Proofs of Theorems

Let f(x) € R denote a twice-differentiable function of x € R”. Vf(x*) and V?f(x*) are

defined as the gradient and Hessian of f(x) evaluated at x*, respectively, i.e., Vf(x*) = %:*) and

2 *
Vif(x*) = 97 Given an index set Jc{12,..,P}, V;f(x*) denotes the vector formed by

oxoxT

af (x* . .. .
{ };;x )} , where x; is the qt™" element of x. In a similar manner, Vf] f(x*) isused to denote the
1 7qeg
. 2%f(x*) . .
|7I%1J| matrix formed by {W} , where |J| is the number of elements in J. For a vector
74 q,qreg

x €RP, Ixll, = (Zh_y|x |q)1/q denotes the ¢, norm of x. In particul d
> lxllq p=1[%p q . In particular, [|x||, [[xllo, and [[x]]c

2 1/2

are defined as (Xh_; x2

, ZS=1 1{xp * 0}, and max{|xp|};=1, respectively. For a square matrix

A€ RP*P W in(A) and w,q,(A) are used to denote the smallest and largest eigenvalue of A.

To derive the asymptotic properties of PL estimator, the following regularity conditions are
assumed.
Condition A. Yy = {Y,,}V_, is arandom sample from some distribution F that satisfies (1) E(Y) =

u; (2) Var(Y) =2* > 0; ie., X* is positive definite; (3) there exists an € >0 such that
E(|Yp|4+£) < oo forall p.

Condition B. For each 6§ € ® and any combination of q, q', and q" (q,q9'.q" =1.2,...,Q),

GEXAC))

———————— exists.
06406490411

Condition C. There exists a quasi-true parameter 8* € © such that (1) 6* € argmax IE(L(H)); (2)
6eo
16*]lo < 18], for any 6 € argmaX[E(L(H)), but 68 #6*; (3) 6" is the unique maximizer of
6eo

E(£(0)) on ©4-, where A* = {qIH[; # 0} is the support of 8*; O4 =0N (]_[qQ=1£q) is the
restricted parameter space with X, =R if q € A", and X, = {0} otherwise; (4) there exists a
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neighborhood of 6* on 04, denoted by Q4+«(0") and a constant k; >0 such that

2
Wmin(Far(0)) > Ky forall 6 € Q,-(0%), where Fg-(0) = E (_ 92L(6) )

06,4+007. )
Condition D. For each combination of g, q', and q", there exists an F-integrable random function
q, q q g

03 log o ()

Kqqrqn(y) such that 964004136411

< Kgq1qgn(y) forall y and 6 in the neighborhood of 8~

Condition E. The penalty term R(8,y) = ¥2_; cqp(|6,].¥) satisfies (1) ¢, =1 if 6; = 0; (2)

ap(ty)
ot

9p0+y) _
at

p(t,y) isincreasing and concave in t > 0; (3) is continuous in both t and y; (4)

y:(5) B =0 if ¢ > 5.

Condition F. 6" is the unique maximizer of IE(L(@)) on 0, and there exists a neighborhood of 6*

on 0, denoted by Q(68*), and a constant k, > 0 such that wmin(}"(e)) >k, forall 8 € Q(8%),

where F(0) = IE( aZL(e)).

90007

Condition A requires each observation to be an independent realization from the same distribution
satisfying some moment conditions. It is a standard assumption for minimum discrepancy function
estimation in SEM (e.g., Browne, 1984; Shapiro, 1983). In SEM applications, the support of the
manifest variable is often bounded, implying that Condition A holds. Condition B assumes that model
7(0) is smooth enough so that the quadratic approximation for £(6) is allowed. If the specified
model is in the class of Equations (1) and (2) in the main text, Condition B is generally satisfied. The

combination of Conditions A and B implies the existence of F(0) and H(O) =

IE(% nzlalog(;;g(yn)aloizg(yn)). Both F(0) and H(6) play important roles for studying the

asymptotic behavior of PL estimators. Condition C requires the existence and the uniqueness of a

quasi-true parameter 6 on the restricted parameter space 0 4, even when 7(6) is not identifiable



