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S.1 GINDCLUS: Special Cases

An interesting framework where the GINDCLUS model may be positioned, to-

gether with other existing INDCLUS-related models, can be considered and a clas-

sification of the clustering models for three-way proximity data can be sketched.

The Local INDCLUS model, presented in Sect. 2.1 of the paper, represents

a constrained version of the INDCLUS model since it adds the clustering of the

subjects to INDCLUS.

The Local INDCLUS model is defined as

S = PW(U⊗P)′+
(
C′⊗1N1′N

)
+E (S.1)

where:

• S = [S1, . . . ,Sh, . . . ,SH ] denotes the N ×NH supermatrix obtained by col-

lecting the H matrices S1, . . . ,SH of order N×N next to each other;

• P is a N × J binary matrix defining the covering of the N objects into J

overlapping clusters;
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• W = [W1, . . . ,Wk, . . . ,WK ] is the J× JK supermatrix formed by collecting

the K diagonal non-negative class weight matrices Wk of order J next to each

other;

• U is the H×K binary membership matrix identifying the partition of the H

subjects into K classes;

• C = U[c1, . . . ,ck, . . . ,cK ]
′ and ck is a real-valued additive constant for class k

(k = 1, . . . ,K);

• 1N denotes the column vector with N ones;

• E is the error matrix which explains the part of S not accounted for by the

model.

Hereafter, for the sake of brevity, 1A and IA generally denote the column vector

with A ones and the A×A identity matrix, respectively, and Y= [Y1, . . . ,Ya, . . . ,YA]

denotes the R×TA supermatrix obtained by collecting the A matrices Y1, . . . ,YA

of order R×T next to each other.

A generalization of both INDCLUS and Local INDCLUS is represented by

the GINDCLUS model in terms of both clustering of the subjects and including

external variables.

In GINDCLUS (see Sect. 2.1 in the paper) the set of non-negative class weight

matrices Wk are modeled as the product of two terms gk and Bk which depend on

the set of object and subject external variables X and Z, respectively. The class

weight matrices Wk are modeled as follows

Wk = gkBk = gkdiag(bk), (k = 1, . . . ,K), (S.2)

where:
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• Bk = diag(bk) is a diagonal matrix of size J whose main diagonal is the

vector bk of the non-negative class-conditional weights assigned to the J

groups of objects

bk = Xβββ k + e1, (k = 1, . . . ,K), (S.3)

subject to

bk ≥ 0 and b′k1J = 1 (k = 1, . . . ,K), (S.4)

where X is the J×M matrix of the centroids of the J groups of objects (i.e.,

the j-th row of X is the mean of the N×M matrix X of the object external

variables over the objects belonging to group j), βββ k is a vector of coefficients

of size M and e1 is a vector of error components;

• gk is a non-negative class-specific weight defined as

gk = z′kγγγ + e2, subject to gk ≥ 0, (k = 1, . . . ,K), (S.5)

where zk is the column vector of the V coordinates of the centroid of the k-th

class of subjects (i.e., the mean of the H×V matrix Z of the subject external

variables over the subjects belonging to class k), γγγ is a vector of coefficients

of size V and e2 is a vector of error components.

Therefore, GINDCLUS is defined as

S = PB((UG)⊗P)′+
(
C′⊗1N1′N

)
+E (S.6)

where B = [B1, . . . ,Bk, . . . ,BK ] is the J×JK supermatrix formed by the K matrices

Bk = diag(bk) and G = diag(g) is the diagonal matrix of size K obtained from
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g = [g1, . . . ,gk, . . . ,gK ]
′.

In the design of a general model for clustering two modes of three-way proxim-

ity data taking into account the subject heterogeneity, there are two key elements:

the number nC of classes of subjects (and therefore distinct weight matrices) and

the number nG of groups of objects allowed in the model. Table 1 shows all the

conceivable cases of the clustering models for three-way two-mode proximity data.

Table 1: Classification of clustering models for three-way proximity data

 

H K 1

                                                      

N

(A)                                 

No classification

(B)                                       

Subjects in K  classes                                  

(S.7) and (S.8)

(C)                           

Subjects in one class   

(S.9) and (S.10)

                                                    

J

(D)                           

INDCLUS                 

(S.11) and (S.12)

(E)                                    

GINDCLUS                                    

(S.1) and (S.6)

(F)                         

ADCLUS-type model    

(S.13) and (S.14)

1

(G)                           

Mean profile model              

(S.15) and (S.16)

(H)                                                       

Class-conditional mean model               

(S.17) and (S.18)

(I)                              

Extreme GINDCLUS      

(S.19)

Groups of objects 

(n G)

Classes of subjects (n C )

⋮

⋮

⋯ ⋯

Specifically:

(A) nG = N and nC = H. It is worth noting that no classification is done.

