1. Supplemental Text to the Manuscript “A Multimethod Latent State-Trait Model for
Structurally Different And Interchangeable Methods”

Here we provide the formal definition of the LST-COM model and discuss important implications
of the definition. First, we define the LST-COM model based on stochastic measurement theory
(Steyer & Eid, 2001) and classical LST theory (Steyer, Schmitt, & Eid, 1999; Steyer, Mayer, Geiser, &
Cole, 2015). Second, we discuss important implications of the LST-COM model definition with a
special focus on non-permissible covariances and correlations. Third, we provide a description of the
implied covariance structure of the LST-COM model using matrix algebra and discuss how the model
parameters can be identified. Finally, we provide an annotated Mplus syntax used in the MC

simulation study.

1.1. Formal Definition of the LST-COM Model

The LST-COM model will be defined for a longitudinal multimethod (or multirater) design
including multiple indicators ¢ € I = {1, ..., ¢}, multiple constructs j € J = {1, ..., d}, multiple methods
ke K ={1,...,e}, and multiple occasions of measurement [ € L = {1,..., f}. The LST-COM model will
be defined for one set of interchangeable methods, but an arbitrary number of structurally different
methods. Tt is assumed that multiple interchangeable raters r € R = {1, ...,a} rate a target person
teT ={1,...,b} on multiple measurement occasion | € L = {1, ..., f}. In addition, the self-ratings of
the target person as well as ratings from other structurally different methods (e.g., parent ratings,
physiological measures) are collected on each measurement occasion. In the remainder, we denote the
set of interchangeable methods by & = 2. Any additional structurally different methods will be
represented by k > 2. Without any loss of generality, the first method will serve as the reference
methods (k= 1).

1.2. Random Experiment and Probability Space

The starting point for defining the LST-COM model is a probability space (2, o, &) with the
following sets:
Q=07 xQrs, X ... xQrs; X ... xQ7s5, X Qr X Qr,s, X ... X Qg5 X ... X Qr, 5, X Qo,
where Q7 is the set of possible targets, (075, is the set of possible target situations, Q0% is the set of
possible interchangeable methods, 2, s, is the set of possible situations referring to method k assessed

at time [, and Qo is the set of possible outcomes. Note that the set of possible rater situations contains



the index k, implying that rater situations may differ across methods k, where k > 2. Note that there
is no set of possible raters that refers to a structurally different methods (k > 2), as these additional
structurally different methods are fixed for the particular target person. For a minimal design including
one structurally different method (k=1), and one set of interchangeable methods (k=2), Qg, s, can be
replaced by Q2rs,, which will lead to the random experiment described in the article. Furthermore, Qo
is itself a set of products representing the set of possible observations with respect to indicator 7,
construct 7, method k, and occasion of measurement [, hence {2 can also be replaced by

Qo1 X o X Qoypy X o X Qo

ijkl cdef*

1.8. Mappings

Next, we consider four projections in order to define random variables on the probability space.
We define the projection pr : Q — Q7 as the mapping of possible outcomes to the set of the possible
targets, prs, : @ — Qrs, as the mapping of possible outcomes to the set of possible target situations,
the projection pr : Q — Qg as the mapping of possible outcomes to the set of the possible
interchangeable raters, and pr,s, : 2 — Qr,s, as the mapping of possible outcomes to the set of
possible rater situations of method k, where & >1. The observed variables Y,.;;jo; and Yy are random
variables on the probability space (2, &/, &) with finite first and second order moments. The observed
variables belonging to the reference method Y3;1; (here: target self-reports, Level-2 observed variables)
are defined as Ym‘jll : Q7 X Q7s, x Qo — R. The observed variables belonging to the set of
interchangeable methods Y21 (Level-1 observed variables) are defined as

Y

igan S X Qrs, X Qr X Qr,s, X Qo — R, and the observed variables pertaining to any additional

structurally different method Y3;jx; (where k >2) are defined as Y;ijkl Q7 x Qrs, X Qr,s, X Qo — R.
Note that the values of Y;.+;j2; are measured at Level-1 (rater-specific level), whereas the values of Y3;j

(e.g., target self-reports, where k # 2) are measured at Level-2 (target-specific level).

1.4. Formal Definition of the Latent Variables

Without any loss of generality, the first method (k = 1) is selected as reference (comparison)
method. The second method (k = 2) refers to the set of interchangeable methods, which serve as
non-reference methods. All other methods (k > 2) refer to structurally different methods, which also

serve as non-reference methods. Then, the following latent variables are defined as random variables on



(Q, o/, &) with finite first- and second-order moments:

Level-1 variables:

Srtij?l = E(Ym‘jzl DT, DTS, PR, PR2S, ) (1)
UM, rtig2l ‘= Smﬂz E(Srtij%'p'fvp’fsl)a (2)
Tmﬂl E(UM, tij2l lpT,PR) (3)
Om]zz =UM rtij2l TrUm']]\‘/[zz’ (4)
Ertijal *= Ym‘jzl - E(YrtijQZ |pT,PTS,, PR, PRLS,)- (5)

Level-2 variables:

Stiju = E(Yulpr, p1s)); (6)

