Objective Bayesian Comparison of Constrained Analysis of Variance Models Supplementary material

Comparison of the methodology presented in the paper with the prior adjusted default Bayes factors of Mulder (2014)

To better evaluate the features of our method we analyzed Example 2 in Mulder (2014) (henceforth Mulder). This is a one-way ANOVA, and for illustrative purposes Mulder considered only 2 groups. Let (θ_1, θ_2) be the two group means. The hypotheses under consideration are: H_u : $(\theta_1, \theta_2) \in$

 \mathbb{R}^2 (unrestricted model); $H_1: \theta_1 < \theta_2$ (constrained model); $H_0: \theta_1 = \theta_2$ (null model, notice that Mulder uses H_2). Mulder argues that the standard Fractional Bayes factor (FBF) is inadequate in the context of constrained models, because it does not support H_1 strongly enough even when evidence is clearly in favor of H_1 . To illustrate this point, Mulder considers several different datasets with $\bar{x}_1 = -\bar{x}_2$, where $\bar{x}_1 \in (-2, 1)$, $n_1 = n_2 = 20$ and $s_1^2 = s_2^2 = 20$. Next he considers the posterior probability of the three hypotheses H_t under three different scenarios used to compute the Bayes factor: i) the FBF and ii) two Prior adjusted default BFs (Type I and Type II); see Mulder (2014, Fig. 3). While the behavior of the posterior probability of each of the H_t is similar across the three scenarios when $(-\bar{x}_2) = \bar{x}_1 > x_0$ $(x_0$ being equal to a small negative value in the neighborhood of zero), the behaviors of the posterior probability of H_u and H_1 are markedly different between the FBF on the one hand, and the two prior adjusted default BFs on the other hand, when \bar{x}_1 moves away from 0 towards negative values. With regard to FBF: when $\bar{x}_1 = -1$, the posterior probability of H_1 is somewhat higher than that of H_u ; however when $\bar{x}_1 = -2$ the two probabilities are essentially equal: this shows that the standard FBF is unable to support in a strong way H_1 when it should. On the other hand for $\bar{x}_1 < -0.5$, the whole

posterior probability mass under each of the two prior adjusted default BFs is concentrated on H_u and H_1 , with the latter accounting for a probability of about 2/3; this shows that Mulder's prior adjusted default BFs exhibit a better performance than the FBF.

We conducted the same analysis using our methodology. The results are reported in Figure 1. When $\bar{x}_1 < -0.5$ the posterior probability of H_1 is essentially 0.70, and that of H_u about 0.3; thus our approach performs basically as Mulder's. On the other hand the posterior probabilities of the three hypotheses behave as expected for values of \bar{x}_1 in the neighborhood of zero or above a certain threshold. (Notice that no analytical expression is available for the BF in our approach, which requires a simulation step that may explain the somewhat irregular appearance of the curves).

References

Mulder, J. (2014). Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. Computational Statistics and Data Analysis 71 448–463.

Figure 1: Posterior model probabilities of H_u : $(\theta_1, \theta_2) \in \mathbb{R}^2$; H_1 : $\theta_1 < \theta_2$; H_0 : $\theta_1 = \theta_2$