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Proofs of Theorems 

Let 𝑓 𝑥 ∈ ℜ  denote a twice-differentiable function of 𝑥 ∈ ℜ% . ∇𝑓 𝑥∗  and ∇(𝑓 𝑥∗  are 

defined as the gradient and Hessian of 𝑓 𝑥  evaluated at 𝑥∗, respectively, i.e., ∇𝑓 𝑥∗ = *+ ,∗

*,
 and 

∇(𝑓 𝑥∗ = *-+ ,∗

*,*,.
. Given an index set 𝒥 ⊂ 1,2, … , 𝑃 , ∇𝒥𝑓 𝑥∗  denotes the vector formed by 

*+ ,∗

*,6 7∈𝒥
, where 𝑥7 is the 𝑞9: element of 𝑥. In a similar manner, ∇𝒥(𝑓 𝑥∗  is used to denote the 

𝒥 × 𝒥  matrix formed by *-+ ,∗

*,6*,6< 7,7=∈𝒥
, where 𝒥  is the number of elements in 𝒥. For a vector 

𝑥 ∈ ℜ%, 𝑥 7 = 𝑥>
7%

>?@
@ 7

 denotes the ℓ7 norm of 𝑥. In particular, 𝑥 , 𝑥 B, and 𝑥 C 

are defined as 𝑥>(%
>?@

@ (
, 1 𝑥> ≠ 0%

>?@ , and max 𝑥> >?@
%

, respectively. For a square matrix 

𝐴 ∈ ℜ%×%, 𝜔KLM 𝐴  and 𝜔KN, 𝐴  are used to denote the smallest and largest eigenvalue of 𝐴. 

 To derive the asymptotic properties of PL estimator, the following regularity conditions are 

assumed. 

Condition A. 𝒴P = 𝑌M M?@
P  is a random sample from some distribution 𝐹 that satisfies (1) 𝔼 𝑌 =

𝜇∗ ; (2) 𝕍ar 𝑌 = Σ∗ ≻ 0;  i.e., Σ∗  is positive definite; (3) there exists an 𝜀 > 0  such that 

𝔼 𝑌>
\]^ < ∞ for all 𝑝. 

Condition B. For each 𝜃 ∈ Θ  and any combination of 𝑞 , 𝑞′ , and 𝑞′′  (𝑞, 𝑞=, 𝑞′′ = 1,2, … , 𝑄 ), 

fgh i
fi6 fi6< fi6<<

 exists. 

Condition C. There exists a quasi-true parameter 𝜃∗ ∈ Θ such that (1) 𝜃∗ ∈ argmax
i∈k

𝔼 ℒ 𝜃 ; (2) 

𝜃∗ B < 𝜃 B  for any 𝜃 ∈ argmax
i∈k

𝔼 ℒ 𝜃 , but 𝜃 ≠ 𝜃∗ ; (3) 𝜃∗  is the unique maximizer of 

𝔼 ℒ 𝜃  on Θ𝒜∗ , where 𝒜∗ = 𝑞 𝜃7∗ ≠ 0  is the support of 𝜃∗ ; Θ𝒜∗ = Θ ∩ 𝔛7
p
7?@  is the 

restricted parameter space with 𝔛7 = ℜ  if 𝑞 ∈ 𝒜∗ , and 𝔛7 = 0  otherwise; (4) there exists a 
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neighborhood of 𝜃∗  on Θ𝒜∗ , denoted by Ω𝒜∗ 𝜃∗  and a constant 𝜅@ > 0  such that 

𝜔KLM ℱ𝒜∗ 𝜃 > 𝜅@ for all 𝜃 ∈ Ω𝒜∗ 𝜃∗ , where ℱ𝒜∗ 𝜃 = 𝔼 − *-ℒ i
*i𝒜∗*i𝒜∗

. . 

Condition D. For each combination of 𝑞, 𝑞′, and 𝑞′′, there exists an 𝐹-integrable random function 

𝐾77=7== 𝑦  such that fg wxyz{ |
fi6 fi6< fi6<<

< 𝐾77=7== 𝑦  for all 𝑦 and 𝜃 in the neighborhood of 𝜃∗. 

Condition E. The penalty term ℛ 𝜃, 𝛾 = 𝑐7𝜌 𝜃7 , 𝛾
p
7?@  satisfies (1) 𝑐7 = 1 if 𝜃7∗ = 0; (2) 

𝜌 𝑡, 𝛾  is increasing and concave in 𝑡 > 0; (3) f� 9,�
f9

 is continuous in both 𝑡 and 𝛾; (4) f� B],�
f9

=

𝛾; (5) f� 9,�
f9

= 0 if 𝑡 > 𝛿𝛾. 

Condition F. 𝜃∗ is the unique maximizer of 𝔼 ℒ 𝜃  on Θ, and there exists a neighborhood of 𝜃∗ 

on Θ, denoted by Ω 𝜃∗ , and a constant 𝜅( > 0 such that 𝜔KLM ℱ 𝜃 ≥ 𝜅( for all 𝜃 ∈ Ω 𝜃∗ , 

where ℱ 𝜃 = 𝔼 −*-ℒ i
*i*i.

. 