Stijor = E(S,45501lpT, PTS,): (7)
Siijit = EYyjm |1, 078, PRYS), Vk>2, (8)
Tiijhr = B(SijulpT), (9)
Ovijkt := Stijkt — Thijkt,s (10)
Tmﬂl Tyijor — E(Ttijﬂ'Ttijll)v (11)
On;zl = Oyijor — E(Oyi2110sis11); (12)
Ttijkl 1= Tyijir — B(Teignt | Tyiju0), Vik>2, (13)
Otk = Otijrt — E(Orijnt Opijua), Vk>2, (14)
€ij1l = Ytijll - E(Y;‘,ijll lpT,p7S,), (15)
€rijil = Yiijhi — E(Yn‘jkz DT, PTS), PRLS)S Vk>2 (16)

Remark 1. First, the Level-1 latent variables are defined. Note that the Level-1 latent variables
belong to the set of interchangeable methods (k=2). The latent state variables S, ;.o are defined as
conditional expectations of the Level-1 observed variables Y,;j0; given the target variable p7, the
target-situation variable prs,, the rater-variable pg, and the rater-situation variable pr,s, (see Eq. 1).
Then, the measurement error variable (at Level-1) is defined as the difference between the observed
variable and the latent state variable (see Eq. 5). The unique method variable UM, ;s is defined as
the difference between the Level-1 latent state variable S, 5, and the Level-2 latent state variable

Stij2l (i.e., conditional expectation of the S, .,,-variable given the target pr and the target-situation

rtij2

variable prs,). That is, the unique method variable UM,.,, ., is defined as a latent residual with

rtij2
respect to the target pr and the target-situation variable prs,, and thus has a mean of zero. Next, it is

also possible to define latent trait Tgwle as well as occasion-specific O%%[Ql unique method variables.

The latent trait unique method variables ng%l are defined as conditional expectations of the



TU]VI

U Mrtiﬂl—variables given the target pr and the rater pg variable. Thus, the rtif2l variables are free of

occasion-specific effects and capture stable (time-invariant) target, rater, and target-rater interaction

effects. The occasion-specific unique method variables O%%Ql are defined as the difference between the

UM, ,;jo-variables and the latent trait unique method Tgi%l variables. The Oft%[m—variables capture

momentary (occasion-specific) target, rater, and target-rater interaction effects.

Second, the Level-2 latent variables are defined. Again, the latent state variables (Stijll’ Stile,
Syiji) are defined as conditional expectations (see Eq. 6 to 8). The measurement error variables are
defined as differences between the observed variables and the corresponding latent state variables. Note
that there are no measurement error variables at Level-2 for the set of interchangeable methods (k=2),
as measurement error influences are already captured at Level-1 with respect to this method. Next, the
latent trait and occasion-specific variables are defined. The latent trait variables T}, ,, are defined as
conditional expectations of the latent state S;;;, variables given the target variable p7. The latent
occasion-specific variables Oy, .y, (called: state-residuals) are defined as differences between the latent
state Sy, ;1; and the latent trait T}, variables (see Equation 10). The latent occasion-specific variables

0

1i;1, are defined as residuals with respect to the latent trait variables pertaining to the same indicator
i, construct j, method k£ and occasion of measurement /. Hence, the latent trait and latent
occasion-specific variables are uncorrelated.

Third, the latent method variables are defined at Level-2. The latent trait (common) method

Tt%]‘z/{ and T%kl) are defined as residuals with respect to the latent regression of the

variables (
non-reference trait variables on the reference trait variables (see Equations 11 and 13). Therefore, these
latent variables reflect the consistent bias of the other ratings which is not shared with the consistent
view of the target’s self-perception (see Equations 11 and 13). The latent occasion-specific method
variables are also defined as latent residuals with respect to the latent regression of the
occasion-specific variables pertaining to the non-reference method on the occasion-specific variables
measured by the reference method (see Equations 12 and 14). These latent variables represent the

occasion-specific (momentary) method bias which is not shared with the occasion-specific (momentary)

view of the target (reference method).

1.5. Linearity Assumptions & Definition of Latent Factors

In order to define unidimensional latent factors, the following linearity assumptions must be made
in the LST-COM model. Typically, assumptions like those below are made implicitly in the context of

structural equation modeling.

(a) With respect to the same indicator i, same construct j, and same occasion of measurement [, it is
assumed that the regression of the trait variable belonging to a non-reference method k on the

latent trait variable belonging to the reference method (k = 1) is linear. For each indicator i,



construct j, measured by a non-reference method k on occasion of measurement [ there is a

constant ap,;;,; € R as well as a constant Ap,;;;; € R, such that

E(Trijrt|Tyijii) = @i + AMrijra e (17)

(b) Definition of common trait variables. For each indicator 4, construct j, measured by a reference
method k (k = 1) and for each pair (1,I') € L x L', (I #1') there is a constant ay,;;, as well as a

constant Ap;;q1;,, such that

Tyiju = arijur + Apijur T - (18)

(¢) For each indicator 4, construct j, measured by a non-reference method k (k # 1) on occasion of

measurement [ there is a constant Ay, € R, such that

E(Otijkl|0tij1l) = )‘OijklOtijll' (19)