(B) nG = N and nC = K. This corresponds to a one-mode classification model,

because only subjects are partitioned. Here, P= IN and model (S.1) becomes

S = W(U⊗ IN)
′+

(
C′⊗1N1′N

)
+E. (S.7)

where W is the N ×NK supermatrix formed by the N ×N matrices Wk

(k = 1, . . . ,K). When Wk is modeled as in (S.2)-(S.5), model (S.6) becomes

S = B((UG)⊗ IN)
′+

(
C′⊗1N1′N

)
+E. (S.8)
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where B= [B1, . . . ,Bk, . . . ,BK ] with Bk = diag(bk)= diag(Xβββ k) (k= 1, . . . ,K).

(C) nG = N and nC = 1. Since P = IN and U = 1H , model (S.1) is

S =
(
1′H ⊗W

)
+ c1N1′HN +E (S.9)

where W is the unique N×N matrix of weights. When W is modeled as in

(S.2)-(S.5), model (S.6) reduces to

S =
(
1′H ⊗

(
z′γγγ

)
B
)
+ c1N1′HN +E (S.10)

being B = diag(Xβββ ) and z the mean vector of Z.

(D) nG = J and nC = H. Since U = IH , only one-mode (the objects) is classified

and model (S.1) reduces to the INDCLUS model

S = PW̃
(
IH ⊗P′

)
+
(
C̃′⊗1N1′N

)
+E (S.11)

where W̃ = [W̃1, . . . ,W̃h, . . . ,W̃H ] has size J× JH, C̃ = [c̃1, . . . , c̃h, . . . , c̃H ]
′.

However, when the individual weight matrices are modeled as in (S.2)-(S.5),

INDCLUS becomes

S = PB̃
(
G̃⊗P

)
+
(
C̃′⊗1N1′N

)
+E (S.12)

where B̃ = [B̃1, . . . , B̃h, . . . , B̃H ] being B̃h = diag(Xβββ h) and G̃ = diag(Zγγγ).

(E) nG = J and nC = K. This case corresponds to the Local INDCLUS model

(S.1) or to the GINDCLUS model (S.6) when the assumptions (S.2)-(S.5)

hold.

(F) nG = J and nC = 1. Since U = 1H , the model is an ADCLUS-type model
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equivalent to apply ADCLUS to the (two-way) mean matrix. In this case,

model (S.1) becomes

S =
(
1′H ⊗PWP′

)
+ c1N1′HN +E (S.13)

where W is the unique J× J matrix of weights. When W is modeled as in

(S.2)-(S.5), model (S.6) reduces to

S = z′γγγ
(
1′H ⊗PBP′

)
+ c1N1′HN +E (S.14)

being B = diag(Xβββ ).

(G) nG = 1 and nC = H. Since P = 1N and U = IH , a mean profile model derives

S =
(
w̃′⊗1N1′N

)
+
(
C̃′⊗1N1′N

)
+E (S.15)

where w̃ = [w̃1, . . . , w̃h, . . . , w̃H ]
′ is the unique non-negative vector of the in-

dividual weights assigned to the whole group of objects by every subject.

When the individual weights are modeled as in (S.2)-(S.5), and being b̃h = 1

because of (S.4), w̃h = g̃h (h = 1, . . . ,H) follows and model (S.6) reduces to

S =
(
g̃′⊗1N1′N

)
+
(
C̃′⊗1N1′N

)
+E (S.16)

where g̃ = [g̃1, . . . , g̃h, . . . , g̃H ]
′.

(H) nG = 1 and nC = K. Since P = 1N , a class-conditional mean model derives

S =
(
(Uw)′⊗1N1′N

)
+
(
C′⊗1N1′N

)
+E (S.17)

where w = [w1, . . . ,wk, . . . ,wK ]
′ is the vector of the class-specific weights.
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These weights modeled as in (S.2)-(S.5) become bk = 1 (k = 1, . . . ,K) due

to (S.4) and then wk = gk (k = 1, . . . ,K) where gk is defined as in (S.5).