 

Condition A requires each observation to be an independent realization from the same distribution 

satisfying some moment conditions. It is a standard assumption for minimum discrepancy function 

estimation in SEM (e.g., Browne, 1984; Shapiro, 1983). In SEM applications, the support of the 

manifest variable is often bounded, implying that Condition A holds. Condition B assumes that model 

𝜏 𝜃  is smooth enough so that the quadratic approximation for ℒ 𝜃  is allowed. If the specified 

model is in the class of Equations (1) and (2) in the main text, Condition B is generally satisfied. The 

combination of Conditions A and B implies the existence of ℱ 𝜃  and ℋ 𝜃 =

𝔼 @
P

* wxyz{ ��
*i

* wxyz{ ��
*i.

P
M?@ . Both ℱ 𝜃  and ℋ 𝜃  play important roles for studying the 

asymptotic behavior of PL estimators. Condition C requires the existence and the uniqueness of a 

quasi-true parameter 𝜃∗ on the restricted parameter space Θ𝒜∗, even when 𝜏 𝜃  is not identifiable 
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on the whole parameter space Θ. However, the positive-definiteness of ℱ𝒜∗ 𝜃  on Ω𝒜∗ 𝜃∗  implies 

that 𝜏 𝜃  is at least locally identified on the restricted parameter space Θ𝒜∗. Condition D ensures 

that the remaining term of the quadratic approximation of ℒ 𝜃  around 𝜃∗ can be arbitrarily small 

in probability. Condition E makes several assumptions about the penalty term. The first assumption 

requires that the penalization weights must be one for all true-zero parameters. If such assumption is 

not satisfied for some 𝜃7∗ = 0, it is impossible to obtain a sparse PL estimate for 𝜃7∗. A simple way to 

fulfill this requirement is to set all the penalization indicators to be one except for the indicators for 

variance parameters. The remaining assumptions in Condition E restrict the shape of the penalty 

function. Both SCAD and MCP satisfy the all of the properties. However, the ℓ@ penalty does not 

satisfy the last property and hence the established theorem cannot be applied to the ℓ@-penalized 

estimator. Finally, Condition F is a more restricted version of Condition C and is required to establish 

a global theoretical result for the PL estimators. 

 

Theorem 1 (local oracle property). If Conditions A-E are true, 𝛾 satisfies 𝛾 → 0, and 𝑁𝛾 → ∞ 

as 𝑁 → ∞, then there exists a strictly local maximizer of 𝒰 𝜃, 𝛾 , denoted by 𝜃 = 𝜃 𝛾 , such that 

(a) lim
P→C

ℙ 𝒜 𝛾 = 𝒜∗ = 1, where 𝒜 𝛾  is the estimated support of 𝜃 𝛾 ; 

(b) 𝑁 𝜃𝒜∗ − 𝜃𝒜∗
∗ ⟶𝒟 𝒩 0,ℱ𝒜∗

∗ �@ℋ𝒜∗
∗ ℱ𝒜∗

∗ �@ , where ℱ𝒜∗
∗ = 𝔼 − *-ℒ i∗

*i𝒜∗*i𝒜∗
.  and ℋ𝒜∗

∗ =

𝔼 @
P

* wxyz{∗ ��
*i𝒜∗

* wxyz{∗ ��
*i𝒜∗

.
P
M?@ . 

 

Theorem 1 can be established by proving the following three lemmas.  

Lemma 1. Under Conditions A-E, there exists a sequence of maximizer of ℒ 𝜃  on the restricted 

parameter space Θ𝒜∗, denoted by 𝜃∗ = 𝜃P∗ , such that 
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(a) lim
P→C

ℙ 𝜃∗ − 𝜃∗ < 𝜖 = 1; 

(b) 𝑁 𝜃𝒜∗
∗ − 𝜃𝒜∗

∗ ⟶𝒟 𝒩 0,ℱ𝒜∗
∗ �@ℋ𝒜∗

∗ ℱ𝒜∗
∗ �@ . 

Proof: The technique in Section 6.5 of Lehmann and Casella (1998) is adopted to prove this lemma. 

For part (a), we want to show that for any sufficiently small 𝜀 > 0 with probability tending to 1 that  

                                  ℒ 𝜃∗ > ℒ 𝜃 ,																																																																									 1  

at all points 𝜃 on the surface of 𝒮^, where 𝒮^ is the sphere with center at 𝜃∗ and radius 𝜀. Equation 

(1) implies that there exists a local maximum in the interior of 𝒮^ and a consistent sequence of local 

maximum can be selected. By Taylor’s theorem, we have 

      ℒ 𝜃 − ℒ 𝜃∗ ≤ ∇𝒜∗ℒ 𝜃∗ � 𝜃𝒜∗ − 𝜃𝒜∗
∗ + @

(
𝜃𝒜∗ − 𝜃𝒜∗

∗ �∇𝒜∗
( ℒ 𝜃∗ 𝜃𝒜∗ − 𝜃𝒜∗

∗  

                    +@
�

𝜃7 − 𝜃7∗ 𝜃7< − 𝜃7<
∗ 𝜃7== − 𝜃7==∗ 𝐾77=7== 𝑌7==∈𝒜∗7=∈𝒜∗7∈𝒜∗  

                    = 𝑎@ + 𝑎( + 𝑎�.																																																																																																						 2  

