Proofs of Theorems

Let $f(x) \in \Re$ denote a twice-differentiable function of $x \in \Re^{P}$. $\nabla f(x^{*})$ and $\nabla^{2} f(x^{*})$ are defined as the gradient and Hessian of f(x) evaluated at x^{*} , respectively, i.e., $\nabla f(x^{*}) = \frac{\partial f(x^{*})}{\partial x}$ and $\nabla^{2} f(x^{*}) = \frac{\partial^{2} f(x^{*})}{\partial x \partial x^{T}}$. Given an index set $\mathcal{J} \subset \{1, 2, ..., P\}$, $\nabla_{\mathcal{J}} f(x^{*})$ denotes the vector formed by $\left\{\frac{\partial f(x^{*})}{\partial x_{q}}\right\}_{q \in \mathcal{J}}$, where x_{q} is the q^{th} element of x. In a similar manner, $\nabla_{\mathcal{J}}^{2} f(x^{*})$ is used to denote the $|\mathcal{J}| \times |\mathcal{J}|$ matrix formed by $\left\{\frac{\partial^{2} f(x^{*})}{\partial x_{q} \partial x_{q'}}\right\}_{q,q' \in \mathcal{J}}$, where $|\mathcal{J}|$ is the number of elements in \mathcal{J} . For a vector $x \in \Re^{P}$, $||x||_{q} = \left(\sum_{p=1}^{P} |x_{p}|^{q}\right)^{1/q}$ denotes the ℓ_{q} norm of x. In particular, ||x||, $||x||_{0}$, and $||x||_{\infty}$ are defined as $\left(\sum_{p=1}^{P} x_{p}^{2}\right)^{1/2}$, $\sum_{p=1}^{P} 1\{x_{p} \neq 0\}$, and $\max\{|x_{p}|\}_{p=1}^{P}$, respectively. For a square matrix $A \in \Re^{P \times P}$, $\omega_{min}(A)$ and $\omega_{max}(A)$ are used to denote the smallest and largest eigenvalue of A.

To derive the asymptotic properties of PL estimator, the following regularity conditions are assumed.

Condition A. $\mathcal{Y}_N = \{Y_n\}_{n=1}^N$ is a random sample from some distribution F that satisfies (1) $\mathbb{E}(Y) = \mu^*$; (2) $\mathbb{V}ar(Y) = \Sigma^* > 0$; i.e., Σ^* is positive definite; (3) there exists an $\varepsilon > 0$ such that $\mathbb{E}\left(|Y_p|^{4+\varepsilon}\right) < \infty$ for all p.

Condition B. For each $\theta \in \Theta$ and any combination of q, q', and q'' (q,q',q'' = 1,2,...,Q), $\frac{\partial^3 \tau(\theta)}{\partial \theta_q \,\partial \theta_{q'} \,\partial \theta_{q''}}$ exists.

Condition C. There exists a quasi-true parameter $\theta^* \in \Theta$ such that (1) $\theta^* \in \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}(\mathcal{L}(\theta))$; (2)

 $\|\theta^*\|_0 < \|\theta\|_0$ for any $\theta \in \underset{\theta \in \Theta}{\operatorname{argmax}} \mathbb{E}(\mathcal{L}(\theta))$, but $\theta \neq \theta^*$; (3) θ^* is the unique maximizer of $\mathbb{E}(\mathcal{L}(\theta))$ on $\Theta_{\mathcal{A}^*}$, where $\mathcal{A}^* = \{q | \theta_q^* \neq 0\}$ is the support of θ^* ; $\Theta_{\mathcal{A}^*} = \Theta \cap (\prod_{q=1}^Q \mathfrak{X}_q)$ is the restricted parameter space with $\mathfrak{X}_q = \mathfrak{R}$ if $q \in \mathcal{A}^*$, and $\mathfrak{X}_q = \{0\}$ otherwise; (4) there exists a

neighborhood of θ^* on $\Theta_{\mathcal{A}^*}$, denoted by $\Omega_{\mathcal{A}^*}(\theta^*)$ and a constant $\kappa_1 > 0$ such that $\omega_{min}(\mathcal{F}_{\mathcal{A}^*}(\theta)) > \kappa_1$ for all $\theta \in \Omega_{\mathcal{A}^*}(\theta^*)$, where $\mathcal{F}_{\mathcal{A}^*}(\theta) = \mathbb{E}\left(-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_{\mathcal{A}^*} \partial \theta_{\mathcal{A}^*}^T}\right)$.

Condition D. For each combination of q, q', and q'', there exists an *F*-integrable random function $K_{qq'q''}(y)$ such that $\left|\frac{\partial^3 \log \varphi_{\theta}(y)}{\partial \theta_q \, \partial \theta_{q'} \, \partial \theta_{q''}}\right| < K_{qq'q''}(y)$ for all y and θ in the neighborhood of θ^* . **Condition E.** The penalty term $\mathcal{R}(\theta, \gamma) = \sum_{q=1}^{Q} c_q \rho(|\theta_q|, \gamma)$ satisfies (1) $c_q = 1$ if $\theta_q^* = 0$; (2) $\rho(t, \gamma)$ is increasing and concave in t > 0; (3) $\frac{\partial \rho(t, \gamma)}{\partial t}$ is continuous in both t and γ ; (4) $\frac{\partial \rho(0+,\gamma)}{\partial t} = \gamma$; (5) $\frac{\partial \rho(t,\gamma)}{\partial t} = 0$ if $t > \delta\gamma$.

Condition F. θ^* is the unique maximizer of $\mathbb{E}(\mathcal{L}(\theta))$ on Θ , and there exists a neighborhood of θ^* on Θ , denoted by $\Omega(\theta^*)$, and a constant $\kappa_2 > 0$ such that $\omega_{min}(\mathcal{F}(\theta)) \ge \kappa_2$ for all $\theta \in \Omega(\theta^*)$, where $\mathcal{F}(\theta) = \mathbb{E}\left(-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta \partial \theta^T}\right)$.

Condition A requires each observation to be an independent realization from the same distribution satisfying some moment conditions. It is a standard assumption for minimum discrepancy function estimation in SEM (e.g., Browne, 1984; Shapiro, 1983). In SEM applications, the support of the manifest variable is often bounded, implying that Condition A holds. Condition B assumes that model $\tau(\theta)$ is smooth enough so that the quadratic approximation for $\mathcal{L}(\theta)$ is allowed. If the specified model is in the class of Equations (1) and (2) in the main text, Condition B is generally satisfied. The combination of Conditions A and B implies the existence of $\mathcal{F}(\theta)$ and $\mathcal{H}(\theta) =$ $\mathbb{E}\left(\frac{1}{N}\sum_{n=1}^{N}\frac{\partial \log \varphi_{\theta}(Y_{n})}{\partial \theta}\frac{\partial \log \varphi_{\theta}(Y_{n})}{\partial \theta^{T}}\right)$. Both $\mathcal{F}(\theta)$ and $\mathcal{H}(\theta)$ play important roles for studying the asymptotic behavior of PL estimators. Condition C requires the existence and the uniqueness of a quasi-true parameter θ^{*} on the restricted parameter space $\Theta_{\mathcal{A}^{*}}$, even when $\tau(\theta)$ is not identifiable on the whole parameter space Θ . However, the positive-definiteness of $\mathcal{F}_{\mathcal{A}^*}(\theta)$ on $\Omega_{\mathcal{A}^*}(\theta^*)$ implies that $\tau(\theta)$ is at least locally identified on the restricted parameter space $\Theta_{\mathcal{A}^*}$. Condition D ensures that the remaining term of the quadratic approximation of $\mathcal{L}(\theta)$ around θ^* can be arbitrarily small in probability. Condition E makes several assumptions about the penalty term. The first assumption requires that the penalization weights must be one for all true-zero parameters. If such assumption is not satisfied for some $\theta_q^* = 0$, it is impossible to obtain a sparse PL estimate for θ_q^* . A simple way to fulfill this requirement is to set all the penalization indicators to be one except for the indicators for variance parameters. The remaining assumptions in Condition E restrict the shape of the penalty function. Both SCAD and MCP satisfy the all of the properties. However, the ℓ_1 penalty does not satisfy the last property and hence the established theorem cannot be applied to the ℓ_1 -penalized estimator. Finally, Condition F is a more restricted version of Condition C and is required to establish a global theoretical result for the PL estimators.