(d) Definition of common method trait variables. For each indicator 4, construct j, measured by a
non-reference method k (k # 1) and for each pair (I,1') € L x L', (I #1’) there are constants

cM UM . M .
ATijour s Mpigo s as well as A7y € Ry, such that

CM _ \CM mCM

Tyiia1 = Arigou Tiijarr (20)
UM _ \UM UM

Triijor = Mijow Trtigor s (21)
M _\M M

Tyisie = Nrijrewr Teigr Vk>2. (22)

(e) Definition of common method state residual variables. For each construct j, measured by the
non-reference method k (k # 1) and for each pair (i,i') € I x I, (i # i’) there are constants

cM UM M
Aoiirjais Noii jor, @8 well as XG5 € Ry, such that

CM _ \CM oM

Oyijar = AGiir 21Ot o (23)
UM _ UM UM

Ortijor = A0ii j210rtit jau (24)
M _ \M M

Okt = Aoiir i1 Otir ki s Vk>2. (25)

Remark 2. Assumption (a) states a latent linear regression of the latent trait variables pertaining

to the non-reference method on the latent trait variables pertaining to the reference method.



Assumption (b) implies that the latent trait variables pertaining to different occasions of measurement
I and I’ are linear functions of each other. With regard to this assumption, it is possible to replace each
latent trait variable Ty;j1; by oriju + ArijuTiiji. As Tyji is always measured by the same method
(namely the reference method, k = 1), one may also omit the index k and thus write ariji; + ArijiiTei;-
Equation (c) states a linear regression at the level of the occasion-specific variables. With regard to the
Assumptions stated in (d), it is possible to define latent trait method factors (TEJI‘Q/I , TTI{%, and Tt%k).
Note that these latent factors are defined for each indicator i. Finally, we define latent occasion-specific
method factors according to Assumptions (e). The latent occasion-specific method variables are
therefore assumed to be homogeneous for all indicators ¢ and i’ pertaining to the same

construct-method-occasion-unit.

1.6. Conditional Regressive Independence Assumptions

In order to derive the variance and covariance structure of the LST-COM model, additional

assumptions need to be imposed. In the next theorem, we discuss these important assumptions.

Theorem 1. (Conditional Regressive Independence (CRI) Assumptions.) Let
M=((Q, o, P), Ty, TIM, TEM, TM Oy, OZM, OSM, OM, €,4, €1, ap, Ap, AIM AEM AM
A0, AGM AEM AMY be the LST-COM measurement model according to the above definition with
(T¢, ..., AY) being vectors containing the model parameters of the LST-COM model. Additionally, it is

assumed that

E (Yiijulpr, 07805075 Yy )y Yeeiijary)) = EYejulpr, prs,), (26)
E (Yiiju|pT:DTS1s s DTS 1 PRS s  PRuS s > Yaijrny )s (Yencigory)) 1)
=E(YijulpT, 075, PR S, ), for K> 2,

E (Yol PT: DTS, s DTS 1> PRy PRS0 PRiS s (Yiijuny )s (Yeagigary)) (28)
= E(YrtijQZ |pT,PTS,, PR, PRLS:)s

E (Stijalpr,pr) = E(Stijat|pT), (29)
E (SrtijQZ IpT, DTS, s DTS PRS1y - -+ aPRka) = E(SrtijQZ IpT,p78,), for k> 2, (30)
E (Syijm|PT> DTSy s o DTS 13 PTS 15+ DTS 13 PRy St—1s PRy Sisr s o3 PRy Sy ) @)
= E(Syijmlpr),for k=K or k # K/,

E (S,tijor|PT, DTSy s s DTS 13 DTS 1415 0 PTS 13 PRy PR2S1 > -0 PRaS_1» PRaS1 415 -+ PRoSy ) (32)

= E(S,4;jo|P7, PR)-

where (7,7, k,1) # (i,7,k,1)’. Then, M is called LST-COM model with conditional regressive
independence (CRI).



Remark 3. Assumption 26 states that the conditional expectations of the Level-2 observed
variables Yy;;1; pertaining to the reference method (k = 1) only depend on the target variable p7 and
the particular target-situation variable prs,, but not on other target-situations realized on different
occasions of measurement nor on the values of other observed variables Yy ry and Y, o1y, where
(ijkl) # (ijkl)’. This assumption implies, for example, that the Level-1 error variables pertaining to
the reference method are uncorrelated with any other error variable in the model. Similarly, the Level-2
observed variables pertaining to remaining structurally different methods (k > 2) only depend on the
target variable p7, the particular target-situation variable prs, and the particular rater situation pr,s,
of this method, but not on other target- or rater-situations realized on different occasions of
measurement nor on the values of other observed variables Y;;jri) and Yy o with (ijkl) # (ijkl)’
(see Eq. 27). Assumption 28 implies that observed variables belonging to the set of interchangeable
raters (k = 2) only depend on the target variable pr, the particular target-situation variable prgs,, the
rater variable pr, and the particular rater-situation variable pr,s, pertaining to the set of the
interchangeable method, but do not depend on other target-specific or other rater-specific situations
realized on different occasions of measurement nor on the values of other observed variables [Yrt(ijkl)/ or
Yy (ijkiy, where (ijkl) # (ijkl)'].