We know that 𝜃7 − 𝜃7∗ = 𝜀 , ∇𝒜∗ℒ 𝜃∗ →𝒫 0, and −∇𝒜∗
( ℒ 𝜃∗ →𝒫 ℱ𝒜∗

∗ . Hence, for large 𝑁, 

with probability tending to 1 we have 

                         𝑎@ ≤ 𝜀 ∇𝒜∗ℒ 𝜃∗ ≤ 𝒜∗ 𝜀� = 𝐶@𝜀�,																																														 3  

    𝑎( = − @
(
𝜃𝒜∗ − 𝜃𝒜∗

∗ �ℱ𝒜∗
∗ 𝜃𝒜∗ − 𝜃𝒜∗

∗ + @
(
𝜃𝒜∗ − 𝜃𝒜∗

∗ � ∇𝒜∗
( ℒ 𝜃∗ + ℱ𝒜∗

∗ 𝜃𝒜∗ − 𝜃𝒜∗
∗  

        ≤ 𝜔KN, −ℱ𝒜∗
∗ 𝜀( + 𝒜∗ 𝜀� ≤ −𝐶(𝜀(,																																																																																								 4  

and 

                        𝑎� ≤ @
�
𝜀� 𝒜∗ � 𝔼 𝐾77<7<< 𝑌 = 𝐶�𝜀�,																																				 5  

for some 𝐶@, 𝐶(, and 𝐶� > 0, indicating that  

                            ℒ 𝜃 − ℒ 𝜃∗ ≤ 𝐶@𝜀� − 𝐶(𝜀( + 𝐶�𝜀�.																																												 6  

Therefore, we conclude that if 𝜀 < 𝐶( 𝐶@ + 𝐶� , we have ℒ 𝜃 − ℒ 𝜃∗ < 0 for all 𝜃  on the 

surface of 𝒮^. 
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To prove (b), according to Taylor’s theorem, 

                  ∇𝒜∗ℒ 𝜃∗ = ∇𝒜∗ℒ 𝜃∗ + ∇𝒜∗
( ℒ 𝜃∗ 𝜃𝒜∗

∗ − 𝜃𝒜∗
∗ + 𝑜> 𝑁¥¦- .																						 7  

Because ∇𝒜∗ℒ 𝜃∗ = 0  and −∇𝒜∗
( ℒ 𝜃∗ →𝒫 ℱ𝒜∗

∗ , we have that 𝑁 𝜃𝒜∗
∗ − 𝜃𝒜∗

∗ =

ℱ𝒜∗
∗ �@ 𝑁∇𝒜∗ℒ 𝜃∗ + 𝑜> 1 . By the fact that 𝑁∇𝒜∗ℒ 𝜃∗ ⟶𝒟 𝒩 0,ℋ𝒜∗

∗  and Slutsky’s theorem, 

we conclude that 𝑁 𝜃𝒜∗
∗ − 𝜃𝒜∗

∗ ⟶𝒟 𝒩 0,ℱ𝒜∗
∗ �@ℋ𝒜∗

∗ ℱ𝒜∗
∗ �@ . 

 

Lemma 2. Suppose 𝜃 ∈ Θ satisfies 

                               ∇𝒜 � ℒ 𝜃 = ∇𝒜 � ℛ 𝜃, 𝛾 ,																																																							 8  

                                  ∇𝒜 � ©ℒ 𝜃
C
< 𝛾,																																																													 9  

and 

                          𝜔KLM −∇𝒜 �
( ℒ 𝜃 + ∇𝒜 �

( ℛ 𝜃, 𝛾 > 0,																																						 10  

then 𝜃 is a local maximizer of 𝒰 𝜃, 𝛾 , where 𝒜 𝛾 « is the complement of 𝒜 𝛾 . 

Proof: Define Θ𝒜 � = Θ ∩ 𝔛7
p
7?@ , where 𝔛7 = ℜ if 𝑞 ∈ 𝒜 𝛾  and 𝔛7 = 0  otherwise. Let 

𝒩 denote a small neighborhood of 𝜃 on Θ𝒜 � . Equation (8) and (10) imply that 𝜃 is the unique 

maximizer of 𝒰 𝜃, 𝛾  on 𝒩 and hence a strictly local maximizer of 𝒰 𝜃, 𝛾  on Θ𝒜 � . Now, we 

want to show that 𝜃 is also a strictly local maximizer of 𝒰 𝜃, 𝛾  on Θ. Let 𝒩 be a neighborhood 

of 𝜃  on Θ  such that 𝒩 ∩ Θ𝒜 � ⊂ 𝒩 . We claim that 𝒰 𝜃, 𝛾 > 𝒰 𝜗, 𝛾  for any 𝜗 ∈ 𝒩\𝒩 . 

Because 𝜃 is the unique maximizer of 𝒰 𝜃, 𝛾  on 𝒩, given any 𝜗 ∈ 𝒩\𝒩, 𝒰 𝜃, 𝛾 > 𝒰 𝜗, 𝛾  

holds, where 𝜗  is a projection of 𝜗  such that 𝜗7 = 𝜗7  if 	𝑞 ∈ 𝒜 𝛾  and 𝜗7 = 0  otherwise. 