on the whole parameter space ©. However, the positive-definiteness of F 4+(6) on Q_4+(8*) implies
that 7(@) is at least locally identified on the restricted parameter space 0 _4-. Condition D ensures
that the remaining term of the quadratic approximation of £(8) around 6" can be arbitrarily small
in probability. Condition E makes several assumptions about the penalty term. The first assumption
requires that the penalization weights must be one for all true-zero parameters. If such assumption is
not satisfied for some 6; = 0, it is impossible to obtain a sparse PL estimate for 6;. A simple way to
fulfill this requirement is to set all the penalization indicators to be one except for the indicators for
variance parameters. The remaining assumptions in Condition E restrict the shape of the penalty
function. Both SCAD and MCP satisfy the all of the properties. However, the #; penalty does not
satisfy the last property and hence the established theorem cannot be applied to the #;-penalized
estimator. Finally, Condition F is a more restricted version of Condition C and is required to establish

a global theoretical result for the PL estimators.

Theorem 1 (local oracle property). If Conditions A-E are true, y satisfies y — 0, and VNy — o

as N — oo, then there exists a strictly local maximizer of U(6,y), denoted by 8 = 8(y), such that
() lim P(A(y) = A*) = 1, where A(y) is the estimated support of §(y);

2%L(6"

(b) \/ﬁ(éﬂ* — 9:4*) -5 N(O,T**_l}[}}***_l) , where Fj. = IE(- 36,,-067.

) and H« =

E lZN dlog g+ (Yn) dlog pg+(Yn)
T 307

Theorem 1 can be established by proving the following three lemmas.
Lemma 1. Under Conditions A-E, there exists a sequence of maximizer of £(6) on the restricted

parameter space 0 4+, denoted by 8* = 8}, such that



0 —0*

(a) 1\1{1_1)1;10 IP’(| < e) =1;

(b) VN(8% — 65:) —p N(0,Fp " H i Fi7h).

Proof: The technique in Section 6.5 of Lehmann and Casella (1998) is adopted to prove this lemma.

For part (a), we want to show that for any sufficiently small € > 0 with probability tending to 1 that
L") > L(6), (1)

atall points 6 on the surface of S, where S, is the sphere with center at 8* and radius &. Equation

(1) implies that there exists a local maximum in the interior of S, and a consistent sequence of local

maximum can be selected. By Taylor’s theorem, we have

L(O) — L(O") S VL0 (60 — 0p) + ; (040 — 05:)TVZL(0%) (040 — 674)

+%quﬂ* quea‘l* Equeﬂ*(gq - 9;)(9q' - 9;’)(911” - eq*”)KQQ’Q”(Y)
= al + az + a3. (2)

We know that |6, — 6;

=g, ||V L(07)] »p 0, and —V%.L(8*) »p F-. Hence, for large N,

with probability tending to 1 we have
lay| < ellVg- L0l < |A*|e® = Cy €5, (3)
|azl = =2 O = 04) Fio (B = 032 +5 O = 03) (Voo L(O7) + Fpo) 000 — 032)
< Wnax (F €% + |A*|e3 < —C, €2, (4)
and
las] < 33 A P LIRNE (Kqrgn (V) = 8%, (5)
for some C;, C,,and C3; > 0, indicating that
L(O) — L(O*) < C 3 — Cye? + (35, (6)

Therefore, we conclude that if € < C,/(C; + C3), we have L(0) — L(6*) <0 for all 6 on the

surface of §,.



To prove (b), according to Taylor’s theorem,
Vo L(67) = Ve L(87) + V4. L0 (8 — 63) + 0, (N2). (7)

Because V,4-L(0")=0 and —V%.L(0") »p Fy- , we have that VN(0 —6)=
?g*‘lx/ﬁvﬂ*ﬁw*) + 0,(1). By the fact that VNV 4-L(8%) —p N (0,H;-) and Slutsky’s theorem,

we conclude that VN(85 — 05+) —p N(O,T**_l}[;*}"**_l),

Lemma 2. Suppose 0 € O satisfies

Van£(0) = Vag,R(6,7), (8)
IVagL@I, <. ©

and
Omin (—V4) £(8) + V4, R(8,7)) > 0, (10)

then @ is a local maximizer of U(H,y), where A(y)¢ is the complement of A(y).

