
Supplementary Materials: Bayesian Sensitivity

Analysis of Dynamic Factor Analysis Models with

Nonparametric Prior and Possible Nonignorable

Missingness

A. Gibbs Sampling Algorithm for Estimating Dy-

namic Factor Analysis Models with Nonpara-

metric Prior and Possible Nonignorable Miss-

ingness

To implement the Gibbs sampler for estimating the possibly nonlinear DFA

model with the characteristics proposed in the paper, Bayesian Sensitivity Anal-

ysis of Dynamic Factor Analysis Models with Nonparametric Prior and Possible

Nonignorable Missingness, we start with initial values {µ(0)
Z , Ψ

(0)
Z , α(0), π(0),

Z(0), L(0), H(0), θ(0), Y
(0)
mis, τ

(0), ϕ(0)}. At the (κ+1)th iteration with current

values {µ(κ)
Z ,Ψ

(κ)
Z , α(κ),π(κ), Z(κ), L(κ), H(κ),θ(κ),Y

(κ)
mis, τ

(κ),ϕ(κ)},

(a) Generate µ
(κ+1)
Z from p(µZ |Z

(κ),Ψ
(κ)
Z );

(b) Generate Ψ
(κ+1)
Z from p(ΨZ |Z(κ),µ

(κ+1)
Z );
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(c) Generate α(κ+1) from p(α|π(κ));

(d) Generate (π(κ+1),Z(κ+1)) from p(π,Z|L(κ),µ
(κ+1)
Z ,Ψ

(κ+1)
Z , α(κ+1),H(κ),θ(κ));

(e) Generate L(κ+1) from p(L|π(κ+1),Z(κ+1),θ(κ),H(κ));

(f) Generate (τ (κ+1),Y
(κ+1)
(1)obs) from p(τ ,Y (1)obs|θ(κ),H(κ),Uobs,C);

(g) Generate H(κ+1) from p(H|Y (κ)
mis,Y

(κ+1)
(1)obs,Y (2)obs,θ

(κ), b(κ+1));

(h) Generate θ(κ+1) from p(θ|Y (κ)
mis,Y

(κ+1)
(1)obs,Y (2)obs,H

(κ+1), b(κ+1));

(i) Generate Y
(κ+1)
mis from p(Y mis|θ(κ+1),H(κ+1), r,ϕ(κ),C,Uobs);

(j) Generate ϕ(κ+1) from p(ϕ|Y (κ+1)
mis ,Uobs,Y (2)obs, r).

Nextm we describe each of these full conditional distributions in turn.

A.1 Steps (a)—(e) Conditional Distributions Related to

the Non–parametric Components

The main idea behind efficient sampling of the non–parametric components is

to recast the definition of bi in terms of the latent variable Li (i = 1, . . . , n),

which records the cluster membership of bi such that bi = ZLi . The base

distribution in the present context was defined to be a nb–variate normal dis-

tribution with mean vector µZ and covariance matrix ΨZ . Conjugate prior

distributions were specified for µZ , ΨZ and α. To explore the posterior in re-

lation to the non-parametric components, we sample (π,Z,L,µZ ,ΨZ , α) by

means of the blocked Gibbs sampler to encourage mixing of the Markov chain.

That is, Gibbs sampling of the nonparametric components was regrouped into

five subsidiary steps—or blocks, involving sampling from the conditional dis-

tributions p(µZ |Z,ΨZ), p(ΨZ |Z,µZ), p(α|π), p(π,Z|L,µZ ,ΨZ , α,H,θ) and

p(L|π,Z,θ,H). These five conditional distributions are summarized below.
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Block 1. Posterior samples of [µZ |Z,ΨZ ] for the specified prior p(µZ)
D
=

Nnb(µZ0
,ΨµZ ) can be obtained by sampling from

p(µZ |Z,ΨZ) ∼ Nnb(µµ,Σµ), (1)

where Σµ = (GΨ−1
Z + Ψ−1

µZ )−1 and µµ = Σµ(Ψ−1
µZµZ0

+ Ψ−1
Z

∑G
g=1Zg).