Hence, it suffices to show that 𝒰 𝜗, 𝛾 > 𝒰 𝜗, 𝛾  for any 𝜗 ∈ 𝒩\𝜃. By the mean value theorem 

and the definition of 𝜗 and 𝜗, we have 

    𝒰 𝜗, 𝛾 − 𝒰 𝜗, 𝛾 = ∇𝒜 � ©𝒰 𝜗, 𝛾 � 𝜗𝒜 � © − 𝜗𝒜 � ©  
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                    = −∇𝒜 � ©𝒰 𝜗, 𝛾 �𝜗𝒜 � © 

                    = −∇𝒜 � ©ℒ 𝜗, 𝛾 �𝜗𝒜 � © + ∇𝒜 � ®ℛ 𝜗, 𝛾 �𝜗𝒜 � ©	 

                    = − *ℒ ¯
* ¯6

𝜗77∈𝒜 � © + *� ¯6 ,�
* ¯6

sign 𝜗7 𝜗77∈𝒜 � ©  

                    = − *ℒ ¯
* ¯6

𝜗77∈𝒜 � © + *� ¯6 ,�
* ¯6

𝜗77∈𝒜 � © ,																																									 11  

where 𝜗 lies on the line segment between 𝜗 and 𝜗. Note that sign 𝜗7 𝜗7 = 𝜗7  because 𝜗7 and 

𝜗7 have the same sign. By ∇𝒜 � ©ℒ 𝜃
C
< 𝛾 = *� B],�

*9
 in Equation (9), and the continuity of 

*� 9,�
*9

 and 𝜏 𝜃  described in Condition E and B, there exists a 𝜀 > 0 such that for any 𝜃 in the 

neighborhood of 𝜃 with radius 𝜀 we have  

                               	 ∇𝒜 � ©ℒ 𝜃
C
< *� ^,�

*9
.																																																							 12  

Since the choice of 𝒩 is arbitrary, we can choose 𝒩 with radius smaller than 𝜀 so that 𝜗7 ≤

𝜗7 < 𝜀  for 𝑞 ∈ 𝒜 𝛾 « . By the fact 𝜗 ∈ 𝒩 , Equation (12) implies that *ℒ ¯
* ¯6

𝜗77∈𝒜 � © <

*� ^,�
*9

𝜗77∈𝒜 � © . Using the concavity of 𝜌 𝑡, 𝛾  in 𝑡 and the continuity of *� 9,�
*9

, we further 

obtain *� ¯6 ,�
* ¯6

𝜗77∈𝒜 � © ≥ *� ^,�
*9

𝜗77∈𝒜 � © . Therefore, by *ℒ ¯
* ¯6

𝜗77∈𝒜 � © <

*� ^,�
*9

𝜗77∈𝒜 � ©  and *� ¯6 ,�
* ¯6

𝜗77∈𝒜 � © ≥ *� ^,�
*9

𝜗77∈𝒜 � © , Equation (11) is strictly 

larger than 

                       − *� ^,�
*9

𝜗77∈𝒜 � © + *� ^,�
*9

𝜗77∈𝒜 � © = 0.																															 13  

which implies that 𝒰 𝜗, 𝛾 − 𝒰 𝜗, 𝛾 > 0 for any 𝜗 ∈ 𝒩\𝜃 such that 𝜗 − 𝜃 < 𝜀. We conclude 

that 𝜃 is also a strictly local maximizer of 𝒰 𝜃, 𝛾  on Θ.  

 

Lemma 3. Let 𝒪 denote the set containing all the strictly local maximizers of 𝒰 𝜃, 𝛾 . If Conditions 
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A-E hold, 𝛾 satisfies 𝛾 → 0 and 𝑁𝛾 → ∞ as 𝑁 → ∞, we have 

                                  lim
P→C

ℙ 𝜃∗ ∈ 𝒪 = 1,																																																											 14  

where 𝜃∗ is the ML estimator on the restricted parameter space Θ𝒜∗. 

Proof: We want to show that 𝜃∗  satisfies Equations (8), (9), and (10) asymptotically, i.e., 

lim
P→C

ℙ 𝒦 = 1 , where 𝒦 = ∇𝒜∗ℒ 𝜃∗ = ∇𝒜∗ℛ 𝜃∗ ∩ ∇𝒜∗©ℒ 𝜃∗
C
< 𝛾 ∩

𝜔KLM −∇𝒜∗
( ℒ 𝜃∗ + ∇𝒜∗

( ℛ 𝜃∗, 𝛾 > 0 . Let ℰ = ℰ@ ∩ ℰ( ∩ ℰ� with ℰ@, ℰ(, and ℰ� being 

                              ℰ@ = min
7∈𝒜∗

𝜃7∗ > 𝛿𝛾 ,																																																																	 15  

                            ℰ( = max
7∈𝒜∗©

∇7ℒ 𝜃∗ < 𝛾 ,																																																										 16  

and 

                      ℰ� = 𝜔KLM −∇𝒜∗
( ℒ 𝜃∗ + ∇𝒜∗

( ℛ 𝜃∗ > 0 .																																							 17  

By f� 9,�
f9

= 0 if 𝑡 > 𝛿𝛾 described in Condition E, we have ℰ ⊆ 𝒦. The de Morgan’s law implies 

that the complement of ℰ, denoted by ℰ«, is ℰ@« ∪ ℰ(« ∪ ℰ�«, where 

                               ℰ@« = 𝜃7∗ ≤ 𝛿𝛾7∈𝒜∗ ,																																																											 18  

                            ℰ(« = ∇7ℒ 𝜃∗ ≥ 𝛾7∈𝒜∗© ,																																																							 19  

and 

                      ℰ�« = 𝜔KLM −∇𝒜∗
( ℒ 𝜃∗ + ∇𝒜∗

( ℛ 𝜃∗ ≤ 0 .																																							 20  

Because ℙ 𝒦 ≥ ℙ ℰ = 1 − ℙ ℰ« > 1 − ℙ ℰ·«�
·?@ , it suffices to show that lim

P→C
ℙ ℰ·« = 0 

for 𝑘 = 1, 2, 3.  

