_weight[i]

ate_den1[i] <- t[i]*ate_weight[i]

}

ATE <- (sum(ate_num1[])/sum(ate_den1[])) - (sum(ate_num0[])/sum(ate_den0[]))

}
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