Block 2. For j = 1,. . ., nb, each of the diagonal elements of ΨZ given Z and

µZ for the specified prior p(ψ−1
zj )

D
= Γ(c1, c2) is distributed as

p(ψ−1
zj |Z,µZ)

i.i.d∼ Gamma(c1 +
G

2
, c2 +

1

2

G∑
g=1

(ugj − µzj )2), (2)

where ugj is the jth element of the values in Z associated with point mass

(or cluster) g and µzj is the jth element of µZ .

Block 3. Following the derivations detailed elsewhere (Ishwaran & Zarepour,

2000; Ishwaran & James, 2001; Lee et al., 2007), the conditional distri-

bution (α|π) corresponding to prior p(α)
D
= Γ(a1, a2) can be shown to

be

p(α|π) ∼ Gamma(a1 +G− 1, a2 −
G−1∑
g=1

log(1− ν∗g )), (3)

where ν∗g is a random weight sampled from the beta distribution and it is

sampled within Block 4.

Block 4. As π and α are independent given (Z,θ,H), the distribution (π,Z|L,µZ ,

ΨZ , α,θ,H) is proportional to p(π|L, α)p(Z|L,µZ ,ΨZ ,θ,H). Thus, the

conditional distribution can be decomposed into two independent compo-

nents to be derived separately.

Conditional distribution p(π|L, α). It can be shown that the condi-
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tional distribution (π|L, α) conforms to a generalized Dirichlet dis-

tribution as

p(π|L, α) ∼ g(a∗1, b
∗
1, · · · , a∗G−1, b

∗
G−1), (4)

where a∗g = 1 + dg, b
∗
g = α +

∑G
j=g+1 dj for g = 1, . . ., G−1, and dg

is the number of Lis (and thus individuals) whose value equals to g.

Sampling from the conditional distribution (π|L, α) can be accom-

plished as follows. First, ν∗g is drawn from a Beta(a∗g, b
∗
g) distribution.

Subsequently, πg is obtained for g = 1, . . ., G as

π1 = ν∗1 , πG = 1−
G−1∑
g=1

πg and πg =

g−1∏
j=1

(1− ν∗j )ν∗g for g 6= 1 or G. (5)

Conditional distribution p(Z|L,µZ ,ΨZ ,θ,H). Let L∗1, · · · , L∗d be the

d unique Li values (i.e., unique number of “clusters”), ZL = (ZL∗1 , · · · ,ZL∗d),

and let Z [L] be components in Z = (Z1, · · · ,ZG) other than ZL.

Then

p(Z|L,µZ ,ΨZ ,θ,H) = p(Z [L]|µZ ,ΨZ)p(ZL|L,µZ ,ΨZ ,θ,H),

where p(Z [L]|µZ ,ΨZ) is simply the nb–variate normal distribution,

Nnb(µZ ,ΨZ), and

p(ZL|L,µZ ,ΨZ ,θ,H) = Πd
g=1p(ZL∗g |L,µZ ,ΨZ ,θ,H).

It can be shown that the conditional distribution p(ZL∗g |L,µZ ,ΨZ ,θ,H)

is non–standard and cannot be derived directly via Gibbs sampling.

Specifically, p(ZL∗g |L, µZ ,ΨZ ,θ,H)∝ p(ZL∗g |µZ ,ΨZ)
∏
{i:Li=L∗g}

p(ηi|bi =
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ZL∗g ,θη), in which p(ηi|bi = ZL∗g ,θη) is given by


p(ηi0)

Ti∏
t=1

p(ηit|ηi,t−1, bi = ZL∗g ,θη) if ηi0 is stochastic,

Ti∏
t=1

p(ηit|ηi,t−1, bi = ZL∗g ,θη) otherwise.