Proof: Define 0 4,,=0n (]‘[g=1 %q),where X, =Rifqe A(y) and X, = {0} otherwise. Let
N denote a small neighborhood of 8 on © 4(y)- Equation (8) and (10) imply that 0 is the unique
maximizer of U(0,y) on N and hence a strictly local maximizer of U(6,y) on © Ay)- Now, we
want to show that 8 is also a strictly local maximizer of U(6,y) on BO. Let ' be a neighborhood
of & on ® such that V' N 044 C N'. We claim that U(8,y) > U®W,y) for any 9 € N\NV.
Because 8 is the unique maximizer of U(6,y) on N, given any 9 € M\WN, U(8,y) > U(I,y)
holds, where 9 is a projection of ¥ such that 1§q =9, if q€ A(y) and 1§q = 0 otherwise.
Hence, it suffices to show that ‘U(@, y) > UI,y) for any 9 € M\A. By the mean value theorem
and the definition of 9 and 9, we have

U@, v) = UG, V) = Vag)UD, V" (Jagye = Sam)



—Vc@(},)c‘u@i )/)Tﬁﬁ(y)c
q T q T
- —Vc@(},)cﬁ(ﬁ, y) 19:/‘2(]/)6 + qu(y)CR(ﬁ, y) 19:/‘2(]/)5

aL(9) ap(|94]y) . _
- quﬁ(y)cmﬁq + quﬁ(y)ch;lmgn(ﬁq)ﬁq

_ 9L(9) 2p(|9|v)
— Lged)e 39| g + Lgedye 3[04 |‘9q|' (11)

where 9 lies on the line segment between 9 and . Note that sign(ﬁq)ﬁq = |19q| because ¥, and

1§q have the same sign. By ||V ﬁ(y)cﬁ(§)||w <y= —Bp(;):-,y) in Equation (9), and the continuity of
—ap;i')/) and 7(6) described in Condition E and B, there exists a € > 0 such that for any 6 in the

neighborhood of # with radius & we have

V.0 £@)]|_ < %‘i” (12)

Since the choice of MV is arbitrary, we can choose N with radius smaller than ¢ so that |§,| <

aL(9)
2o, |19 <

|19q| <e for q € A(y)°. By the fact 9 € N, Equation (12) implies that e A@)©
Diqe cﬁ(y)c%‘?y) |19q|. Using the concavity of p(t,y) in t and the continuity of %tt’y), we further

9p([9l ) oL(9)

obtain quﬁ(y)cw|ﬁ | > quﬂ(y)c ap(ey) |19 | . Therefore, by e AW T 2754] ¥, <
quc/i(yy%?w|l9q| and quﬁ(y)c%;;lly)WA >, qeﬂ(y)cap(sy) |19 | Equation (11) is strictly
larger than

quﬂ(y)cap(sy)w |+quﬂ(y)cap(ey)|19 | (13)

which implies that U(J,y) — U, y) > 0 forany 9 € N\ such that ||19 - §|| < &. We conclude

that @ is also a strictly local maximizer of U(6,y) on O.

Lemma 3. Let O denote the set containing all the strictly local maximizers of U(8,y). If Conditions
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A-E hold, y satisfies ¥ = 0 and VNy — o0 as N — oo, we have

Jlim P(6*€0) =1, (14)

where 0* is the ML estimator on the restricted parameter space © 4.

Proof: We want to show that 6* satisfies Equations (8), (9), and (10) asymptotically, i.e.,

lmP@) =1,  where K = (V0 £(07) = Ve RO} 0 {[Ve£(87)], < ¥}

{Omin (~V2L£(87) + V4. R(6",7)) > 0. Let £=€,nE, N&; with &, &, and & being

& = {gglclf? ;| > 6)/}, (15)
g, = {;2% v,L(6%)| < y}, (16)
and
&; = {wmin (~V%-L(67) + V4. R(87)) > 0}. (17)
By 2240 _ ¢ if ¢ > 6y described in Condition E, we have £ € K. The de Morgan’s law implies

at

that the complement of &, denoted by €€, is Ef U E5 U ES, where

& = Ugen{|0s] < 67} (18)
€S = Ugea{|V,L(6°)| = v}, (19)

and
&5 = {wpin (~V%-£(07) + V2R (87)) < 0}. (20)

Because P(K) = P(E) =1—P(E°) >1—Y;_,P(EL), it suffices to show that I\l]im P(E) =0
for k=1,2,3.
I lim P(ED) = 0.