Theorem 1 (local oracle property). If Conditions A-E are true, γ satisfies $\gamma \to 0$, and $\sqrt{N}\gamma \to \infty$ as $N \to \infty$, then there exists a strictly local maximizer of $\mathcal{U}(\theta, \gamma)$, denoted by $\hat{\theta} = \hat{\theta}(\gamma)$, such that (a) $\lim_{N \to \infty} \mathbb{P}(\hat{\mathcal{A}}(\gamma) = \mathcal{A}^*) = 1$, where $\hat{\mathcal{A}}(\gamma)$ is the estimated support of $\hat{\theta}(\gamma)$;

(b)
$$\sqrt{N} \left(\widehat{\theta}_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^* \right) \longrightarrow_{\mathcal{D}} \mathcal{N} \left(0, \mathcal{F}_{\mathcal{A}^*}^{*^{-1}} \mathcal{H}_{\mathcal{A}^*}^* \mathcal{F}_{\mathcal{A}^*}^{*^{-1}} \right)$$
, where $\mathcal{F}_{\mathcal{A}^*}^* = \mathbb{E} \left(-\frac{\partial^2 \mathcal{L}(\theta^*)}{\partial \theta_{\mathcal{A}^*} \partial \theta_{\mathcal{A}^*}^T} \right)$ and $\mathcal{H}_{\mathcal{A}^*}^* = \mathbb{E} \left(\frac{1}{N} \sum_{n=1}^N \frac{\partial \log \varphi_{\theta^*}(Y_n)}{\partial \theta_{\mathcal{A}^*}} \frac{\partial \log \varphi_{\theta^*}(Y_n)}{\partial \theta_{\mathcal{A}^*}^T} \right)$.

Theorem 1 can be established by proving the following three lemmas.

Lemma 1. Under Conditions A-E, there exists a sequence of maximizer of $\mathcal{L}(\theta)$ on the restricted parameter space $\Theta_{\mathcal{A}^*}$, denoted by $\tilde{\theta}^* = \tilde{\theta}_N^*$, such that

(a) $\lim_{N \to \infty} \mathbb{P}(\|\tilde{\theta}^* - \theta^*\| < \epsilon) = 1;$ (b) $\sqrt{N}(\tilde{\theta}^*_{\mathcal{A}^*} - \theta^*_{\mathcal{A}^*}) \longrightarrow_{\mathcal{D}} \mathcal{N}(0, \mathcal{F}^{*}_{\mathcal{A}^*}^{-1} \mathcal{H}^*_{\mathcal{A}^*} \mathcal{F}^{*}_{\mathcal{A}^*}^{-1}).$

Proof: The technique in Section 6.5 of Lehmann and Casella (1998) is adopted to prove this lemma. For part (a), we want to show that for any sufficiently small $\varepsilon > 0$ with probability tending to 1 that

$$\mathcal{L}(\theta^*) > \mathcal{L}(\theta), \tag{1}$$

at all points θ on the surface of S_{ε} , where S_{ε} is the sphere with center at θ^* and radius ε . Equation (1) implies that there exists a local maximum in the interior of S_{ε} and a consistent sequence of local maximum can be selected. By Taylor's theorem, we have

$$\mathcal{L}(\theta) - \mathcal{L}(\theta^*) \leq \nabla_{\mathcal{A}^*} \mathcal{L}(\theta^*)^T (\theta_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^*) + \frac{1}{2} (\theta_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^*)^T \nabla_{\mathcal{A}^*}^2 \mathcal{L}(\theta^*) (\theta_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^*)$$
$$+ \frac{1}{6} \sum_{q \in \mathcal{A}^*} \sum_{q' \in \mathcal{A}^*} \sum_{q'' \in \mathcal{A}^*} \left(\theta_q - \theta_q^* \right) \left(\theta_{q'} - \theta_{q'}^* \right) \left(\theta_{q''} - \theta_{q''}^* \right) K_{qq'q''}(Y)$$
$$= a_1 + a_2 + a_3.$$
(2)

We know that $|\theta_q - \theta_q^*| = \varepsilon$, $||\nabla_{\mathcal{A}^*} \mathcal{L}(\theta^*)|| \to_{\mathcal{P}} 0$, and $-\nabla_{\mathcal{A}^*}^2 \mathcal{L}(\theta^*) \to_{\mathcal{P}} \mathcal{F}_{\mathcal{A}^*}^*$. Hence, for large *N*, with probability tending to 1 we have

$$\begin{aligned} |a_{1}| &\leq \varepsilon \|\nabla_{\mathcal{A}^{*}}\mathcal{L}(\theta^{*})\| \leq |\mathcal{A}^{*}|\varepsilon^{3} = C_{1}\varepsilon^{3}, \end{aligned}$$
(3)
$$\begin{aligned} |a_{2}| &= -\frac{1}{2}(\theta_{\mathcal{A}^{*}} - \theta_{\mathcal{A}^{*}}^{*})^{T}\mathcal{F}_{\mathcal{A}^{*}}^{*}(\theta_{\mathcal{A}^{*}} - \theta_{\mathcal{A}^{*}}^{*}) + \frac{1}{2}(\theta_{\mathcal{A}^{*}} - \theta_{\mathcal{A}^{*}}^{*})^{T}(\nabla_{\mathcal{A}^{*}}^{2}\mathcal{L}(\theta^{*}) + \mathcal{F}_{\mathcal{A}^{*}}^{*})(\theta_{\mathcal{A}^{*}} - \theta_{\mathcal{A}^{*}}^{*}) \\ &\leq \omega_{max}(-\mathcal{F}_{\mathcal{A}^{*}}^{*})\varepsilon^{2} + |\mathcal{A}^{*}|\varepsilon^{3} \leq -C_{2}\varepsilon^{2}, \end{aligned}$$
(4)

and

$$|a_3| \le \frac{1}{6} \varepsilon^3 |\mathcal{A}^*|^3 \sum \sum \sum \mathbb{E} \left(K_{qq'q''}(Y) \right) = C_3 \varepsilon^3,$$
(5)

for some C_1 , C_2 , and $C_3 > 0$, indicating that

$$\mathcal{L}(\theta) - \mathcal{L}(\theta^*) \le C_1 \varepsilon^3 - C_2 \varepsilon^2 + C_3 \varepsilon^3.$$
(6)

Therefore, we conclude that if $\varepsilon < C_2/(C_1 + C_3)$, we have $\mathcal{L}(\theta) - \mathcal{L}(\theta^*) < 0$ for all θ on the surface of S_{ε} .