1. lim
P→C

ℙ ℰ@« = 0. 

By Lemma 1, we already know that for any 𝑞 ∈ 𝒜∗, 𝜃7∗ is consistent to 𝜃7∗, which implies that 

ℙ 𝜃7∗ ≤ 𝛿𝛾 → 0 as 𝑁 → ∞ for 𝑞 ∈ 𝒜∗. Hence, we obtain that as 𝑁 → ∞ 
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                            ℙ ℰ@« ≤ ℙ 𝜃7∗ ≤ 𝛿𝛾7∈𝒜∗ → 0.																																																	 21  

2. lim
P→C

ℙ ℰ(« = 0. 

We first observe that 

      ℙ ∇7ℒ 𝜃∗ ≥ 𝛾 ≤ ℙ ∇7ℒ 𝜃∗ + ∇7ℒ 𝜃∗ − ∇7ℒ 𝜃∗ ≥ 𝛾 																																			 

                      ≤ ℙ ∇7ℒ 𝜃∗ − ∇7ℒ 𝜃∗ ≥ ¹
- + ℙ ∇7ℒ 𝜃∗ ≥ ¹

- = 𝑎@ + 𝑎(.				 22  

By Taylor’s theorem and Cauchy-Schwarz inequality, it follows that 

           𝑎@ ≤ ℙ *∇6ℒ i∗

*i𝒜∗
. 𝜃𝒜∗

∗ − 𝜃𝒜∗
∗ > ¹

º + ℙ 𝑂% 𝑁¥¦ > ¹
º = 𝑎@@ + 𝑎@(.																		 23  

Note that 

            𝑎@@ ≤ ℙ 𝜃𝒜∗
∗ − 𝜃𝒜∗

∗ > ¦
º + ℙ *∇6ℒ i∗

*i𝒜∗
. − 𝔼 *∇6ℒ i∗

*i𝒜∗
. > ¹

-  

                                   +ℙ 𝔼 *∇6ℒ i∗

*i𝒜∗
. > ¹

- .																																															 24  

Because 𝜃𝒜∗
∗ − 𝜃𝒜∗

∗  and *∇6ℒ i∗

*i𝒜∗
. − 𝔼 *∇6ℒ i∗

*i𝒜∗
.  are both 𝑂% 𝑁¥¦-  and 𝔼 *∇6ℒ i∗

*i𝒜∗
. > 0, 

𝑎@@  converges to zero as 𝑁 → ∞ . Clearly, 𝑎@(  and 𝑎(  also converge to zero by the fact 

∇7ℒ 𝜃∗ = 𝑂% 𝑁¥¦- . Therefore, we conclude that lim
P→C

ℙ ℰ(« = 0. 

3. lim
P→C

ℙ ℰ�« = 0. 

By Condition C, 𝜔KLM −∇𝒜∗
( ℒ 𝜃 ≥ 𝜅@  on Ω𝒜∗ 𝜃∗ . Hence, for sufficiently large 𝑁  and 

𝜃∗ ∈ Ω𝒜∗ 𝜃∗ , 𝜔KLM −∇𝒜∗
( ℒ 𝜃∗ + ∇𝒜∗

( ℛ 𝜃∗ = 𝜔KLM −∇𝒜∗
( ℒ 𝜃 + 𝑜 1 > 0  holds in 

probability, indicating lim
P→C

ℙ ℰ�« = 0. 

 

 Lemma 1 shows that the ML estimator on the restricted parameter space, denoted by 𝜃∗ , is 

consistent and asymptotically normal, which is just a standard result of ML estimator under 

misspecified likelihood (e.g., White, 1982). Lemma 2 gives the optimality condition for PL estimators 
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(see also Fan & Lv, 2011). Lemma 3 indicates that asymptotically 𝜃∗ is also a local maximizer of the 

PL criterion (see also Kwon & Kim, 2012). Therefore, 𝜃∗ is of course an oracle estimator described 

in Theorem 1. 

 

Theorem 2 (global oracle property). Under Conditions A-F and 𝛾 satisfies 𝛾 → 0 and 𝑁𝛾 → ∞ 

as 𝑁 → ∞. Asymptotically, there exists a unique global maximizer of 𝒰 𝜃, 𝛾 , denoted by 𝜃, such 

that 

(a) lim
P→C

ℙ 𝒜 𝛾 = 𝒜∗ = 1; 

(b) 𝑁 𝜃𝒜∗ − 𝜃𝒜∗
∗ ⟶𝒟 𝒩 0,ℱ𝒜∗

∗ �@ℋ𝒜∗
∗ ℱ𝒜∗

∗ �@ . 