By Lemma 1, we already know that for any q € A", 5{; is consistent to 6y, which implies that

Oq

P(

< 5)/) — 0 as N —» oo for q € A". Hence, we obtain thatas N — o
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P(ES) < Yyen P(0; < 8y) - 0. (21)
2. I\l]im P(&S) = 0.
We first observe that

P(|v,£(67)

>y) < P(|v,£(6")

+ |V, L(6%) — v, L(67)

>y)

< P(|v,£(6%) - V,L(6")

>1) + P(|V,L(6%)

>Y) =a, +a, (22)

By Taylor’s theorem and Cauchy-Schwarz inequality, it follows that

a < P (|18 - 02l > 1) + PO > D = ey + e @3)
Note that
a1 = P(' éc*/l* — 0| > %) + P( aV;;:if*) —E <6V;;3§*)) | ~ g)
1)
Because |67 — 05| and av;;:T(?*) —E <6V;;T(?*)) are both Op (N‘%) and ||IE <av;;:T(f*)) | >0,
A A 4

a;; converges to zero as N — oo. Clearly, a,, and a, also converge to zero by the fact

|V,L£(67)

= 0p (N ‘%) Therefore, we conclude that 1\1{11)120 P(ES) = 0.
3. lim P(ES) = 0.

By Condition C, wnin (—qu*ﬁ(@)) > K, on Q4+(6%). Hence, for sufficiently large N and
6" €0 (07 . Wmin (—V%£(07) + V4R(8")) = @pnin (~V4-L(6) +0(1)) >0 holds i

probability, indicating I\l]im P(&ES) = 0.

Lemma 1 shows that the ML estimator on the restricted parameter space, denoted by 8%, is
consistent and asymptotically normal, which is just a standard result of ML estimator under

misspecified likelihood (e.g., White, 1982). Lemma 2 gives the optimality condition for PL estimators
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(see also Fan & Lv, 2011). Lemma 3 indicates that asymptotically 8* is also a local maximizer of the
PL criterion (see also Kwon & Kim, 2012). Therefore, 8* is of course an oracle estimator described

in Theorem 1.

Theorem 2 (global oracle property). Under Conditions A-F and y satisfies y = 0 and VNy — o
as N — oo. Asymptotically, there exists a unique global maximizer of U(8,y), denoted by 8, such
that

(@) lim P(A(y) =A%) =1;

(b) \/N(é\cﬂ* - 9:;1*) _)D N(O,T**_l}[;l*?**_l).

Proof: Let 6* denote the ML estimator on the restricted parameter space ©_4+. We only need to show

that
lim P(U(é*,y) > eé%%(*)ﬂ(e,y)) ~1. (25)
According to Taylor’s theorem,
£0) — £(67) =vLT(8°)(0 — 87) +2 (0 — 87) v2L(8) (6 - 67). (26)

By Lemma 3 and Condition F, for sufficiently large N, we have

VLT(87)(6 — 6%) <y Tgen<|bql, 27)
and
~ T — ~ ~.\2
~(0-0") V2L@N(0-07) < -1, 32, (6, - 6;)". (28)
Hence, for sufficiently large N, the following inequality holds
—U(f* Q
UO,y) —U6",v) < Xioqaq, (29)

where



1 =22 =
—<Kk,(60,—0) +c 6,1,v)— 6,1, ifg € A",
. 2(60 = 05)" + cqlp(184].¥) = p(164],¥)] ifq 30)

V|9q| _i"z(eq)z _CqP(|9q|;V) ifqg € A.
For qe A", _%KZ(Hq - 95)2 <0 and ¢ [P(|§q|')’) —p(|9q|,y)] =0 hold asymptotically,

which implies a, < 0. For g € A*, by the fact that y — 0, the following inequality holds for

sufficiently large N
1
aq = |6q|(y_§’€2|9q|)_qu(|9q|'7’) <0. (31)

5N s
Therefore, we conclude that P (U(B Y) = o3 ‘U(Q,y)) - 1.