To prove (b), according to Taylor's theorem,

$$\nabla_{\mathcal{A}^*} \mathcal{L}\big(\tilde{\theta}^*\big) = \nabla_{\mathcal{A}^*} \mathcal{L}(\theta^*) + \nabla_{\mathcal{A}^*}^2 \mathcal{L}(\theta^*) \big(\tilde{\theta}_{\mathcal{A}^*}^* - \theta_{\mathcal{A}^*}^*\big) + o_p\left(N^{-\frac{1}{2}}\right).$$
(7)

Because $\nabla_{\mathcal{A}^*} \mathcal{L}(\tilde{\theta}^*) = 0$ and $-\nabla^2_{\mathcal{A}^*} \mathcal{L}(\theta^*) \to_{\mathcal{P}} \mathcal{F}^*_{\mathcal{A}^*}$, we have that $\sqrt{N}(\tilde{\theta}^*_{\mathcal{A}^*} - \theta^*_{\mathcal{A}^*}) = \mathcal{F}^*_{\mathcal{A}^*} - \sqrt{N} \nabla_{\mathcal{A}^*} \mathcal{L}(\theta^*) + o_p(1)$. By the fact that $\sqrt{N} \nabla_{\mathcal{A}^*} \mathcal{L}(\theta^*) \to_{\mathcal{D}} \mathcal{N}(0, \mathcal{H}^*_{\mathcal{A}^*})$ and Slutsky's theorem, we conclude that $\sqrt{N}(\tilde{\theta}^*_{\mathcal{A}^*} - \theta^*_{\mathcal{A}^*}) \to_{\mathcal{D}} \mathcal{N}(0, \mathcal{F}^*_{\mathcal{A}^*} - \mathcal{H}^*_{\mathcal{A}^*} \mathcal{F}^*_{\mathcal{A}^*} - \mathcal{I})$.

Lemma 2. Suppose $\hat{\theta} \in \Theta$ satisfies

$$\nabla_{\hat{\mathcal{A}}(\gamma)} \mathcal{L}(\hat{\theta}) = \nabla_{\hat{\mathcal{A}}(\gamma)} \mathcal{R}(\hat{\theta}, \gamma), \tag{8}$$

$$\left\|\nabla_{\hat{\mathcal{A}}(\gamma)^{c}}\mathcal{L}(\hat{\theta})\right\|_{\infty} < \gamma, \tag{9}$$

and

$$\omega_{\min}\left(-\nabla^{2}_{\hat{\mathcal{A}}(\gamma)}\mathcal{L}(\hat{\theta}) + \nabla^{2}_{\hat{\mathcal{A}}(\gamma)}\mathcal{R}(\hat{\theta},\gamma)\right) > 0, \qquad (10)$$

then $\hat{\theta}$ is a local maximizer of $\mathcal{U}(\theta, \gamma)$, where $\hat{\mathcal{A}}(\gamma)^c$ is the complement of $\hat{\mathcal{A}}(\gamma)$.

Proof: Define $\Theta_{\hat{\mathcal{A}}(\gamma)} = \Theta \cap (\prod_{q=1}^{Q} \mathfrak{X}_{q})$, where $\mathfrak{X}_{q} = \mathfrak{R}$ if $q \in \hat{\mathcal{A}}(\gamma)$ and $\mathfrak{X}_{q} = \{0\}$ otherwise. Let $\widetilde{\mathcal{N}}$ denote a small neighborhood of $\hat{\theta}$ on $\Theta_{\hat{\mathcal{A}}(\gamma)}$. Equation (8) and (10) imply that $\hat{\theta}$ is the unique maximizer of $\mathcal{U}(\theta, \gamma)$ on $\widetilde{\mathcal{N}}$ and hence a strictly local maximizer of $\mathcal{U}(\theta, \gamma)$ on $\Theta_{\hat{\mathcal{A}}(\gamma)}$. Now, we want to show that $\hat{\theta}$ is also a strictly local maximizer of $\mathcal{U}(\theta, \gamma)$ on $\Theta_{\hat{\mathcal{A}}(\gamma)}$. Now, we want to show that $\hat{\theta}$ is also a strictly local maximizer of $\mathcal{U}(\theta, \gamma)$ on Θ . Let \mathcal{N} be a neighborhood of $\hat{\theta}$ on Θ such that $\mathcal{N} \cap \Theta_{\hat{\mathcal{A}}(\gamma)} \subset \widetilde{\mathcal{N}}$. We claim that $\mathcal{U}(\hat{\theta}, \gamma) > \mathcal{U}(\vartheta, \gamma)$ for any $\vartheta \in \mathcal{N} \setminus \widetilde{\mathcal{N}}$. Because $\hat{\theta}$ is the unique maximizer of $\mathcal{U}(\theta, \gamma)$ on $\widetilde{\mathcal{N}}$, given any $\vartheta \in \mathcal{N} \setminus \widetilde{\mathcal{N}}$, $\mathcal{U}(\hat{\theta}, \gamma) > \mathcal{U}(\tilde{\vartheta}, \gamma)$ holds, where $\tilde{\vartheta}$ is a projection of ϑ such that $\tilde{\vartheta}_{q} = \vartheta_{q}$ if $q \in \hat{\mathcal{A}}(\gamma)$ and $\tilde{\vartheta}_{q} = 0$ otherwise. Hence, it suffices to show that $\mathcal{U}(\tilde{\vartheta}, \gamma) > \mathcal{U}(\vartheta, \gamma)$ for any $\vartheta \in \mathcal{N} \setminus \hat{\theta}$. By the mean value theorem and the definition of $\tilde{\vartheta}$ and ϑ , we have

$$\mathcal{U}\big(\tilde{\vartheta},\gamma\big) - \mathcal{U}(\vartheta,\gamma) = \nabla_{\hat{\mathcal{A}}(\gamma)^c} \mathcal{U}(\bar{\vartheta},\gamma)^T \big(\tilde{\vartheta}_{\hat{\mathcal{A}}(\gamma)^c} - \vartheta_{\hat{\mathcal{A}}(\gamma)^c}\big)$$

$$= -\nabla_{\hat{\mathcal{A}}(\gamma)^{c}} \mathcal{U}(\bar{\vartheta},\gamma)^{T} \vartheta_{\hat{\mathcal{A}}(\gamma)^{c}}$$

$$= -\nabla_{\hat{\mathcal{A}}(\gamma)^{c}} \mathcal{L}(\bar{\vartheta},\gamma)^{T} \vartheta_{\hat{\mathcal{A}}(\gamma)^{c}} + \nabla_{\hat{\mathcal{A}}(\gamma)^{c}} \mathcal{R}(\bar{\vartheta},\gamma)^{T} \vartheta_{\hat{\mathcal{A}}(\gamma)^{c}}$$