(6)

From Equation (6), it can be noted that multiplication involving the

density p(ηit|ηi,t−1, bi,θη) results in a conditional density that is

non–normal and non–standard due to the nonlinearity of ft(.) and

the fact that ZL∗g is random, as opposed to fixed within this sam-

pling step. Instead, we adopt a MH step as follows. At the jth

iteration with a current value Z
(j)
L∗g

, a new candidate ZL∗g is gener-

ated from the normal distribution N(Z
(j)
L∗g
, σ2
bΩb), where Ωb = (Ψ−1

Z +∑
{i:Li=L∗g}

∑Ti
t=1 ∆T

bitΨ
−1
ζ ∆bit)

−1 and ∆bit = ∂ηit/∂b
T
i |bi=Z(j)

L∗g

. The

new ZL∗g is accepted with probability

min

1,
p(ZL∗g |µZ ,ΨZ)

∏
{i:Li=L∗g}

∏Ti
t=1 p(ηit|ηi,t−1, bi = ZL∗g ,θη)

p(Z
(j)
L∗g
|µZ ,ΨZ)

∏
{i:Li=L∗g}

∏Ti
t=1 p(ηit|ηi,t−1, bi = Z

(j)
L∗g
,θη)

 . (7)

The variance σ2
b can be chosen such that the average acceptance rate

is approximately 0.25 or more.

Block 5. The conditional distribution (Li|π,Z,θ,H) is given by

(Li|π,Z,θ,H)
i.i.d∼ Multinomial(π∗ig, g = 1, · · · , G), (8)

where π∗ig is proportional to (πgp(ηi|bi = Zg,θη)) and πg (g = 1, . . ., G)

are available from step (i.e., block) 4 summarized in Equation (5).
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A.2 Step (f): Conditional Distribution p(τ ,Y (1)obs|θ,H ,U obs,C)

We use an improper prior for the threshold parameters, namely, τ k ∼ cτ1.

To sample τ and Y (1)obs, we first note that p(τ k,Y (1)k,obs|θ,H,Y ∗(1)k,C) =

p(τ k|Y ∗(1)k,θ, H)p(Y (1)k,obs|τ k,Y ∗(1)k,θ,H,C), where

p(τ k|Y ∗(1)k,θ,H) ∝
n∏
i=1

Ti∏
t=1

(
Φ(

τk,uitk−A
T
k cit−ΛTk ηit

ψ
1/2
εk

)− Φ(
τk,uitk−1−ATk cit−ΛTk ηit

ψ
1/2
εk

)

)
,(9)

p(yitk|τ k,Y ∗(1)k,θ,H, ck) = N(AT
k cit + ΛT

k ηit, ψεk)I(τk,uitk−1,τk,uitk ](yitk),

where τ k = (τk1, . . . , τk,bk−1), Y (1)k,obs = {yitk : i = 1, . . . , t = 1, . . . , Ti} in

which yitk is the kth component of y(1)it,obs corresponding to U it,obs, Y
∗
(1)k =

{uitk : i = 1, . . . , t = 1, . . . , Ti} in which uitk is the kth component of U it

corresponding to U it,obs, A
T
k and ΛT

k are the kth row vectors of A and Λ,

respectively. To generate observations from the non–standard and complex

joint conditional density of τ k and Y (1)k,obs, the following MH step is embedded

within the Gibbs sampler. Specifically, a vector of thresholds (τk2, . . ., τk,bk−2)

is first generated from the truncated normal distribution

τkw ∼ N(τ
(j)
kw , σ

2
τk

)I
(τk,w−1,τ

(j)
k,w+1)

(τkw), for w = 2, . . . , bk − 2, (10)

where τ
(j)
kw denotes the value of τkw at the jth iteration of the Gibbs sampler

and σ2
τk

is a preassigned constant. As mentioned earlier, the values of the first

(w = 1) and last (w = bk − 1) thresholds are fixed for identification purpose.

Each new draw of τkw is then retained with acceptance probability min(1,Rk),
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where

Rk =

bk−2∏
w=2

Φ[(τ
(j)
k,w+1 − τ

(j)
k,w)/στk ]− Φ[(τk,w−1 − τ (j)

k,w)/στk ]

Φ[(τk,w+1 − τk,w)/στk ]− Φ[(τ
(j)
k,w−1 − τk,w)/στk ]

×

n∏
i=1

Ti∏
t=1

Φ[ψ
−1/2
εk {τk,uitk −A

T
k cit −ΛT

k ηit}]− Φ[ψ
−1/2
εk {τk,uitk−1 −AT

k cit −ΛT
k ηit}]

Φ[ψ
−1/2
εk {τ (j)

k,uitk
−AT

k cit −ΛT
k ηit}]− Φ[ψ

−1/2
εk {τ (j)

k,uitk−1 −A
T
k cit −ΛT

k ηit}]
.