Assumption 29 states that the conditional expectations of the Level-2 latent state variables
pertaining to the set of interchangeable methods (k = 2) are conditionally regressively independent
from the rater variable pr given the target variable . Thus, the rater variable pr does not provide any
additional information for the expected value of Sy;j2; given the target variable p7. With respect to

this assumption, it is possible to define latent trait unique method variables as follows: T}ii501 — Thijo1.-

Assumption 30 expresses that the Level-1 latent state variables S,tij21 only depend on the target
p7 variable and the particular target situation prs, variable, but, given the target and the target
situation, do not depend on other target situations realized on different occasions of measurement or on
rater-situations of different methods k& > 2. Assumption 31 states that the Level-2 latent state variables
Stijr depend only on the target variable p7, but, given the target, neither depend on target situations
nor on rater-situations realized on different occasions of measurement. Similarly, Assumption 32 states
that the Level-1 latent state variables S;4;;2; depend only on the target variable pr and the rater
variable pr, but neither on other target situations pzs, or other rater situations pr,s, realized on
different occasions of measurement. The last two suppositions imply, for example, that occasion-specific

variables belonging to different occasions of measurement [ and [’ are uncorrelated with each other.

1.7. Implications of the Model Definition

Next, we discuss important implications of the above model definition and provide proofs for a

selection of important implications. Following a similar logic, the remaining proofs can be easily shown.



Corollary 1. (Non-Permissible Correlations) Let

M = <(Qa%7 y)thaTHMaT?MaT};\/IaOtaOII-JtM7OtCMa0};\/Ia67"75’€t7aT7ATaAg]waAgMaATMa

A0, AFMAEM XM be called an LST-COM model with conditional regressive independence according

to the above Definition 1, then forr € R, t € T, 1,7/ €1, j,5' € J, k, k' € K, |,I’ € L where i can be

equal to ¢, j to 7/, k to k" and [ to I’ but (ijkl) # (ijkl)"

Uncorrelatedness of latent residual variables:

Cov(ers(ijarys €rtizary) = 0,
Cov(e(ijiny, €x(ijkty) = 0,

COU(ert(ijQI)aEt(ijkl)’) =0.

Uncorrelatedness of latent variables and latent residual variables:

COU(th’]’la €(r)tijkl

COU( rtv’J’Q’ €(r)tijkl

COU( tv’J’Q’ E(r)tijkl

COU( ti’ j’k’ €(r)tijkl

COU(Oti’j’k’l’ €(r)tijkl

COU(Oth/2l/ ’I")tl]kl

COU(Ot]’Ql’ €(r)tijkl

)=
)=
)
)
)
)
)=
)=

COU(OU/k’l’ €(r)tijkl

Uncorrelatedness of latent trait variables and latent trait method variables:

Cov(Tyij1, T)1i5s) =0,

Cov(Tyij1, ngj\z/[) =0,

Cov(Tyij1, Tiiix) =0, V k> 2.

Uncorrelatedness of latent trait variables and latent occasion-specific (method) variables:

COU(szjl ’ Ot1 j'k/l/)

COU(Ttijla rt]’?l’)

CO'U(Ttwl y Otj’?l

)
)

CO'U(Ttwl y Ot]’k’l’

Vk>2.

47
48

(47)
(48)
(49)
(50)

a0



Uncorrelatedness of latent trait method variables and latent occasion-specific (method)

variables:

COU( tijks Orirjrr) =

Cov(TM s ,k,l,) = VEk>2
COU(TWk, /21/) =

Cov(TH fijhs rtg’?l’) =

Cov(TS b2 M Owrjr) =

COU( tzg? ) tj’k’l’) = Vk>2
Cov(TS N, 001,) =

Cov(Tt%gjy rt]’Ql’) =

Cov(TY mjg, Ovirjrr) =

CO’U( mﬂa tj k’l’) = Vi>2
Cov(Tifs, Ofjian) =

COU(T tij2) ift%w) =

Uncorrelatedness of latent trait method variables:

Cou( t”k,T UM, =0,

rti’j’2

C’ov(Tt%I‘Q/I, TYM,) = 0.

rti’j’2

Uncorrelatedness of latent state and occasion-specific method variables:

Cov(Oyijr, O ) =0, Vi>2
Cov(Oyiju, Og%) =0,
Cov(Ogijui, O%%l') =0.