Therefore, model (S.6) becomes

S =
(
(Ug)′⊗1N1′N

)
+
(
C′⊗1N1′N

)
+E. (S.18)

(I) nG = 1 and nC = 1. Since P = 1N and U = 1H , the Extreme GINDCLUS

model is obtained

S = (w+ c)1N1′HN +E (S.19)

where w is the unique non-negative weight assigned to the whole group of

objects by all subjects. When w = gb as in (S.2)-(S.5), it follows that g = z′γγγ

and b = 1 for (S.4).

S.2 Assessing the Constrained Models

It can be useful to have for the GINDCLUS model (11) a decomposition of the loss

function (15) which represents the GINDCLUS Error Sum of Squares (GIESS), so

that it can be partitioned into components assessing different aspects of the lack of

fit of the model due to the clustering of the subjects and the taking into account of

the external variables.

Let s be the (N2×H) matrix formed by collecting the H column vectors sh

next to each other, P and U be the classification matrices fitted by the GINDCLUS

model and T be the (N2×J) matrix built from P as in step c) of the algorithm (Sect.

3 in the paper). Moreover, let WIND denote the (J ×H) matrix of the weights

estimated from the INDCLUS model (2) and WLIND and WGIND be the weights

fitted by the Local INDCLUS and GINDCLUS models, respectively, rearranged to
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form (J×K) weight matrices.

Without loss of generality and just for simplicity, we assume here that the ad-

ditive constant parts of the INDCLUS, Local INDCLUS and GINDCLUS models

are null.

Given P and U, the INDCLUS model (2), Local INDCLUS model (4) and

GINDCLUS model (11) can be equivalently rewritten as:

s = TWIND + e1 (S.20)

s = TWLIND U′+ e2 (S.21)

s = TWGIND U′+ e3 (S.22)

where e1, e2 and e3 are the error terms.

Therefore, the corresponding least-squares loss functions are

IESS =
∥∥s−TWIND

∥∥2
(S.23)

LIESS =
∥∥s−TWLIND U′

∥∥2
(S.24)

GIESS =
∥∥s−TWGIND U′

∥∥2
(S.25)

where the terms IESS, LIESS and GIESS denote the Error Sum of Squares of the

INDCLUS, Local INDCLUS and GINDCLUS models, respectively.

Given P, the unconstrained least-squares solution minimizing IESS (S.23) is

WIND = T+s (S.26)

where T+ denotes the pseudo-inverse of T.

Moreover, given P and U, the unconstrained least-squares solution of LIESS
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(S.24) is

WLIND = T+sU+′ = WIND U+′ (S.27)

where U+ denotes the pseudo-inverse of U and the right-hand term derives from

(S.26).

By subtracting and adding TWIND into LIESS (S.24) and using (S.27), it fol-

lows

LIESS =
∥∥s−TWIND

∥∥2
+
∥∥T

(
WIND−WLIND U′

)∥∥2

= IESS+
∥∥TWIND (

IH −UU+
)∥∥2

= IESS+LC (S.28)

where LC (Lack of Clustering) denotes the part of the INDCLUS variability not

accounted for by the partition of subjects identified by U.

Similarly, starting from GIESS (S.25), by subtracting and adding TWLIND U′

and using (S.27)

GIESS =
∥∥s−TWLIND U′

∥∥2
+
∥∥T

(
WLIND−WGIND)U′

∥∥2

= LIESS+
∥∥T

(
WIND UU+−WGIND U′

)∥∥2

= LIESS+LR (S.29)

where LR denotes the Lack of Regression fit due to the external variables.

Finally, plugging (S.28) into (S.29), the following decomposition holds

GIESS = IESS+LC+LR (S.30)

which is just the decomposition (23) in Sect. 4.1 of the paper. The last two terms
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on the right-hand side in (S.30) measure the lack of fit due to the (clustering and

regression) constraints additionally imposed to the INDCLUS model and can be

used to asses the different aspects of the model misfit.

Note that the decomposition (S.30) still holds even when WIND, WLIND and

WGIND are constrained to be non-negative because the optimal (constrained) es-

timates are obtained by setting to zero the negative entries and deriving the un-

constrained least-squares solutions for the remaining ones (as in active-set-type

algorithms).

10