Based on the result of Theorem 2, as long as we have a reliable algorithm to find the global
maximizer, the global maximizer asymptotically performs as well as an oracle one. Note that the
difference between Theorems 1 and 2 is that the latter requires the Fisher information matrix to be
positive definite in the neighborhood of 6* on the entire parameter space 0, indicating that the
specified model is at least locally in the neighborhood of 8* on ©. Therefore, if the specified model
is not locally identified at 8%, Theorem 2 would fail.

If Y isnormally distributed and 7(8) is correctly specified, the information equality holds (i.e.,
Fr.ol= H +) and Theorem 2 reduces to Corollary 1 below. The main implication of Corollary 1 is
that under normality and correct model specification the PL estimator can achieve the Cramér-Rao
lower bound, even when the true sparsity pattern is unknown beforehand. Furthermore, it also implies
that N - Dy, (T(é), t) is asymptotically distributed as a chi-square random variable, where
Dy (1(6),£) = —1og|Z(6) LS| + tr(2(6)1S) — P + (¥ — u(8)) 2()"1(Y — u(0)) and ¢ =
(vech($)T,¥7)" with § = ~¥N_,(¥, = V)(¥,, = 7)T and ¥ = -%N_, Y, Therefore, it is easy to
construct an asymptotic 1 —a level test for examining the null hypothesis 7 = 7(68) versus
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alternative hypothesis T # 7(0). Also, statistical tests for comparing several nested SEM models can
be developed based on the result of sequential chi-square statistics (see Steiger, Shapiro, & Browne,

1985)

Corollary 1. Under Conditions A-F and y satisfies y = 0 and VNy —» o0 as N — oo. If the
density of Y is actually @g(y), then asymptotically, there exists a unique global maximizer of
U(6,7), denoted by 8, such that

(@) lim P(A(y) =A%) =1;

(b) VN(84- — 85:) —p N(0,F5-71),

(¢c) N- DML(T(é), t) —p )(ﬁf*, where df* = P(P +3)/2 — |A"|.

Now, the asymptotic properties of AIC and BIC are derived under the framework of the proposed
PL method. Given a model 7(6), for any index set A < {1,2, ..., Q}, the MDF value of 7(8) on 04

1s defined as

Dy = Jnin Dy, (t(0),77). (32)

where 7* = (vech(Z)7, ,u*T)T is the true moment vector. Hence, by examining the values of D,
and DJ,, the correctness of 7(6) restricted on 04 and Oy, can be compared. According to the
definition of A*, D+ <D forany A c{1,2,...,Q}. If some A satisfies D+ = D, Condition
D indicates that A" is still more parsimonious than A, i.e., |A*| < |A]|. Given a random sample

Yy, the set of regularization parameters is partitioned into three subsets

I = {yID},, = Do |[AW)| = 14°1}, (33)

I = {y1D3, = Dipe, [AW| > 471}, (34)
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and

r- = {yw;m > D;l*}. (35)
The subset I'* contains all the values of y where the optimal model A" is attained. On the other
hand, T* and '~ areformedby y such thatthe corresponding models are overfitted and underfitted,
respectively. Note that A(y) with ¥ € I'" may not be really “overfitting” in the usual sense. An

overfitting model is generally used to refer a model that explains the phenomenon perfectly but

contains unnecessary parameters. However, “overfitting” here is merely used to emphasize that A (y)

contains unnecessary parameters because it is possible that D . > 0. Given any estimated support
ry p p AW) y pp

A®y), 8(y) is used to denote a global maximizer of £(8) on A(y).

Theorem 3. Let 74/¢ and $#5C denote the selection results based on AIC and BIC respectively.
Under Conditions A-F, we have

(a) 1\1{1_1)1;10 PHA€ €Tr™) =0 and 1\111_r)r010 PHAC e TH) > 0;

(b) lim P(P'€ €T) = 1.