Proof: Let 𝜃∗ denote the ML estimator on the restricted parameter space Θ𝒜∗. We only need to show 

that 

                           lim
P→C

ℙ 𝒰 𝜃∗, 𝛾 ≥ max
i∈¼ i∗

𝒰 𝜃, 𝛾 = 1.																																					 25  

According to Taylor’s theorem, 

                ℒ 𝜃 − ℒ 𝜃∗ = ∇ℒ� 𝜃∗ 𝜃 − 𝜃∗ + @
(
𝜃 − 𝜃∗ �∇(ℒ 𝜃∗ 𝜃 − 𝜃∗ .													 26  

By Lemma 3 and Condition F, for sufficiently large 𝑁, we have 

                             ∇ℒ� 𝜃∗ 𝜃 − 𝜃∗ ≤ 𝛾 𝜃77∈𝒜∗© ,																																													 27  

and 

                     @
(
𝜃 − 𝜃∗ �∇(ℒ 𝜃∗ 𝜃 − 𝜃∗ ≤ − @

(
𝜅( 𝜃7 − 𝜃7∗

(p
7?@ .																								 28  

Hence, for sufficiently large 𝑁, the following inequality holds 

                              𝒰 𝜃, 𝛾 − 𝒰 𝜃∗, 𝛾 ≤ 𝑎7
p
7?@ ,																																																 29  

where  
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              𝑎7 =
− @
(
𝜅( 𝜃7 − 𝜃7∗

( + 𝑐7 𝜌 𝜃7 , 𝛾 − 𝜌 𝜃7 , 𝛾 		if	𝑞 ∈ 𝒜∗,			

𝛾 𝜃7 − @
(
𝜅( 𝜃7

( − 𝑐7𝜌 𝜃7 , 𝛾 																													if	𝑞 ∈ 𝒜∗«.		
																	 30  

For 𝑞 ∈ 𝒜∗ , −@
(
𝜅( 𝜃7 − 𝜃7∗

( < 0  and 𝑐7 𝜌 𝜃7 , 𝛾 − 𝜌 𝜃7 , 𝛾 = 0  hold asymptotically, 

which implies 𝑎7 < 0. For 𝑞 ∈ 𝒜∗« , by the fact that 𝛾 → 0, the following inequality holds for 

sufficiently large 𝑁 

                         𝑎7 = 𝜃7 𝛾 − @
(
𝜅( 𝜃7 − 𝑐7𝜌 𝜃7 , 𝛾 < 0.																																			 31  

Therefore, we conclude that ℙ 𝒰 𝜃∗, 𝛾 ≥ max
i∈¼ i∗

𝒰 𝜃, 𝛾 → 1. 

 

 Based on the result of Theorem 2, as long as we have a reliable algorithm to find the global 

maximizer, the global maximizer asymptotically performs as well as an oracle one. Note that the 

difference between Theorems 1 and 2 is that the latter requires the Fisher information matrix to be 

positive definite in the neighborhood of 𝜃∗  on the entire parameter space Θ, indicating that the 

specified model is at least locally in the neighborhood of 𝜃∗ on Θ. Therefore, if the specified model 

is not locally identified at 𝜃∗, Theorem 2 would fail. 

If 𝑌 is normally distributed and 𝜏 𝜃  is correctly specified, the information equality holds (i.e., 

ℱ𝒜∗
∗ �@ = ℋ𝒜∗

∗ ) and Theorem 2 reduces to Corollary 1 below. The main implication of Corollary 1 is 

that under normality and correct model specification the PL estimator can achieve the Cramér-Rao 

lower bound, even when the true sparsity pattern is unknown beforehand. Furthermore, it also implies 

that 𝑁 ∙ 𝒟¿À 𝜏 𝜃 , 𝑡  is asymptotically distributed as a chi-square random variable, where 

𝒟¿À 𝜏 𝜃 , 𝑡 = − log Σ 𝜃 �@𝑆 + tr Σ 𝜃 �@𝑆 − 𝑃 + 𝑌 − 𝜇 𝜃 �Σ 𝜃 �@ 𝑌 − 𝜇 𝜃  and 𝑡 =

vech 𝑆 �, 𝑌� �  with 𝑆 = @
P

𝑌M − 𝑌 𝑌M − 𝑌 �P
M?@  and 𝑌 = @

P
𝑌MP

M?@ . Therefore, it is easy to 

construct an asymptotic 1 − 𝛼  level test for examining the null hypothesis 𝜏 = 𝜏 𝜃  versus 
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alternative hypothesis 𝜏 ≠ 𝜏 𝜃 . Also, statistical tests for comparing several nested SEM models can 

be developed based on the result of sequential chi-square statistics (see Steiger, Shapiro, & Browne, 

1985) 

 

Corollary 1. Under Conditions A-F and 𝛾  satisfies 𝛾 → 0  and 𝑁𝛾 → ∞  as 𝑁 → ∞ . If the 

density of 𝑌  is actually 𝜑i 𝑦 , then asymptotically, there exists a unique global maximizer of 

𝒰 𝜃, 𝛾 , denoted by 𝜃, such that 

(a) lim
P→C

ℙ 𝒜 𝛾 = 𝒜∗ = 1; 

(b) 𝑁 𝜃𝒜∗ − 𝜃𝒜∗
∗ ⟶𝒟 𝒩 0,ℱ𝒜∗

∗ �@ , 

(c) 𝑁 ∙ 𝒟¿À 𝜏 𝜃 , 𝑡 ⟶𝒟 𝜒Ë+∗
( , where 𝑑𝑓∗ = 𝑃 𝑃 + 3 2 − 𝒜∗ . 