$$= -\sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \mathcal{L}(\bar{\vartheta})}{\partial |\vartheta_{q}|} \vartheta_{q} + \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(|\bar{\vartheta}_{q}|,\gamma)}{\partial |\vartheta_{q}|} \operatorname{sign}(\bar{\vartheta}_{q}) \vartheta_{q}$$

$$= -\sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \mathcal{L}(\bar{\vartheta})}{\partial |\vartheta_{q}|} \vartheta_{q} + \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(|\bar{\vartheta}_{q}|,\gamma)}{\partial |\vartheta_{q}|} |\vartheta_{q}|, \qquad (11)$$

where $\bar{\vartheta}$ lies on the line segment between $\tilde{\vartheta}$ and ϑ . Note that $\operatorname{sign}(\bar{\vartheta}_q)\vartheta_q = |\vartheta_q|$ because ϑ_q and $\bar{\vartheta}_q$ have the same sign. By $\|\nabla_{\hat{\mathscr{A}}(\gamma)^c} \mathcal{L}(\hat{\theta})\|_{\infty} < \gamma = \frac{\partial \rho(0+,\gamma)}{\partial t}$ in Equation (9), and the continuity of $\frac{\partial \rho(t,\gamma)}{\partial t}$ and $\tau(\theta)$ described in Condition E and B, there exists a $\varepsilon > 0$ such that for any θ in the neighborhood of $\hat{\theta}$ with radius ε we have

$$\left\|\nabla_{\hat{\mathcal{A}}(\gamma)^{c}}\mathcal{L}(\theta)\right\|_{\infty} < \frac{\partial\rho(\varepsilon,\gamma)}{\partial t}.$$
(12)

Since the choice of \mathcal{N} is arbitrary, we can choose \mathcal{N} with radius smaller than ε so that $\left|\bar{\vartheta}_{q}\right| \leq \left|\vartheta_{q}\right| < \varepsilon$ for $q \in \hat{\mathcal{A}}(\gamma)^{c}$. By the fact $\bar{\vartheta} \in \mathcal{N}$, Equation (12) implies that $\sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \mathcal{L}(\bar{\vartheta})}{\partial |\vartheta_{q}|} \vartheta_{q} < \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(\varepsilon, \gamma)}{\partial t} \left|\vartheta_{q}\right|$. Using the concavity of $\rho(t, \gamma)$ in t and the continuity of $\frac{\partial \rho(t, \gamma)}{\partial t}$, we further obtain $\sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(|\bar{\vartheta}_{q}|, \gamma)}{\partial |\vartheta_{q}|} \left|\vartheta_{q}\right| \geq \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(\varepsilon, \gamma)}{\partial t} \left|\vartheta_{q}\right|$. Therefore, by $\sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \mathcal{L}(\bar{\vartheta})}{\partial |\vartheta_{q}|} \vartheta_{q} < \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(\varepsilon, \gamma)}{\partial |\vartheta_{q}|} \left|\vartheta_{q}\right| \geq \sum_{q \in \hat{\mathcal{A}}(\gamma)^{c}} \frac{\partial \rho(\varepsilon, \gamma)}{\partial t} \left|\vartheta_{q}\right|$, Equation (11) is strictly

larger than

$$-\sum_{q\in\hat{\mathcal{A}}(\gamma)^{c}}\frac{\partial\rho(\varepsilon,\gamma)}{\partial t}\left|\vartheta_{q}\right|+\sum_{q\in\hat{\mathcal{A}}(\gamma)^{c}}\frac{\partial\rho(\varepsilon,\gamma)}{\partial t}\left|\vartheta_{q}\right|=0.$$
(13)

which implies that $\mathcal{U}(\tilde{\vartheta},\gamma) - \mathcal{U}(\vartheta,\gamma) > 0$ for any $\vartheta \in \mathcal{N} \setminus \hat{\theta}$ such that $\|\vartheta - \hat{\theta}\| < \varepsilon$. We conclude that $\hat{\theta}$ is also a strictly local maximizer of $\mathcal{U}(\theta,\gamma)$ on Θ .

Lemma 3. Let $\hat{\mathcal{O}}$ denote the set containing all the strictly local maximizers of $\mathcal{U}(\theta, \gamma)$. If Conditions

A-E hold, γ satisfies $\gamma \to 0$ and $\sqrt{N}\gamma \to \infty$ as $N \to \infty$, we have

$$\lim_{N \to \infty} \mathbb{P}\big(\tilde{\theta}^* \in \hat{\mathcal{O}}\big) = 1, \tag{14}$$

where $\tilde{\theta}^*$ is the ML estimator on the restricted parameter space $\Theta_{\mathcal{A}^*}$.

Proof: We want to show that $\tilde{\theta}^*$ satisfies Equations (8), (9), and (10) asymptotically, i.e., $\lim_{N \to \infty} \mathbb{P}(\mathcal{K}) = 1 \qquad , \qquad \text{where} \qquad \mathcal{K} = \{\nabla_{\mathcal{A}^*} \mathcal{L}(\tilde{\theta}^*) = \nabla_{\mathcal{A}^*} \mathcal{R}(\tilde{\theta}^*)\} \cap \{\|\nabla_{\mathcal{A}^{*c}} \mathcal{L}(\tilde{\theta}^*)\|_{\infty} < \gamma\} \cap$

 $\left\{\omega_{\min}\left(-\nabla_{\mathcal{A}^{*}}^{2}\mathcal{L}(\tilde{\theta}^{*})+\nabla_{\mathcal{A}^{*}}^{2}\mathcal{R}(\tilde{\theta}^{*},\gamma)\right)>0\right\}. \text{ Let } \mathcal{E}=\mathcal{E}_{1}\cap\mathcal{E}_{2}\cap\mathcal{E}_{3} \text{ with } \mathcal{E}_{1}, \mathcal{E}_{2}, \text{ and } \mathcal{E}_{3} \text{ being } \mathcal{E}_{1}$

$$\mathcal{E}_1 = \left\{ \min_{q \in \mathcal{A}^*} \left| \tilde{\theta}_q^* \right| > \delta \gamma \right\},\tag{15}$$

$$\mathcal{E}_{2} = \left\{ \max_{q \in \mathcal{A}^{*c}} \left| \nabla_{q} \mathcal{L}(\tilde{\theta}^{*}) \right| < \gamma \right\},$$
(16)

and

$$\mathcal{E}_{3} = \Big\{ \omega_{\min} \left(-\nabla_{\mathcal{A}^{*}}^{2} \mathcal{L}(\tilde{\theta}^{*}) + \nabla_{\mathcal{A}^{*}}^{2} \mathcal{R}(\tilde{\theta}^{*}) \right) > 0 \Big\}.$$
(17)

By $\frac{\partial \rho(t,\gamma)}{\partial t} = 0$ if $t > \delta \gamma$ described in Condition E, we have $\mathcal{E} \subseteq \mathcal{K}$. The de Morgan's law implies that the complement of \mathcal{E} , denoted by \mathcal{E}^c , is $\mathcal{E}_1^c \cup \mathcal{E}_2^c \cup \mathcal{E}_3^c$, where

$$\mathcal{E}_1^c = \bigcup_{q \in \mathcal{A}^*} \{ \left| \tilde{\theta}_q^* \right| \le \delta \gamma \},\tag{18}$$

$$\mathcal{E}_{2}^{c} = \bigcup_{q \in \mathcal{A}^{*c}} \{ \left| \nabla_{q} \mathcal{L}(\tilde{\theta}^{*}) \right| \ge \gamma \},$$
(19)

and

$$\mathcal{E}_{3}^{c} = \left\{ \omega_{min} \left(-\nabla_{\mathcal{A}^{*}}^{2} \mathcal{L}(\tilde{\theta}^{*}) + \nabla_{\mathcal{A}^{*}}^{2} \mathcal{R}(\tilde{\theta}^{*}) \right) \leq 0 \right\}.$$
(20)

Because $\mathbb{P}(\mathcal{K}) \ge \mathbb{P}(\mathcal{E}) = 1 - \mathbb{P}(\mathcal{E}^c) > 1 - \sum_{k=1}^3 \mathbb{P}(\mathcal{E}_k^c)$, it suffices to show that $\lim_{N \to \infty} \mathbb{P}(\mathcal{E}_k^c) = 0$ for k = 1, 2, 3.