Uncorrelatedness of latent occasion-specific method variables:

COU(OtUklaOn]kl’) Vi 7& ll,
COU(Ot]kl’ tjkl ) = Vi 7é ll, k>2
CO’U(Otﬂl , gg{,) = V1 # l',

Cov(Ogija, Orijan) =0, YV 1#L.

o1
92
53
54
55
o6
o7
98
59
60
61
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)



1.8. Proofs

Proof of the Unique Trait Variables. First, we show that Tg%l = Trtijor — Thijor- According to
Equation 3 in Definition 1, the latent trait unique method Trl{i%l variables are defined as conditional

expectations of the latent occasion-specific unique method variables given the target p7 and the rater

PRrR:

Tr[{z%l 1:]E(UMrtij2z lpT,PR)
:E[(SrtijQI - Stile)|pTva]

:E(SrtijQZ lpT,PR) — E(StijQZ lpT,PR)-

According to Equation 29 in Theorem 1, the expression E(S,,;:0/|p7,PR) — E(Sy;j0|p7: PR) can be

simplified as follows:

Tr[{f;{Ql ::E(Srtijﬂ lpT,PR) — E(StijQI IpT)

=Triijo1 — Thijals
with Tytijor := E(S,.4;0 [P, pr) and Tyijor := E(S,; 0 PT)- O
Proof of Equation 33. Equation 33 can be rewritten as

Cov(Yyy(ijor) — Sre(ijar), Yo(ijary — Sretijon )

where S,.(;jo1) is defined as conditional expectation of Y,.,(;;21) given pr, prs,, Pr, PRr,s,, Whereas
Sri(ijory is defined as conditional expectation of Y,.i(;j21y given pr, prs, , PR, PR,s, - This means that
€rt(ijor) 18 defined as residual with respect to any measurable function of Y.;(;;2;) and pr, prs,, pr,
DPR,s;- According to Equation 27 (see Theorem 1), it is possible to replace

E (YrtijQI |PT: DTS5 PTS ;> PRy PR2S1s 0 PRaS ;> (Ya(ijiy ) (Yrt(mz)')) by

E(Ym‘jm |pT, DTS, PR, PRyS,)- Hence, €421y is also a residual with respect to Y, ijo and pr, prs,,
PR, as well as pr,s,. Given that residuals are always uncorrelated with their regressors or with

functions of their regressors (c.f Steyer, 1988, 1989; Steyer & Eid, 2001), the condition above holds.

Following a similar logic, Equations (34) and (35) can be shown. O

Proof of Equation 36. First, €(,);;, may denote either a Level-1 or a Level-2 error variable.
Second, the latent trait factors T3, ;1 are functions of the latent trait variables Ty; 17, namely
T"’%ﬁ:/"'”' Thus, Cov(Tyirji1, €(ryriji) = 0 if Cov(Thirjir, €(ytijr) = 0. From Equation 26 in
Theorem 1, it follows directly that Cov(Tyirji11r, €rij11) = 0. Next, according to Equation 27 in Theorem

1, it follows that Cov(Tyirjr1r, €rijrr) = 0, where k > 2, because €55 is also defined as residual with

respect to Yy 1. Since Ty is a (Yyirji1r, pr)-measurable function, Equation



Cov(Tyirjir, €tijir) = 0 holds. Similarly, according to Equation 28 in Theorem 1, it can be shown that

Cov(Tyirjrr, €rtijor) = 0, because €,4521 is defined as a residual with respect to Y311, and Ty is

defined as a (Y3ij:11/, pr)-measurable function. Thus, Cov(Tiji11r, €(rytijr) = 0 holds. 0
UM
P Eaquati T - b it . Tiju—ariju dTVM b it Ty
roof of Equation 44. Tyj1 can be written as o and T, can be written as o=
i T4 j/21
Thus, Cov(Tyiji, T ) = 0 if Cov(Tyijur, T g) = 0. T Mgy is defined as

E(Srtirjror |p1, pR) — E(Stir jror |p7), which could be also rewritten as

E(Srtirjror |p1, pR) — E(Srtarjror |pr). Hence, Tg%,m, is a residual with respect to any (p7)-measurable

function and therefore uncorrelated with the (p7)-measurable function Ty;;1;. O

Proof of Equation 47. Again, Ty;j1 can be written as T‘”;\lT_iilT”“ and thus Cov(Tyj1, O ) =0

holds if CO’U(Ttijll, Otz"j’k’l’) = 0 is true. Otyj/k/l/ is defined as Stz"j’k’l’ — E(Sti/j/k/l/|p7‘). Again, this
means that Oy i is defined as residual with respect to any (p7)-measurable function, and is thereby

uncorrelated with the (p7)-measurable function Ty;;1;. O

Proof of Equation 48. Cov(Ttijl,Ogt?f[Ql,) = 0 holds, if Cov(Tyij11, O%%,Ql,) =0, because T};j1 can

ouM
til /21’ OUM
ATM . rti’j

. Tiij1i—QTij .
be written as ~5—TUL and Of}Y, can be written as
oi’j’21!

Nops 1oy Can be written as:
Tijll

OUM o1 = UM,y jror — B(U Mygirjror | p1,PR)

rti’j

It follows that Og%,m, is a residual with respect to (p7)-measurable functions, and thereby

uncorrelated with the (p7)-measurable function Ty 1;. O

Proof of Equation 52. For all k, k' > 2, Cov(T}}],., O1,) = 0 holds, if Cov(Tik,, Of i) =0
)Y

. M . oM .

holds, given that T/%, can be expressed as 15 and O}, can be rewritten as -+, TAL, is
Tijkl oil j k'

defined as Tk — E(Tyijw | Teijur) and thereby a direct function of the (p7)-measurable functions Tk

and Tiij1. Oi‘i/{j,k,l, is defined as Oy jrirrr — E(Ogirjrirr | Ogirjrar) and thereby a direct function of

Orijriry and Oy jriy, which are defined as residuals with respect to any (p7)-measurable function.