(11)

Once the threshold values have been determined, they are then used to generate

new draws of yitk using the MH algorithm as done in Step (9) on the basis of

Equation (9).

A.3 Step (g): Conditional Distribution for Latent Vari-

able Estimates, p(H|Y ,θ, b)

The conditional distribution from which posterior samples of the latent variable

estimates are obtained can be derived as

p(H|Y ,θ, b) =

n∏
i=1

Ti∏
t=1

p(ηit|Hi,t−1,H
∗
i,t+1,yit,θ, bi)

where Hi,t−1 = (ηi1, . . . ,ηi,t−1) and H∗i,t+1 = (ηi,t+1, . . . ,ηiTi). According to

the Gibbs sampler, random draws of ηi from p(ηi|Y i,θ, bi) are based on those

of ηit from p(ηit|Hi,t−1,H
∗
i,t+1,yit, θ, bi) for each time point. That is, for

i = 1, . . . , n:

p(ηit|Hi,t−1,H
∗
i,t+1,yit,θ, bi) ∼

 p(yit|ηit,θy)p(ηit|ηi,t−1, bi,θη,Ψζ)p(ηi,t+1|ηit, bi,θη,Ψζ) for t = 1,. . ., Ti-1,

p(yit|ηit,θy)p(ηit|ηi,t−1, bi,θη,Ψζ) for t = Ti.

Note that we could obtain a standard conditional distribution for t = Ti but not

for t < Ti. Specifically, at t= Ti, the conditional distribution p(ηiTi |Hi,Ti−1,yiTi ,θ, bi)
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is given by ηiTi ∼ Nq(U
∗
iti ,B

∗), where B∗ = (Ψ−1
ζ + ΛTΨ−1

ε Λ)−1 and U∗iti =

B∗[Ψ−1
ζ fTi(ηi,Ti−1, bi,θη) + ΛTΨ−1

ε (yiTi − Acit)]. However, when t < Ti,

multiplication involving the density p(ηi,t+1|ηit, bi, θη) would result in a con-

ditional density that is non–normal and non–standard. This is due directly

to the nonlinearity of f t(.) and the fact that ηit is random, as opposed to

fixed, at each t. We adopted the following MH algorithm to sample obser-

vations from the posterior density p(ηit|Hi,t−1,H
∗
i,t+1,yit,θ, bi). At the jth

iteration with a current value η
(j)
it , a new candidate ηit is generated from the

normal distribution N(η
(j)
it , σ

2
ηΩη), where Ωη = (B∗

−1
+ ∆T

itΨ
−1
ζ ∆it)

−1 and

∆it = ∂f t+1/∂η
T
it|ηit=0, and it is accepted with probability

min

{
1,
p(ηit|Hi,t−1,H

∗
i,t+1,yit,θ, bi)

p(η
(j)
it |Hi,t−1,H

∗
i,t+1,yit,θ, bi)

}
.

The variance σ2
η can be chosen such that the average acceptance rate is approx-

imately 0.25 or more.

A.4 Step (h): Conditional Distributions for Parameters

in θ

Assuming that the parameters in b = {b1, . . . , bn} are independent of those

contained in θ, and that parameters in θη are conditionally independent of those

in θy, the conditional distribution p(θ|Y ,H, b) = p(θη,Ψζ |H, b) p(θy|Y ,H)

is derived by computing the latter two densities separately for all the person–

invariant parameters in the dynamic and measurement models.

Parameters in the Dynamic Model. At the dynamic level, the only paramet-

ric posterior distribution associated with p(θη,Ψζ |H, b) is that of p(Ψζ |H, b).