1. $\lim_{N\to\infty}\mathbb{P}(\mathcal{E}_1^c)=0.$

By Lemma 1, we already know that for any $q \in \mathcal{A}^*$, $\tilde{\theta}_q^*$ is consistent to θ_q^* , which implies that $\mathbb{P}(|\tilde{\theta}_q^*| \leq \delta \gamma) \to 0$ as $N \to \infty$ for $q \in \mathcal{A}^*$. Hence, we obtain that as $N \to \infty$

$$\mathbb{P}(\mathcal{E}_1^c) \le \sum_{q \in \mathcal{A}^*} \mathbb{P}\left(\tilde{\theta}_q^* \le \delta\gamma\right) \to 0.$$
(21)

2. $\lim_{N\to\infty}\mathbb{P}(\mathcal{E}_2^c)=0.$

We first observe that

$$\mathbb{P}(\left|\nabla_{q}\mathcal{L}(\tilde{\theta}^{*})\right| \geq \gamma) \leq \mathbb{P}(\left|\nabla_{q}\mathcal{L}(\theta^{*})\right| + \left|\nabla_{q}\mathcal{L}(\tilde{\theta}^{*}) - \nabla_{q}\mathcal{L}(\theta^{*})\right| \geq \gamma)$$
$$\leq \mathbb{P}(\left|\nabla_{q}\mathcal{L}(\tilde{\theta}^{*}) - \nabla_{q}\mathcal{L}(\theta^{*})\right| \geq \frac{\gamma}{2}) + \mathbb{P}(\left|\nabla_{q}\mathcal{L}(\theta^{*})\right| \geq \frac{\gamma}{2}) = a_{1} + a_{2}. \quad (22)$$

By Taylor's theorem and Cauchy-Schwarz inequality, it follows that

$$a_{1} \leq \mathbb{P}\left(\left\|\frac{\partial \nabla_{q}\mathcal{L}(\theta^{*})}{\partial \theta_{\mathcal{A}^{*}}^{T}}\right\| \left\|\tilde{\theta}_{\mathcal{A}^{*}}^{*} - \theta_{\mathcal{A}^{*}}^{*}\right\| > \frac{\gamma}{4}\right) + \mathbb{P}\left(O_{P}(N^{-1}) > \frac{\gamma}{4}\right) = a_{11} + a_{12}.$$
(23)

Note that

$$a_{11} \leq \mathbb{P}\left(\left\|\tilde{\theta}_{\mathcal{A}^{*}}^{*} - \theta_{\mathcal{A}^{*}}^{*}\right\| > \frac{1}{4}\right) + \mathbb{P}\left(\left\|\frac{\partial \nabla_{q}\mathcal{L}(\theta^{*})}{\partial \theta_{\mathcal{A}^{*}}^{T}} - \mathbb{E}\left(\frac{\partial \nabla_{q}\mathcal{L}(\theta^{*})}{\partial \theta_{\mathcal{A}^{*}}^{T}}\right)\right\| > \frac{\gamma}{2}\right) + \mathbb{P}\left(\left\|\mathbb{E}\left(\frac{\partial \nabla_{q}\mathcal{L}(\theta^{*})}{\partial \theta_{\mathcal{A}^{*}}^{T}}\right)\right\| > \frac{\gamma}{2}\right).$$
(24)

Because $\|\tilde{\theta}_{\mathcal{A}^*}^* - \theta_{\mathcal{A}^*}^*\|$ and $\left\|\frac{\partial \nabla_q \mathcal{L}(\theta^*)}{\partial \theta_{\mathcal{A}^*}^T} - \mathbb{E}\left(\frac{\partial \nabla_q \mathcal{L}(\theta^*)}{\partial \theta_{\mathcal{A}^*}^T}\right)\right\|$ are both $O_P\left(N^{-\frac{1}{2}}\right)$ and $\left\|\mathbb{E}\left(\frac{\partial \nabla_q \mathcal{L}(\theta^*)}{\partial \theta_{\mathcal{A}^*}^T}\right)\right\| > 0$, a_{11} converges to zero as $N \to \infty$. Clearly, a_{12} and a_2 also converge to zero by the fact $|\nabla_q \mathcal{L}(\theta^*)| = O_P\left(N^{-\frac{1}{2}}\right)$. Therefore, we conclude that $\lim_{N\to\infty} \mathbb{P}(\mathcal{E}_2^c) = 0$.

3. $\lim_{N\to\infty} \mathbb{P}(\mathcal{E}_3^c) = 0.$

By Condition C, $\omega_{min}\left(-\nabla^2_{\mathcal{A}^*}\mathcal{L}(\theta)\right) \geq \kappa_1$ on $\Omega_{\mathcal{A}^*}(\theta^*)$. Hence, for sufficiently large N and $\tilde{\theta}^* \in \Omega_{\mathcal{A}^*}(\theta^*)$, $\omega_{min}\left(-\nabla^2_{\mathcal{A}^*}\mathcal{L}(\tilde{\theta}^*) + \nabla^2_{\mathcal{A}^*}\mathcal{R}(\tilde{\theta}^*)\right) = \omega_{min}\left(-\nabla^2_{\mathcal{A}^*}\mathcal{L}(\theta) + o(1)\right) > 0$ holds in probability, indicating $\lim_{N \to \infty} \mathbb{P}(\mathcal{E}_3^c) = 0$.

Lemma 1 shows that the ML estimator on the restricted parameter space, denoted by $\tilde{\theta}^*$, is consistent and asymptotically normal, which is just a standard result of ML estimator under misspecified likelihood (e.g., White, 1982). Lemma 2 gives the optimality condition for PL estimators (see also Fan & Lv, 2011). Lemma 3 indicates that asymptotically $\tilde{\theta}^*$ is also a local maximizer of the PL criterion (see also Kwon & Kim, 2012). Therefore, $\tilde{\theta}^*$ is of course an oracle estimator described in Theorem 1.