Hence Cov(T}f,., O}y )=0 holds. 0

- M UM \ _(is ; M UM\ (i .
Proof of Equation 63. Cov(T}j5, Ty1ir5e) = 0 is true, if Cov(Ty5y,, Tryirjrar) = 0 is true, because
M TYM.
. L trtiljlat! M ta .
/5 can be written as o Tyijp 1s defined as
b

Tiijei — E(Thijrr | Triju) and thereby a direct function of the (p7)-measurable functions Ty . and Tiiju.

TM,
TtM can be expressed as )\fu’-”"l

VI TUM
ik Tijkl

rti'j

and

Hence Cov(Tt%kl,TrUt%,Ql,) = 0 follows from Cov(Tyijui, Tg%,m,) = 0, which was proven above (see

Proof of Equation 44). O

Proof of Equation 68. Cov(Oyijki, Owijrir) = 0 (VI # 1) holds, because Oy;ji is a

(p7, P75, PR, )-measurable function as Sijx is a (p7, Prs,, PRy, )-measurable function and



Orijit = Stijt — E(Stijrr | pr). According to Assumption 31, it holds that

E (Stijkl | pT)stlv «. 7pTSL,1 7pTSH,1) .. 7pTSf)ka/51) .. 7ka/SL,1 )ka/SH,lv “. 7ka/Sf) - E(Stijkl | pT);

where k = k" or k # k’. Tt follows that Ok is also a residual with respect to a
(p1,PTS, »PR:S, )-measurable function, and therefore uncorrelated with the
(pT, P75, ,PR:S, )-measurable function Oy r. Equations 69 and 70 can be shown following a similar

logic. O

Proof of Equation 65. First, note that Cov(Oj11, O%M) = 0 follows directly, because O%kl is
defined as Oyijki — E(Oyijk|Orijui) and thus O%‘kl is a residual with respect to Oy;j1;.
Cov(OtijU,O%kl,) = 0 holds if Cov(Oyiji1, Orijrr) = 0 and Cov(Oyijir, Ogijir) = 0, as
O%‘kl/ = Oijrrr — E(Ovijrrr | Orijirr). Cov(Orijir, Owijir) = 0 follows from Equation (68), which was

proven above. By Assumption 31

E(Stijkl | pT)stlv «. 7pTSl_17pTSl+17 “. 7pTSf7ka/51) ... 7ka/SL,1 ’ka’Sl+1’ “. aka/Sf) - E(Stijkl | pT)

Otijui = Stiju — E(Stiju | pr) is also a residual with respect to a (pr,prs, ,Pr,.s, )-measurable
function, with k # 1. Therefore Oy;;1; is uncorrelated with the (p7,prs, . Pr,s, )-measurable function

Otijrr and Cov(Oyij1r, Oijrrr ) = 0. .

1.9. Covariance Structure: LST-COM Model with CRI

In the following section the total variance-covariance matrix of the LST-COM model for three
indicators X two constructs x two methods x three occasions of measurements is described. Similar to
the previous chapters, the total covariance matrix ¥ of size 36x36 (i.e., ijkl X ijkl) can be

decomposed into a within Xy and a between ¥ p matrix:
Y=3Yw+Xp.

As a consequence of the definition of the model, each of these matrices ¥y and X can be further
decomposed into a trait 7', occasion-specific variables O and residual 6 matrix. This decomposition
follows directly, given that latent trait variables are uncorrelated with latent occasion-specific variables
(see above Theorem 1). Thus, the within Xy and the between X g variance-covariance matrices may be

represented as
Yw = ETW + EOW + ng, and Yp = ETB + EOB + EgB.

Y1, refers to the within trait matrix, ¥o,, refers to the within occasion-specific matrix, Xg,, refers to

the within residual matrix, Y7, refers to the between trait matrix, ¥o, refers to the between



occasion-specific matrix, and Xg, is the between residual matrix. The within and between trait and

occasion-specific matrices X1y, , o, , Jo,, , and X7, are then further decomposed into:

1, = An, ®1, A7y, and Bow = Aoy ®ow Ao,

Y1y = A1y @1, Az, and Yo, = Ao, B0, Ap,,-

A7, refers to the factor loading matrix for the trait-specific latent variables on the within level, with
A'TW being its transpose, ®7y, is the variance and covariance matrix of the latent trait-specific variables
on the within level, Ap,, is the factor loading matrix for the latent occasion-specific variables on the
within level, with A/OW being the transposed matrix, ®o,, is the variance and covariance matrix of the
latent occasion-specific variables on the within level. In a similar way, the target-level matrices are
denoted by the subscript B for between level.