We used a q–dimensional inverse Wishart distribution as the conjugate prior

for the process noise covariance matrix, Ψζ , i.e., p(Ψζ) ∼ IWq(ρ0,Ψζ0), thus
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yielding

p(Ψζ |H, b) ∼ IWq

(
n∑
i=1

Ti + ρ0,Rη + Ψζ0

)
,

where Rη =
∑n
i=1

∑Ti
t=1[ηit − f t(ηi,t−1, bi,θη)][ηit − f t(ηi,t−1, bi,θη)]T .

Parameters in the Measurement Model. Following the work of many others

(e.g., Lindley and Smith, 1972; Shi and Lee, 1998; Lee and Zhu, 2000), we

specified the following conjugate priors for the distributions of ψ−1
εk and Λyk|ψεk:

p(Λyk|ψεk)
D
= Ns+q(Λ0yk, ψεkH0Λyk), p(ψ−1

εk )
D
= Γ(α0εk, β0εk), (12)

where ΛT
yk represents the kth row vector of Λy = (A,Λ) for k = 1, . . . , p. The

components Λ0yk, H0Λyk , α0εk and β0εk are all hyperparameters whose values

are assumed to be known. Thus, we have

p(ψ−1
εk |Y ,H) ∼ Gamma(

1

2

n∑
i=1

Ti+α0εk, βεk), p(Λyk|ψεk,Y ,H) ∼ N[vk, ψεkΥk],

where βεk = β0εk + 1
2 (
∑n
i=1

∑Ti
t=1 y

2
itk − vTkΥ−1

k vk + ΛT
0ykH

−1
0Λyk

Λ0yk), Υk =

(H−1
0Λyk

+
∑n
i=1

∑Ti
t=1 υ

∗
itυ
∗T
it )−1, vk = Υk(

∑n
i=1

∑Ti
t=1 υ

∗
ityitk + H−1

0Λyk
Λ0yk)

and υ∗it = (cTit,η
T
it)
T .

Particularly, when cit = 1 and A = µ, we consider the following conjugate

priors for the distributions of µ and Λk:

p(µ|µ0,Σ0) ∼ N(µ0,Σ0), p(Λk|ψεk) ∼ Nq(Λ0k, ψεkH0Λk),

where ΛT
k is the kth row vector of Λ for k = 1, . . . , p, and the components µ0,

Σ0, Λ0k, H0Λk are all hyperparameters whose values are assumed to be known.

Then, we have

p(µ|Y ,H,Λ,Ψε) ∼ N(µµ,Ωµ),
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p(ψ−1
εk |Y ,H) ∼ Gamma(

1

2

n∑
i=1

Ti+α0εk, βεk), p(Λk|ψεk,Y ,H) ∼ N[vk, ψεkΥk],

where βεk = β0εk+ 1
2 (
∑n
i=1

∑Ti
t=1(yitk−µk)2−vTkΥ−1

k vk+ΛT
0kH

−1
0Λk

Λ0k), Υk =

(H−1
0Λk

+
∑n
i=1

∑Ti
t=1 ηitη

T
it)
−1, vk = Υk(

∑n
i=1

∑Ti
t=1 ηit(yitk−µk)+H−1

0Λk
Λ0k).

A.5 Step (i): Conditional Distribution p(Y mis|θ,H , r,ϕ,C,U obs)

Since yit are mutually independent for i = 1, . . . , n and t = 1, . . . , Ti, yit,mis

are also independent of each other for i = 1, . . . , n and t = 1, . . . , Ti. In addi-

tion, Ψε is assumed to be a diagonal matrix. Thus, yit,mis is also independent

of yit,obs, and we have p(yit,mis|cit,ηit,U it,obs, rit,θy,ϕ)
i.i.d∼ N(Ait,miscit +