Theorem 2 (global oracle property). Under Conditions A-F and γ satisfies $\gamma \to 0$ and $\sqrt{N\gamma} \to \infty$ as $N \to \infty$. Asymptotically, there exists a unique global maximizer of $\mathcal{U}(\theta, \gamma)$, denoted by $\hat{\theta}$, such that

(a) $\lim_{N \to \infty} \mathbb{P}(\hat{\mathcal{A}}(\gamma) = \mathcal{A}^*) = 1;$ (b) $\sqrt{N}(\hat{\theta}_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^*) \longrightarrow_{\mathcal{D}} \mathcal{N}(0, \mathcal{F}_{\mathcal{A}^*}^{*^{-1}} \mathcal{H}_{\mathcal{A}^*}^* \mathcal{F}_{\mathcal{A}^*}^{*^{-1}}).$

Proof: Let $\tilde{\theta}^*$ denote the ML estimator on the restricted parameter space $\Theta_{\mathcal{A}^*}$. We only need to show that

$$\lim_{N \to \infty} \mathbb{P}\left(\mathcal{U}\big(\tilde{\theta}^*, \gamma\big) \ge \max_{\theta \in \Omega(\theta^*)} \mathcal{U}(\theta, \gamma)\right) = 1.$$
(25)

According to Taylor's theorem,

$$\mathcal{L}(\theta) - \mathcal{L}(\tilde{\theta}^*) = \nabla \mathcal{L}^T(\tilde{\theta}^*) (\theta - \tilde{\theta}^*) + \frac{1}{2} (\theta - \tilde{\theta}^*)^T \nabla^2 \mathcal{L}(\bar{\theta}^*) (\theta - \tilde{\theta}^*).$$
(26)

By Lemma 3 and Condition F, for sufficiently large N, we have

$$\nabla \mathcal{L}^{T}(\tilde{\theta}^{*})(\theta - \tilde{\theta}^{*}) \leq \gamma \sum_{q \in \mathcal{A}^{*c}} |\theta_{q}|, \qquad (27)$$

and

$$\frac{1}{2} \left(\theta - \tilde{\theta}^* \right)^T \nabla^2 \mathcal{L}(\bar{\theta}^*) \left(\theta - \tilde{\theta}^* \right) \le -\frac{1}{2} \kappa_2 \sum_{q=1}^Q \left(\theta_q - \tilde{\theta}_q^* \right)^2.$$
(28)

Hence, for sufficiently large N, the following inequality holds

$$\mathcal{U}(\theta,\gamma) - \mathcal{U}\big(\tilde{\theta}^*,\gamma\big) \le \sum_{q=1}^Q a_q,\tag{29}$$

where

$$a_{q} = \begin{cases} -\frac{1}{2}\kappa_{2}(\theta_{q} - \tilde{\theta}_{q}^{*})^{2} + c_{q}[\rho(|\tilde{\theta}_{q}|, \gamma) - \rho(|\theta_{q}|, \gamma)] & \text{if } q \in \mathcal{A}^{*}, \\ \gamma|\theta_{q}| - \frac{1}{2}\kappa_{2}(\theta_{q})^{2} - c_{q}\rho(|\theta_{q}|, \gamma) & \text{if } q \in \mathcal{A}^{*c}. \end{cases}$$
(30)

For $q \in \mathcal{A}^*$, $-\frac{1}{2}\kappa_2(\theta_q - \tilde{\theta}_q^*)^2 < 0$ and $c_q[\rho(|\tilde{\theta}_q|, \gamma) - \rho(|\theta_q|, \gamma)] = 0$ hold asymptotically, which implies $a_q < 0$. For $q \in \mathcal{A}^{*c}$, by the fact that $\gamma \to 0$, the following inequality holds for sufficiently large N

$$a_q = \left|\theta_q\right| \left(\gamma - \frac{1}{2}\kappa_2 \left|\theta_q\right|\right) - c_q \rho\left(\left|\theta_q\right|, \gamma\right) < 0.$$
(31)

Therefore, we conclude that $\mathbb{P}\left(\mathcal{U}\left(\tilde{\theta}^*,\gamma\right) \geq \max_{\theta \in \Omega\left(\theta^*\right)} \mathcal{U}\left(\theta,\gamma\right)\right) \to 1.$

Based on the result of Theorem 2, as long as we have a reliable algorithm to find the global maximizer, the global maximizer asymptotically performs as well as an oracle one. Note that the difference between Theorems 1 and 2 is that the latter requires the Fisher information matrix to be positive definite in the neighborhood of θ^* on the entire parameter space Θ , indicating that the specified model is at least locally in the neighborhood of θ^* on Θ . Therefore, if the specified model is not locally identified at θ^* , Theorem 2 would fail.

If Y is normally distributed and $\tau(\theta)$ is correctly specified, the information equality holds (i.e., $\mathcal{F}_{\mathcal{A}^*}^{*^{-1}} = \mathcal{H}_{\mathcal{A}^*}^{*}$) and Theorem 2 reduces to Corollary 1 below. The main implication of Corollary 1 is that under normality and correct model specification the PL estimator can achieve the Cramér-Rao lower bound, even when the true sparsity pattern is unknown beforehand. Furthermore, it also implies that $N \cdot \mathcal{D}_{ML}(\tau(\hat{\theta}), t)$ is asymptotically distributed as a chi-square random variable, where $\mathcal{D}_{ML}(\tau(\theta), t) = -\log|\Sigma(\theta)^{-1}S| + \operatorname{tr}(\Sigma(\theta)^{-1}S) - P + (\bar{Y} - \mu(\theta))^T \Sigma(\theta)^{-1}(\bar{Y} - \mu(\theta))$ and t = $(\operatorname{vech}(S)^T, \bar{Y}^T)^T$ with $S = \frac{1}{N} \sum_{n=1}^N (Y_n - \bar{Y})(Y_n - \bar{Y})^T$ and $\bar{Y} = \frac{1}{N} \sum_{n=1}^N Y_n$. Therefore, it is easy to construct an asymptotic $1 - \alpha$ level test for examining the null hypothesis $\tau = \tau(\theta)$ versus alternative hypothesis $\tau \neq \tau(\theta)$. Also, statistical tests for comparing several nested SEM models can be developed based on the result of sequential chi-square statistics (see Steiger, Shapiro, & Browne, 1985)

Corollary 1. Under Conditions A-F and γ satisfies $\gamma \to 0$ and $\sqrt{N\gamma} \to \infty$ as $N \to \infty$. If the density of Y is actually $\varphi_{\theta}(y)$, then asymptotically, there exists a unique global maximizer of $\mathcal{U}(\theta, \gamma)$, denoted by $\hat{\theta}$, such that

(a) $\lim_{N \to \infty} \mathbb{P}(\hat{\mathcal{A}}(\gamma) = \mathcal{A}^*) = 1;$ (b) $\sqrt{N}(\hat{\theta}_{\mathcal{A}^*} - \theta_{\mathcal{A}^*}^*) \longrightarrow_{\mathcal{D}} \mathcal{N}(0, \mathcal{F}_{\mathcal{A}^*}^{*^{-1}}),$ (c) $N \cdot \mathcal{D}_{ML}(\tau(\hat{\theta}), t) \longrightarrow_{\mathcal{D}} \chi^2_{df^*},$ where $df^* = P(P+3)/2 - |\mathcal{A}^*|.$