In order to illustrate the complete covariance matrix of the LST-COM model for three indicators,
two constructs, two methods, and three occasions of measurement, the index (j,1) which can take the
following values in the given ordering, is defined: (1,1), (1,2),(1,3),(2,1),(2,2),(2,3). The index (1,1)
indicates that a given parameter (e.g., factor loading) refers to the first construct j = 1 measured on
the first occasion of measurement | = 1. In addition, the function Pos((4,1)) is defined. The function
maps the index (j,1) on its position p with respect to the ordering above. The function therefore takes

the values given in Table 1. Then, the matrix A, of size 36x6 (i.e., ijkl X ij) containing the factor

Function Values
(4, 1) L,y (1,2) (1,3) (21 (22) (23)
p=Pos((4,1)) 1 2 3 4 5 6
TABLE 1.

Function for the mapping of the index (j,!) to p.

TU]VI

loadings of the latent trait unique method variables T73/%; is given by:

6
Aty = Z IXT ® A'l;‘w’
p=1

Z§:1 refers to the sum over all constructs j and measurement occasions I. Ij is a contrast (or
dummy coding) matrix for a particular combination of construct and occasion of measurement (e.g.,
j=1land!=1). ® is the Kronecker product and Af}w is the within trait unique method factor loading

matrix of size 6x3 (i.e., ik x ). The contrast matrix IXT, where p € N={1,...,6} is defined as 6x2



matrix (i.e., jl x j):

10 0 0 0 0
0 0 0 0 0 0
0 0 10 0 0

Ille: ’ IXT: ’ Ii’r: ’
0 0 0 0 0 0
0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

Ii: P Ii: ’ Ig:

N 0 0 * 0 1 * 0 0
0 0 0 0 0 0
0 0 0 0 0 1

Then, the within trait unique method factor loading matrix A%, = of size 6x3 (i.e., ik x i), where the

UM UM UM P :
elements )‘T1j2l7 )‘T2j2l’ )\T3j2l > 0 and all other elements are zero, is given by:

0 0 0
0 0 0
a = 0’ 0 0
MMy 0 0
0 Apjy O

0 0 A7gy

Similarly, the occasion-specific unique method factor loading matrix at Level-1 Ao, of size 36x6 (i.e.,

ijkl x jl) can be defined:
6
Aoy, =) IR @AR .
p=1

IKO refers to a contrast matrix of size 6x6 (i.e., jl x jl) where p € N = {1,...,6} with a one on the p'"

diagonal element and zeros elsewhere, e.g. for p=2:

2
IAO -

|
o O o o o o
o O o o = O
o O O o o o
o O O o o o
o O o o o o
o O o o o o



Again, the occasion-specific unique method factor loading vector at Level—lAgW of size 6x1 (i.e., ik x
1) is given by

0
0
AL, = 0
)‘01321

)\02]2l

)‘03j2l
The complete within covariance matrix of the latent trait variables ®xy, of size 6x6 (i.e., ij X ij) can

be represented as follows (see Figure 1):
"I)TW =E [(V‘I’Tw - E[VQTW])(V‘I’TW - E[V‘I’TW]) :| )

where Vg, refers to the vector of size 6x1 (i.e., ij x 1) including all latent trait unique method
factors on the within level, namely (TT[{{V{Q, TyM, TYM, TYM, TUM,, T[{:%Q) . Note that all

covariances and correlations between latent trait unique method variables are permissible (see Theorem

1). Consequently, ®7y, does not contain zero-elements. In a similar way, ®¢,, is given by:
®o,, =E {(V‘I’ow - E[VQOW])(V‘POW - E[V‘I’ow]) } )

where Vg, refers to the vector of size 6x1 (i.e., jl x 1) including all latent occasion-specific unique
method factors at Level-1, namely (OYA%,, O%4%,, OVALs, OF5%,, OVAL,, OF5%3) . Note that O%‘;fm are
assumed to be homogeneous across items, therefore the index ¢ has been dropped. In contrast to
V&, the within variance and covariance matrix Vo, of the latent occasion-specific variables ovM ol
of size 6x6 (i.e., jl x jl) contains zero-elements. The zero-elements (see Theorem 1) refer to the
correlations among the latent occasion-specific unique method variables pertaining to the same
construct j, but different occasions of measurement ! and ', that is CO’U(OTUQI, O%%l,) =0, VI#Il
(see white cells in Figure 2). Furthermore, it is also recommended to fix all of the following correlations
referring to associations between latent occasion-specific unique method factors pertaining to different
constructs j # 7' and different occasions of measurement [ # I’ to zero as well:

Cov(OYM  OUYM

rtjol> th’2l’) =0, V4,1 # 7,1 (see light gray cells in Figure 2). In most empirical applications

these correlations will be close to zero, and therefore may be fixed to zero for parsimony.

The target-level matrices can be defined following a similar logic. First, the between latent trait
factor loadings matrix Ary of size 36 x12 (i.e., ijkl x jkl) containing the latent factor loading onto the

latent trait variables T};;1 and Tgfg’ is given by:

6
= ZI ®ATB’
p=1



FIGURE 1.

Within variance-covariance matrix &7y, of the LST-COM, where 1=T5,, 2=T M, 3=TUM, 4=TYM, 5=TY2L,,
6:Tg§/212. Cells colored in dark gray indicate permissible and interpretable variances and covariances among the latent

variables.