Λit,misηit,Ψεit,mis) × p(rit|y(2)it,y(1)it,mis, U it,obs,ϕ), where Ait,mis is a sub-

vector ofA with components corresponding to the missing components in yit,mis,

Λit,mis is a submatrix of Λ with rows corresponding to the missing components

in yit,mis, and Ψεit,mis is a submatrix of Ψε with rows and columns correspond-

ing to the missing componetns in yit,mis. The conditional density is non–normal

and non–standard due to the presence of p(rit|y(2)it,y(1)it,mis,U it,obs,ϕ). As

in some of the other steps, the MH algorithm is employed to draw observa-

tions from the posterior density p(yit,mis|cit,ηit,U it,obs, rit,θy,ϕ) with the fol-

lowing steps. At the jth iteration with a current value y
(j)
it,mis, a new candi-

date yit,mis is generated from the normal distribution N(y
(j)
it,mis, σ

2
yUy), where

Uy = (Ψ−1
εit,mis + ∆y)−1 and ∆y =

∂2 log{pr(rit|y(2)it,y(1)it,mis,U it,obs,ϕ)}
∂yit,mis∂yTit,mis|yit,mis=0

, and it

is accepted with probability

min

{
1,
p(yit,mis|cit,ηit,U it,obs, rit,θy,ϕ)

p(y
(j)
it,mis|cit,ηit,U it,obs, rit,θy,ϕ)

}
.

The variance σ2
y can be chosen such that the average acceptance rate is approx-

imately 0.25 or more.
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A.6 Step (j): Conditional Distribution p(ϕ|Y mis,U obs,Y (2)obs, r)

It follows from missingness mechanism Equation (6) and prior for ϕ, p(ϕ)
D
=

Nd(ϕ
0,H0

ϕ), that the conditional distribution p(ϕ|Y mis,Uobs,Y (2)obs, r) is pro-

portional to

exp{
n∑
i=1

Ti∑
t=1

[(

p∑
j=1

ritj)ϕ
Tx∗it−p log(1+exp(ϕTx∗it))]−

1

2
(ϕ−ϕ0)T (H0

ϕ)−1(ϕ−ϕ0)},

where ϕ = (ϕT1 ,ϕ
T
2 )T , and x∗it = (xTit,x

T
i,t−1)T . It is easily seen that the con-

ditional density is non-normal and non-standard. Again, the MH algorithm is

adopted to sample observations from the posterior density p(ϕ|Y mis,Uobs,Y (2)obs,

r) as follows. At the jth iteration with a current value ϕ(j), a new candi-

date ϕ is generated from the normal distribution N(ϕ(j), σ2
ϕUϕ), where Uϕ =

(p4
∑n
i=1

∑Ti
t=1 x

∗
itx
∗T
it + (H0

ϕ)−1)−1, and it is accepted with probability

min

{
1,

p(ϕ|Y mis,Uobs,Y (2)obs, r)

p(ϕ(j)|Y mis,Uobs,Y (2)obs, r)

}
.

B. Hyperparameter Specification

The hyperparameter values of the prior distributions were specified as follows.

For the priors in Step (8)–sampling from the condition distributions of the pa-

rameters in θ—we set µ0 to a 8×1 vector of zeros and Σ0 to 0.5I8 corresponding

to hyperparameters in specifying the prior distribution of µ (i.e., A in Equation

(??)). For the unknown parameters λkj in the factor loading matrix Λ, we set

λ0kj = 0.8 for k = 2, 3, 4, 6, 7, 8 and j = 1, 2, H0λk to 1.0. For the conjugate

priors of the measurement error variances, we set α0εk to 8 and β0εk to 10 to

yield variance values that were relatively large and diffuse. For the priors of the

dynamic parameters in θη, we set ρ0 to 10 and Ψζ0 to (ρ0 − q − 1)R−1
0 , where

R0 is the true value of Ψζ .
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With respect to the hyperparameters for the DP prior for bi, the following

specifications were used. Based on the acceptance rates for the MH step for

drawing posterior samples from p(µZ ,ΨZ ,π,Z,L|θ,H), we specified c1 to 10,

and c2 to be 5.0 and 8.0 for the first two and last two elements of bi, respectively;

and the diagonal elements in ΨµZ to be 5.0. We set µZ0j
to .15 for j = 1 and 2

(i.e., corresponding to b11i and b22i) and to -.15 for j = 3 and 4 (i.e., correspond-

ing to b12i and b21i). In terms of hyperparameters for the base distribution of

α, we set a1 to 10 and a2 to 2 to yield large values of α (and consequently, more

unique Zi values) to capture some of the more subtle individual differences in

these dynamic parameters.