Now, the asymptotic properties of AIC and BIC are derived under the framework of the proposed PL method. Given a model $\tau(\theta)$, for any index set $\mathcal{A} \subset \{1, 2, ..., Q\}$, the MDF value of $\tau(\theta)$ on $\Theta_{\mathcal{A}}$ is defined as

$$\mathcal{D}_{\mathcal{A}}^{*} = \min_{\theta \in \Theta_{\mathcal{A}}} \mathcal{D}_{ML}(\tau(\theta), \tau^{*}).$$
(32)

where $\tau^* = \left(\operatorname{vech}(\Sigma^*)^T, \mu^{*T}\right)^T$ is the true moment vector. Hence, by examining the values of $\mathcal{D}^*_{\mathcal{A}}$ and $\mathcal{D}^*_{\mathcal{A}'}$, the correctness of $\tau(\theta)$ restricted on $\Theta_{\mathcal{A}}$ and $\Theta_{\mathcal{A}'}$ can be compared. According to the definition of \mathcal{A}^* , $\mathcal{D}^*_{\mathcal{A}^*} \leq \mathcal{D}^*_{\mathcal{A}}$ for any $\mathcal{A} \subset \{1, 2, ..., Q\}$. If some \mathcal{A} satisfies $\mathcal{D}^*_{\mathcal{A}^*} = \mathcal{D}^*_{\mathcal{A}}$, Condition D indicates that \mathcal{A}^* is still more parsimonious than \mathcal{A} , i.e., $|\mathcal{A}^*| < |\mathcal{A}|$. Given a random sample \mathcal{Y}_N , the set of regularization parameters is partitioned into three subsets

$$\Gamma^* = \left\{ \gamma | \mathcal{D}^*_{\hat{\mathcal{A}}(\gamma)} = \mathcal{D}^*_{\mathcal{A}^*}, \left| \hat{\mathcal{A}}(\gamma) \right| = |\mathcal{A}^*| \right\},\tag{33}$$

$$\Gamma^{+} = \left\{ \gamma | \mathcal{D}_{\hat{\mathcal{A}}(\gamma)}^{*} = \mathcal{D}_{\mathcal{A}^{*}}^{*}, \left| \hat{\mathcal{A}}(\gamma) \right| > |\mathcal{A}^{*}| \right\},$$
(34)

and

$$\Gamma^{-} = \left\{ \gamma | \mathcal{D}_{\hat{\mathcal{A}}(\gamma)}^{*} > \mathcal{D}_{\mathcal{A}^{*}}^{*} \right\}.$$
(35)

The subset Γ^* contains all the values of γ where the optimal model \mathcal{A}^* is attained. On the other hand, Γ^+ and Γ^- are formed by γ such that the corresponding models are overfitted and underfitted, respectively. Note that $\hat{\mathcal{A}}(\gamma)$ with $\gamma \in \Gamma^+$ may not be really "overfitting" in the usual sense. An overfitting model is generally used to refer a model that explains the phenomenon perfectly but contains unnecessary parameters. However, "overfitting" here is merely used to emphasize that $\hat{\mathcal{A}}(\gamma)$ contains unnecessary parameters because it is possible that $\mathcal{D}^*_{\hat{\mathcal{A}}(\gamma)} > 0$. Given any estimated support $\hat{\mathcal{A}}(\gamma)$, $\tilde{\theta}(\gamma)$ is used to denote a global maximizer of $\mathcal{L}(\theta)$ on $\hat{\mathcal{A}}(\gamma)$.

Theorem 3. Let $\hat{\gamma}^{AIC}$ and $\hat{\gamma}^{BIC}$ denote the selection results based on AIC and BIC respectively. Under Conditions A-F, we have

- (a) $\lim_{N \to \infty} \mathbb{P}(\hat{\gamma}^{AIC} \in \Gamma^{-}) = 0$ and $\lim_{N \to \infty} \mathbb{P}(\hat{\gamma}^{AIC} \in \Gamma^{+}) > 0;$
- (b) $\lim_{N\to\infty} \mathbb{P}(\hat{\gamma}^{BIC} \in \Gamma^*) = 1.$

Proof: To prove first part of (a), we want to show that the probability of $\mathcal{E}_{1} = \bigcup_{\gamma'\in\Gamma^{*}\cup\Gamma^{+}} \left\{ \inf_{\gamma\in\Gamma^{-}} AIC(\gamma) - AIC(\gamma') > 0 \right\}$ converges to one. Let $t = (\operatorname{vech}(S)^{T}, \overline{Y}^{T})^{T}$ denote a vector of sample moment, where $S = \frac{1}{N} \sum_{n=1}^{N} (Y_{n} - \overline{Y}) (Y_{n} - \overline{Y})^{T}$ and $\overline{Y} = \frac{1}{N} \sum_{n=1}^{N} Y_{n}$. We use $\mathcal{D}(\theta) = \mathcal{D}_{ML}(\tau(\theta), t)$ to represent the sample discrepancy evaluated at θ . By the fact that $\mathcal{D}\left(\tilde{\theta}(\gamma)\right) \leq \mathcal{D}\left(\hat{\theta}(\gamma)\right)$ and $\left\{ \inf_{\gamma\in\Gamma^{-}} AIC(\gamma) - AIC(0) > 0 \right\} \subset \mathcal{E}_{1}$, the following inequality holds $\mathbb{P}(\mathcal{E}_{1}) \geq \mathbb{P}\left(\inf_{\gamma\in\Gamma^{-}} AIC(\gamma) - AIC(0) > 0 \right)$ $\geq \mathbb{P}\left(\min_{\mathcal{A}(\gamma)\in\{\mathcal{A}\mid|\mathcal{A}^{*}\notin\mathcal{A}\}} \mathcal{D}\left(\tilde{\theta}(\gamma)\right) - \mathcal{D}\left(\tilde{\theta}\right) - \frac{2}{N}Q > 0 \right).$ (36) Note that $\lim_{N \to \infty} \min_{\mathcal{A}(\gamma) \in \{\mathcal{A} | \mathcal{A}^* \not\subset \mathcal{A}\}} \mathcal{D}\left(\tilde{\theta}(\gamma)\right) \ge \min_{\mathcal{A} \in \{\mathcal{A} | \mathcal{A}^* \not\subset \mathcal{A}\}} \mathcal{D}_{\mathcal{A}}^* > \mathcal{D}_{\mathcal{A}^*}^* \text{ and } \lim_{N \to \infty} \mathcal{D}\left(\tilde{\theta}\right) = \mathcal{D}_{\mathcal{A}^*}^*.$ Hence,

$$\mathbb{P}(\mathcal{E}_1) \ge \mathbb{P}\left(\min_{\mathcal{A} \in \{\mathcal{A} \mid \mathcal{A}^* \notin \mathcal{A}\}} \mathcal{D}^*_{\mathcal{A}} - \mathcal{D}^*_{\mathcal{A}^*} - o_p(1) > 0\right) \to 1.$$
(37)