 

Now, the asymptotic properties of AIC and BIC are derived under the framework of the proposed 

PL method. Given a model 𝜏 𝜃 , for any index set 𝒜 ⊂ 1,2, … , 𝑄 , the MDF value of 𝜏 𝜃  on Θ𝒜  

is defined as 

                                𝒟𝒜∗ = min
i∈k𝒜

𝒟¿À 𝜏 𝜃 , 𝜏∗ .																																																				 32  

where 𝜏∗ 	= vech Σ∗ �, 𝜇∗�
�
 is the true moment vector. Hence, by examining the values of 𝒟𝒜∗  

and 𝒟𝒜=∗ , the correctness of 𝜏 𝜃  restricted on Θ𝒜  and Θ𝒜= can be compared. According to the 

definition of 𝒜∗, 𝒟𝒜∗
∗ ≤ 𝒟𝒜∗  for any 𝒜 ⊂ 1,2, … , 𝑄 . If some 𝒜 satisfies 𝒟𝒜∗

∗ = 𝒟𝒜∗ , Condition 

D indicates that 𝒜∗ is still more parsimonious than 𝒜, i.e., 𝒜∗ < 𝒜 . Given a random sample 

𝒴P, the set of regularization parameters is partitioned into three subsets 

                           Γ∗ = 𝛾 𝒟𝒜 �
∗ = 𝒟𝒜∗

∗ , 𝒜 𝛾 = 𝒜∗ ,																																								 33  

                           Γ] = 𝛾 𝒟𝒜 �
∗ = 𝒟𝒜∗

∗ , 𝒜 𝛾 > 𝒜∗ ,																																							 34  
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and 

                                 Γ� = 𝛾 𝒟𝒜 �
∗ > 𝒟𝒜∗

∗ .																																																							 35  

The subset Γ∗ contains all the values of 𝛾 where the optimal model 𝒜∗ is attained. On the other 

hand, Γ] and Γ� are formed by 𝛾 such that the corresponding models are overfitted and underfitted, 

respectively. Note that 𝒜 𝛾  with 𝛾 ∈ Γ] may not be really “overfitting” in the usual sense. An 

overfitting model is generally used to refer a model that explains the phenomenon perfectly but 

contains unnecessary parameters. However, “overfitting” here is merely used to emphasize that 𝒜 𝛾  

contains unnecessary parameters because it is possible that 𝒟𝒜 �
∗ > 0. Given any estimated support 

𝒜 𝛾 , 𝜃 𝛾  is used to denote a global maximizer of ℒ 𝜃  on 𝒜 𝛾 .   

 

Theorem 3. Let 𝛾ÎÏÐ  and 𝛾ÑÏÐ  denote the selection results based on AIC and BIC respectively. 

Under Conditions A-F, we have 

(a) lim
P→C

ℙ 𝛾ÎÏÐ ∈ Γ� = 0 and lim
P→C

ℙ 𝛾ÎÏÐ ∈ Γ] > 0; 

(b) lim
P→C

ℙ 𝛾ÑÏÐ ∈ Γ∗ = 1. 

Proof: To prove first part of (a), we want to show that the probability of ℰ@ =

inf
�∈Ò¥

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 𝛾′ > 0�=∈Ò∗∪ÒÔ  converges to one. Let 𝑡	 = vech 𝑆 �, 𝑌� �  denote a 

vector of sample moment, where 𝑆 = @
P

𝑌M − 𝑌P
M?@ 𝑌M − 𝑌 �  and 𝑌 = @

P
𝑌MP

M?@ . We use 

𝒟 𝜃 = 𝒟¿À 𝜏 𝜃 , 𝑡  to represent the sample discrepancy evaluated at 𝜃 . By the fact that 

𝒟 𝜃 𝛾 ≤ 	𝒟 𝜃 𝛾  and inf
�∈Ò¥

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 0 > 0 ⊂ ℰ@, the following inequality holds 

                     ℙ ℰ@ ≥ ℙ inf
�∈Ò¥

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 0 > 0 																				 

≥ ℙ min
𝒜 � ∈ 𝒜 𝒜∗⊄𝒜

𝒟 𝜃 𝛾 − 𝒟 𝜃 −
2
𝑁𝑄 > 0 .																		 36  



	 13	

Note that lim
P→C

min
𝒜 � ∈ 𝒜 𝒜∗⊄𝒜

𝒟 𝜃 𝛾 ≥ min
𝒜∈ 𝒜 𝒜∗⊄𝒜

𝒟𝒜∗ > 𝒟𝒜∗
∗  and lim

P→C
𝒟 𝜃 = 𝒟𝒜∗

∗ . Hence,  

                      ℙ ℰ@ ≥ ℙ min
𝒜∈ 𝒜 𝒜∗⊄𝒜

𝒟𝒜∗ − 𝒟𝒜∗
∗ − 𝑜> 1 > 0 → 1.																							 37  

For proving the second part of (a), we need to show that the probability of ℰ( =

inf
�∈Ò∗

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 𝛾′ > 0�=∈ÒÔ  is larger than some nonzero constant. Again, by the fact 