In the MH steps (i.e., steps 4, 6, 7, 9 and 10), a diffuse prior was specified for

the threshold parameters (see Step 6), so cτ can be set to any arbitrary constant

value without affecting the resultant posterior distributions of the threshold

parameters. We further take σ2
τ1 = 0.0017, σ2

τ2 = 0.0014, σ2
τ3 = 0.0016, σ2

τ4 =

0.0015, σ2
τ5 = σ2

τ6 = σ2
τ7 = 0.0014, σ2

τ8 = 0.0013, σ2
y = 3.0 and σ2

ϕ = 3.8, giving

the average acceptance rates 0.322, 0.276, 0.261, 0.286, 0.297, 0.296, 0.274,

0.290, 0.292 and 0.297, respectively.

C. Uninformative Extension to Illustrative Ex-

ample I

This is a slight extension to Illustrative Example I (the coin toss example)

described in the paper. Consider an uninformative special case of the beta

prior, p(θ) ∼ Beta(1, 1), in which θ is assumed to have uniform probabilities for

all values on the interval of [0, 1]. The sensitivity of any subsequent modeling

results to the prior may be illustrated by perturbing the prior: p(θ) ∼ Beta(1, 1)

via the perturbation scheme: p(θ|ω) ∼ Beta(ω1, ω2), where ω = (ω1, ω2)T . In

this case, ω0 = (1, 1)T represents no perturbation. The perturbed likelihood

12



function is given by

p(θ|ω) =
θω1−1(1− θ)ω2−1

B(ω1, ω2)
,

where B(.) denotes the beta function. The first- and second-order partial deriva-

tives with respect to ω are given by

∂ log p(θ|ω)

∂ω1
= log θ−ψ(ω1)+ψ(ω1+ω2),

∂ log p(θ|ω)

∂ω2
= log(1−θ)−ψ(ω2)+ψ(ω1+ω2),

∂2 log p(θ|ω)

∂ω2
1

= −ψ̇(ω1) + ψ̇(ω1 + ω2),
∂2 log p(θ|ω)

∂ω2
2

= −ψ̇(ω2) + ψ̇(ω1 + ω2),

∂2 log p(θ|ω)

∂ω1∂ω2
= ψ̇(ω1 + ω2),

where ψ(x) is the digamma function (the logarithmic derivative of the gamma

function), ψ̇(x) is the first-order partial derivative of ψ(x). From properties of

the digamma function, we have

∂ log p(θ|ω)

∂ω1
|ω0 = log θ + 1,

∂ log p(θ|ω)

∂ω2
|ω0 = log(1− θ) + 1,

E

{
−∂

2 log p(θ|ω)

∂ω2
1

|ω0

}
= 1, E

{
−∂

2 log p(θ|ω)

∂ω2
2

|ω0

}
= 1, E

{
−∂

2 log p(θ|ω)

∂ω1∂ω2
|ω0

}
= ψ̇(2),

which yields G(ω0) =

 1 ψ̇(2)

ψ̇(2) 1

. In this case, the two perturbations are

not orthogonal to each other, and the same amount of perturbation is adminis-

tered in the first two directions.

The score vectors summarizing changes in the Bayes factor and posterior

means of d(θ) with respect to the perturbations, and Hessian matrix showing

the curvatures in the φ-divergence function with respect to the perturbations,
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are denoted respectively as:

∇BF = Eθ

 log θ + 1

log(1− θ) + 1

 , ∇Md
= Eθ

 (log θ + 1)d(θ)

{log(1− θ) + 1}d(θ)

 ,

Hφ = φ̈(1)

Eθ
 log θ + 1

log(1− θ) + 1


⊗2

−

 Eθ(log θ) + 1

Eθ{log(1− θ)}+ 1


⊗2

where q⊗2 = qqT for any vector q ∈ RT , and Eθ represents expectation taken

with respect to the posterior distribution of θ (i.e., p(θ|z1, z2) ∼ Beta(z1 + z2 +