For proving the second part of (a), we need to show that the probability of $\mathcal{E}_2 = \bigcup_{\gamma'\in\Gamma^+} \left\{ \inf_{\gamma\in\Gamma^*} AIC(\gamma) - AIC(\gamma') > 0 \right\}$ is larger than some nonzero constant. Again, by the fact $\left\{ \inf_{\gamma\in\Gamma^*} AIC(\gamma) - AIC(0) > 0 \right\} \subset \mathcal{E}_2$ and $\inf_{\gamma\in\Gamma^*} AIC(\gamma) > \mathcal{D}(\tilde{\theta}^*) + \frac{2}{N} |\mathcal{A}^*|$, we have that $\mathbb{P}(\mathcal{E}_2) \geq \mathbb{P}\left(\inf_{\gamma\in\Gamma^*} AIC(\gamma) - AIC(0) > 0 \right)$ $\geq \mathbb{P}\left(\mathcal{D}(\tilde{\theta}^*) - \mathcal{D}(\tilde{\theta}) + \frac{2}{N} (|\mathcal{A}^*| - Q) > 0 \right).$ (38)

According to the result of White (1982), we have that $N\left(\mathcal{D}(\tilde{\theta}^*) - \mathcal{D}(\tilde{\theta})\right)$ is distributed as a mixture of chi-square random variables asymptotically. Hence, we conclude that

$$\mathbb{P}(\mathcal{E}_2) \ge \mathbb{P}\left(N\left(\mathcal{D}\big(\tilde{\theta}^*\big) - \mathcal{D}\big(\tilde{\theta}\big)\right) > 2(Q - |\mathcal{A}^*|)\right) > 0.$$
(39)

To prove (b), by Theorem 2 we already derived that if γ satisfies $\gamma \to 0$ and $\sqrt{N}\gamma \to \infty$ as $N \to \infty$, then the $\lim_{N \to \infty} \mathbb{P}\left(BIC(\gamma) = \mathcal{D}(\tilde{\theta}^*) + \frac{\log N}{N} |\mathcal{A}^*|\right) = 1$, which implies that asymptotically Γ^* is not empty if we set $\Gamma = [0, L]$ for a sufficiently large L. The question remains whether BIC can select a $\gamma^* \in \Gamma^*$. Now, we want to show that for any $\gamma^* \in \Gamma^*$, the probability of $\mathcal{E}_1 = \bigcup_{\gamma \in \Gamma^- \cup \Gamma^+} \{BIC(\gamma^*) - BIC(\gamma) > 0\}$ converge to zero. By the fact that $\{\hat{\mathcal{A}}(\gamma)\}_{\gamma \in \Gamma} \subset \{\mathcal{A}\}$ and $BIC(\gamma) \geq \mathcal{D}\left(\tilde{\theta}(\gamma)\right) + \frac{\log N}{N}e(\gamma)$, \mathcal{E}_1 is contained in a set \mathcal{E}_2 , a union of finite sets,

$$\mathcal{E}_{2} = \bigcup_{\mathcal{A}(\gamma') \neq \mathcal{A}^{*}} \Big\{ BIC(\gamma^{*}) - \Big(\mathcal{D}\left(\tilde{\theta}(\gamma)\right) + \frac{\log N}{N} e(\gamma) \Big) > 0 \Big\}.$$
(40)

If for any $\hat{\mathcal{A}}(\gamma) \neq \mathcal{A}^*$, $\lim_{N \to \infty} \mathbb{P}\left(BIC(\gamma^*) - \left(\mathcal{D}\left(\tilde{\theta}(\gamma)\right) + \frac{\log N}{N}e(\gamma)\right) > 0\right) = 0$ holds, then by the fact $\mathcal{E}_1 \subset \mathcal{E}_2$, $\lim_{N \to \infty} \mathbb{P}(\mathcal{E}_1) = 0$ must be true. If $\hat{\mathcal{A}}(\gamma) \neq \mathcal{A}^*$ but $\hat{\mathcal{A}}(\gamma) \supset \mathcal{A}^*$, by the fact that

 $BIC(\gamma^*) = \mathcal{D}(\tilde{\theta}^*) + \frac{\log N}{N} |\mathcal{A}^*| \text{ with probability tending to one, it suffices to show that the probability}$ of $\left\{ \left(\mathcal{D}(\tilde{\theta}^*) - \mathcal{D}(\tilde{\theta}(\gamma)) \right) + \frac{\log N}{N} \left(|\mathcal{A}^*| - e(\gamma) \right) > 0 \right\}$ can be arbitrarily small. By the fact $\mathcal{D}(\tilde{\theta}^*) - \mathcal{D}(\tilde{\theta}(\gamma)) = O_p(N^{-1})$ and $|\mathcal{A}^*| < e(\gamma)$, we have

$$\mathbb{P}\left(\left(\mathcal{D}\left(\tilde{\theta}^{*}\right) - \mathcal{D}\left(\tilde{\theta}(\gamma)\right)\right) + \frac{\log N}{N}\left(|\mathcal{A}^{*}| - e(\gamma)\right) > 0\right)$$
$$= \mathbb{P}\left(O_{p}(N) > \frac{\log N}{N}\left(e(\gamma) - |\mathcal{A}^{*}|\right)\right) \to 0,$$
(41)

as $N \to \infty$. For $\hat{\mathcal{A}}(\gamma) \neq \mathcal{A}^*$ but $\hat{\mathcal{A}}(\gamma) \not\supset \mathcal{A}^*$,

$$\mathbb{P}\left(\left(\mathcal{D}\big(\tilde{\theta}^*\big) - \mathcal{D}\big(\tilde{\theta}(\gamma)\big)\right) + \frac{\log N}{N}\big(|\mathcal{A}^*| - e(\gamma)\big) > 0\right)$$
$$= \mathbb{P}\left(\mathcal{D}^*_{\mathcal{A}^*} - \mathcal{D}^*_{\hat{\mathcal{A}}(\gamma)} + o_p(1) > 0\right) \to 0.$$
(42)

as $N \to \infty$. Therefore, we conclude that $\lim_{N \to \infty} \mathbb{P}(\mathcal{E}_1) = 0$ and hence $\lim_{N \to \infty} \mathbb{P}(\hat{\gamma}^{BIC} \in \Gamma^*) = 1$.

Theorems 3 shows that asymptotically both AIC and BIC select a model that attains the smallest MDF value $\mathcal{D}_{\mathcal{A}^*}^*$. However, only BIC yields a consistent selection result with respect to \mathcal{A}^* . AIC may suffer from the problem of overfitting. Of course, if Γ^+ is empty, AIC can also select the quasi-true model with probability one. The derived results are consistent with the typical behaviors of AIC and BIC in parametric regression models (e.g., Zhang, Li, & Tsai, 2012; Shao, 1997).

References

- Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.
- Fan, J.-Q., & Lv, J.-C. (2011). Non-concave penalized likelihood with NP-Dimensionality. *IEEE -Information Theory*, 57, 5467–5484.
- Kwon, S., & Kim, Y. (2012). Large sample properties of the SCAD-penalized maximum likelihood estimation on high dimensions. *Statistica Sinica*, *22*, 629–653.
- Lehmann, E., & Casella, G. (1998), Theory of point estimation (2nd ed.). New York: Springer-Verlag.
- Shao, J. (1997). n asymptotic theory for linear model selection. Statistica Sinica, 7, 221-264.
- Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures (a unified theory). *South African Statistical Journal, 17,* 33–81.
- Steiger, J., Shapiro, A., & Browne, M. (1985). On the multivariate asymptotic distribution of sequential Chi-square statistics. *Psychometrika*, *50*, 253–263.
- White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-25.
- Zhang, Y.-Y., Li, R.-Z., & Tsai, C.-L. (2010). Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105, 312–323.