inf
�∈Ò∗

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 0 > 0 ⊂ ℰ( and inf
�∈Ò∗

𝐴𝐼𝐶 𝛾 > 𝒟 𝜃∗ + (
P
𝒜∗ , we have that 

                          ℙ ℰ( ≥ ℙ inf
�∈Ò∗

𝐴𝐼𝐶 𝛾 − 𝐴𝐼𝐶 0 > 0 																	 

                                ≥ ℙ 𝒟 𝜃∗ − 𝒟 𝜃 + (
P

𝒜∗ − 𝑄 > 0 .																						 38  

According to the result of White (1982), we have that 𝑁 𝒟 𝜃∗ − 𝒟 𝜃  is distributed as a mixture 

of chi-square random variables asymptotically. Hence, we conclude that 

                       ℙ ℰ( ≥ ℙ 𝑁 𝒟 𝜃∗ − 𝒟 𝜃 > 2 𝑄 − 𝒜∗ > 0.																						 39  

To prove (b), by Theorem 2 we already derived that if 𝛾 satisfies 𝛾 → 0 and 𝑁𝛾 → ∞ as 

𝑁 → ∞, then the lim
P→C

ℙ 𝐵𝐼𝐶 𝛾 = 𝒟 𝜃∗ + wxyP
P

𝒜∗ = 1, which implies that asymptotically Γ∗ 

is not empty if we set Γ = 0, 𝐿  for a sufficiently large 𝐿. The question remains whether BIC can 

select a 𝛾∗ ∈ Γ∗ . Now, we want to show that for any 𝛾∗ ∈ Γ∗ , the probability of ℰ@ =

𝐵𝐼𝐶 𝛾∗ − 𝐵𝐼𝐶 𝛾 > 0�∈Ò¥∪ÒÔ  converge to zero. By the fact that 𝒜 𝛾 �∈Ò ⊂ 𝒜  and 

𝐵𝐼𝐶 𝛾 ≥ 𝒟 𝜃 𝛾 + wxyP
P
𝑒 𝛾 , ℰ@ is contained in a set ℰ(, a union of finite sets, 

                   ℰ( = 𝐵𝐼𝐶 𝛾∗ − 𝒟 𝜃 𝛾 + wxyP
P
𝑒 𝛾 > 0𝒜 �= Ù𝒜∗ .																						 40  

If for any 𝒜 𝛾 ≠ 𝒜∗ , lim
P→C

ℙ 𝐵𝐼𝐶 𝛾∗ − 𝒟 𝜃 𝛾 + wxyP
P
𝑒 𝛾 > 0 = 0 holds, then by the 

fact ℰ@ ⊂ ℰ( , lim
P→C

ℙ ℰ@ = 0  must be true. If 𝒜 𝛾 ≠ 𝒜∗  but 𝒜 𝛾 ⊃ 𝒜∗ , by the fact that 
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𝐵𝐼𝐶 𝛾∗ = 𝒟 𝜃∗ + wxyP
P

𝒜∗  with probability tending to one, it suffices to show that the probability 

of 𝒟 𝜃∗ − 𝒟 𝜃 𝛾 + wxyP
P

𝒜∗ − 𝑒 𝛾 > 0  can be arbitrarily small. By the fact 𝒟 𝜃∗ −

𝒟 𝜃 𝛾 = 𝑂> 𝑁�@  and 𝒜∗ < 𝑒 𝛾 , we have 

                    ℙ 𝒟 𝜃∗ − 𝒟 𝜃 𝛾 + wxyP
P

𝒜∗ − 𝑒 𝛾 > 0  

                    = ℙ 𝑂> 𝑁 > wxyP
P

𝑒 𝛾 − 𝒜∗ → 0,																																																						 41  

as 𝑁 → ∞. For 𝒜 𝛾 ≠ 𝒜∗ but 𝒜 𝛾 ⊅ 𝒜∗, 

                     ℙ 𝒟 𝜃∗ − 𝒟 𝜃 𝛾 + wxyP
P

𝒜∗ − 𝑒 𝛾 > 0  

                     = ℙ 𝒟𝒜∗
∗ − 𝒟𝒜 �

∗ + 𝑜> 1 > 0 → 0.																																																								 42  

as 𝑁 → ∞. Therefore, we conclude that lim
P→C

ℙ ℰ@ = 0 and hence lim
P→C

ℙ 𝛾ÑÏÐ ∈ Γ∗ = 1. 

Theorems 3 shows that asymptotically both AIC and BIC select a model that attains the smallest 

MDF value 𝒟𝒜∗
∗ . However, only BIC yields a consistent selection result with respect to 𝒜∗. AIC may 

suffer from the problem of overfitting. Of course, if Γ] is empty, AIC can also select the quasi-true 

model with probability one. The derived results are consistent with the typical behaviors of AIC and 

BIC in parametric regression models (e.g., Zhang, Li, & Tsai, 2012; Shao, 1997). 
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