Proof: To prove first part of (a), we want to show that the probability of &; =
Uyrer-ur+ {yigﬁ AIC(y) — AIC(y") > 0} converges to one. Let t = (vech(S)T,YT)T denote a
vector of sample moment, where S =% N Y, —=Y)(Y,—YV)T and Y = %Z,’\{:l Y,. We use
D(B) = Dy (t(8),t) to represent the sample discrepancy evaluated at 6. By the fact that
D (é(y)) <D (@(y)) and {yié}"f- AIC(y) — AIC(0) > O} C &,, the following inequality holds

P(E) > P (yienrf_ AIC(y) — AIC(0) > o)

> P( min D(é(y)) —D(6) —%Q > 0). (36)

Ay)E{A|A*CA}
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Note that 1\111—{20 CH()/)E{JZIJZ e ( (y)) ﬂe{ﬂlﬂnw{} Dy > D)+ and 1\111—{130 D(6) = D Hence,

P(E,) > 11»( Dl — Dy — 0p(1) > o) S (37)

min
AE{A|A* ¢ A}

For proving the second part of (a), we need to show that the probability of &, =

Uyrer+ { ylélrf AIC(y) —AIC(Y") > 0} is larger than some nonzero constant. Again, by the fact
{ yigrf* AIC(y) — AIC(0) > 0} c &, and yigrf* AIC(y) > D(6") + % |-4*|, we have that
P(E,) > P ( inf AIC(y) — AIC(0) > o)
> P(D(é*) -D(0) +2(1A°| - Q) > 0). (38)
According to the result of White (1982), we have that N (D(é *) - D(é)) is distributed as a mixture

of chi-square random variables asymptotically. Hence, we conclude that
P(E,) = P <N (2(6%) - (8)) > 20 - IJZ*I)) > 0. (39)
To prove (b), by Theorem 2 we already derived that if y satisfies y » 0 and VNy — o as
N — oo, then the 11m P (BI Cly) =D(6") + = logN Ic/l*l) = 1, which implies that asymptotically T
is not empty if we set ' = [0, L] for a sufficiently large L. The question remains whether BIC can
select a y* €TI'". Now, we want to show that for any y* €'*, the probability of &; =

Uyer-ur+{BIC(y*) — BIC(y) > 0} converge to zero. By the fact that {ﬂ(y)}yer c {A} and

BIC() 2D (6()) + 2~

——e(y), &; is contained in a set &,, a union of finite sets,

&2 = Ungnea (BICG) = (D (80)) + 2 e)) > 0}, (40)

If for any A(y) # A*, Jim IP(BIC()/*) — ( (9()/)) e(y)) > 0) = 0 holds, then by the

fact £, C &,, Allim P(E;) = 0 must be true. If A(y) # A* but A(y) D A", by the fact that
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BIC(y") =D(6") + IO%N |A*| with probability tending to one, it suffices to show that the probability
~ . ~ log N « . . ~.

of {(D(Q ) —-D (9()/))) + T(Io‘l | — e()/)) > O} can be arbitrarily small. By the fact D(G ) —

D(0(r)) = 0,(N"") and |A°| < e(y). we have

P ((D(é*) -D (é(y))) +1BY (14| — o)) > o)

=P (0,0 > 2 ) - 14°D) -0, (41)
as N — oo. For A(y) # A* but A(y) 2 A*,

P ((D(é*) -D (é(y))) +BY (14| — e(y)) > o)

- 11»(1);1* — Dy + 0p(1) > o) - 0. (42)

as N — oo. Therefore, we conclude that 1\1]1_1)120 P(E,) = 0 and hence ]\lll—>nolo P8¢ eT*) = 1.
Theorems 3 shows that asymptotically both AIC and BIC select a model that attains the smallest
MDF value D’;.. However, only BIC yields a consistent selection result with respect to A*. AIC may
suffer from the problem of overfitting. Of course, if I'" is empty, AIC can also select the quasi-true
model with probability one. The derived results are consistent with the typical behaviors of AIC and

BIC in parametric regression models (e.g., Zhang, Li, & Tsai, 2012; Shao, 1997).
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