1, 2N − z1 − z2 + 1)). It is impossible to obtain closed forms of the above three

equations. However, MCMC approximations may be used to compute them as:

∇BF ≈
1

K1

K0+K1∑
κ=K0+1

 log(θ(κ)) + 1

log(1− θ(κ)) + 1

 ,∇Md
≈ 1

K1

K0+K1∑
κ=K0+1

 {log(θ(κ)) + 1}d(θ(κ))

{log(1− θ(κ)) + 1}d(θ(κ))

 ,

Hφ ≈ φ̈(1) 1
K1

K0+K1∑
κ=K0+1


 log(θ(κ)) + 1

log(1− θ(κ)) + 1

− 1
K1

K0+K1∑
κ′=K0+1

 log(θ(κ′)) + 1

{log(1− θ(κ′))}+ 1



⊗2

,

(13)

respectively, where {θ(κ) : κ = K0 + 1, · · · ,K0 + K1} are the observations

generated from the posterior distribution of θ;, K0 denotes the number of burn-

in iterations, and K1 denotes the number of additional iterations after burn-in.

It can be seen that the local influence measures vary as functions of the

sampled values of θ(k). Under such an uninformative beta prior, modeling results

would likely not be overly sensitive to local perturbations to the prior in most

scenarios. However, when the number of trials, N , is small, and the posterior

distribution resembles the prior distribution closely, even slight perturbations to

the prior may be influential in changing model fit (as revealed through the Bayes

factor), as well as characteristics of the posterior distributions. Alternatively,
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if extreme proportions of successes are observed, the shape and the mean of

the posterior distribution of θ would also differ from those associated with the

“uniform-like” prior distribution. In this case, local perturbations to the prior

may also yield relatively large values of local influence in some regions. Matlab

code for this illustrative example can be downloaded as supplementary materials

on the journal website.

D. Prior and Hyperparameter Choices for the

Real Data Application

Similar to the prior and hyperparameter choices used in our simulation studies,

a diffuse prior was specified for all of the threshold parameters. We also set

µ0 = µ̃ and Σ0 = I8 in specifying prior of µ, Ψζ0 = (ρ0 − q − 1)Ψ̃ζ with

ρ0 = 10 in specifying prior of Ψζ , and let the unknown components λjk of the

factor loading matrix Λ to be λ̃jk and H0λjk = 1.0 (k = 1 and j = 2, 3 and

4; k = 2 and j = 6, 7 and 8), where µ̃, Ψ̃ζ and λ̃jk are the auxiliary Bayesian

estimates of µ, Ψζ and λjk obtained from non-informative prior inputs. For the

conjugate priors of the measurement error variances, we set α0εj to 8 and β0εj to

10 to yield variance values that were relatively large and diffuse for j = 1, . . . , 8.

We set µZ0j to 0.05 for j = 1 and 2 (i.e., corresponding to b11i and b22i) and to

-0.01 for j = 3 and 4 (i.e., corresponding to b12i and b21i), where µZ0j
is the jth

component of the hyperparameter µZ0
; and ΨµZj were set 0.01 for j = 1, 2, 3, 4

(i.e., corresponding to b11i, b22i, b12i and b21i), where ΨµZj is the jth component

of the hyperparameter ΨµZ . Furthermore, we set c1 to 10, c2 corresponding to

b11i and b22i to be 5.0, and c2 corresponding to b12i and b22i to be 2.0. With

respect to hyperparameters for the prior distribution of α, we set a1 to 10.0

and a2 to 0.01 to yield large values of α to capture some of the more subtle

individual differences in these dynamic parameters. In the Gibbs sampler, we
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set σ2
τj = 0.00012 for j = 1, . . . , 3, σ2

τ4 = 0.00013, σ2
τ5 = 0.00032, σ2

τ6 = 0.0003,

σ2
τ7 = 0.00018, σ2

τ8 = 0.0002, σ2
y = 9.0 and σ2

ϕ = 14.5, which gave an average

acceptance rate of 0.328.
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