FIGURE 2.
Within variance-covariance matrix ®o,,, of the LST-COM, where 1=O7I.Jt11\’1217 2:0%11\422, 3=OZ11V123, 420%12\421, 520%11\422,
6:0%%3. Cells colored in dark gray indicate permissible and interpretable variances and covariances among the latent
variables. Cells colored in light gray refer to covariances that can be fixed to zero for parsimony. White cells refer to

non-permissible covariances among the latent variables.



cM
for which the elements Ar1j11, Arajir, Arsji, Arijer, Ar2jor, ATsjal, )‘T1j2l7 )‘szle )‘T332l > 0 and all other
elements are necessarily zero. IRT refers to a contrast matrix of size 6 x 2 (i.e., jl x j) described above.

Then, Af. is the matrix of the between factor loadings of size 6x6 (i.e., ik x ik) which is given by:

Ariju 0 0 0 0 0
0 Aryu 0 0 0 0
P 0 Amyu 0 0 0
Ts — cM
Arijar O 0 A, 0 0
0 Argm O 0 AL, 0
0 0 Arsjm 0 0 AGM,

In a similar way, the matrix Aoy of size 36 x12 (i.e., ijkl x jkl) containing the between latent
occasion-specific factor loadings of the common latent occasion-specific variables Oy;1; and Otﬂl is

given by:
6
=D IR, © AL,
p=1
Again, IKO refers to the contrast matrix of size 6 x 6 (i.e., jI x jl) described above and AI(’)B is the

between factor loadings matrix!, represented by:

Ao 0

Ao2;11 0

Aoz 0
A =

) cM
)‘01121 )‘013‘21

, CM
Aozj21 )‘023‘2[

Ao3j 21 )\8%21
The between variance and covariance matrix of the latent trait variables ®1g of size 12x12 (i.e., ijk X
1jk) is given by:

P, =E[(Var, — EVar,)(Ver, —EVer,)) ],
where Vg, refers to the vector of size 12x1 including all latent trait unique method factors on the
between level, namely (Ti11, Tio1, Tisr, TG, Toi!, TG, Tz, Tioo, Tiso, TGS, T3, TS ) .Asa
consequence of the definition of the model, all elements referring to Cov(T%;, Tt%‘]\z/[ ) =0 are
zero-elements. For parsimony reasons, it is recommended to also fix the elements referring to
Cov(Ty jr, t’LJ2 MY =0, Vi,j+#1i,j to zero. In Figure 3 the structure of the variance-covariance matrix

P, is depicted.

INote that for the sake of simplicity, it is assumed that the latent occasion-specific variables Ot4511 are homogeneous
across items. Hence, it is assumed that the latent occasion-specific variables Oy;;1; are measured by a common latent
occasion-specific factor Oy;1;. The matrix Aog,, refers therefore to the factor loading matrix of common Oy;1; and Otle

variables. Note that this model differs slightly from the model in Definition 2.



FIGURE 3.

Between variance-covariance matrix @TB of the LST-COM model, where 1=T%11, 2=T}21, 3=T%31, 4:Tg{w, 5:Tg{w,
6:T§{VI , 7=T12, 8=T}22, 9=T}32, 10:Tg§4 s llzTgé‘/I s 12:Tgé‘/f . Cells colored in white indicate zero-covariances, cells
colored in gray indicate permissible and interpretable variances and covariances. Cells in light gray indicate covariances

that should be fixed to zero for parsimony.

The between variance and covariance matrix of the latent occasion-specific factors ®o, of size
12x12 (i.e., jkl x jkl) is given by:

oy = E [(Vao, — EVao,])(Vao, ~ElVas,]) |,

where Vg, = refers to the vector of size 12x1 including all latent occasion-specific factors on the
between level, namely (Otllla Otci%, Ort121, OE{%, Ot131, th%a O211, Org%, Ot221, Otcz%, O¢231, Og%) .
By definition, all elements referring to

Cov(Oyji, Ogjir) = Cov(Oyji, Og%) = C’ov(Og%, Og%) =0, V1 #1 are zero elements. Again, for
parsimony reasons, it is recommended to fix the elements referring to Cov(Oyjy, Og%fl,) Vil #£51 to
zero as well. As we explained earlier in the manuscript, occasion-specific variables may be correlated
with latent occasion-specific method variables measured at Level-2, if they belong to different
constructs 7 and j'. However, theses correlations will often be low and non-significant in empirical

applications. Figure 4 illustrates the complete between variance-covariance matrix for the latent

occasion-specific variables.

1.10. Mean Structure

Theorem 2. (Mean structure) Iff
M = <(Q’ M? 9)7 Tt’ THM’ TtCM’ T}JVI’ Ot’ OHMv OtCM’ O};VI’ €rt, €¢, A, AT’ )‘gM’ )‘gM’ )‘TM’
A0, AFMAEM AMY is a LST-COM model with CRI as defined in Definition 2, where the first method



FIGURE 4.
Between variance-covariance matrix ® g of the LST-COM model, where 1=0:111, 2:0?{12\/{, 3=0¢121, 4=Otci12vé, 5=04¢131,
6208%, 7=04211, 820%%, 9=04¢221, 1020%%, 11=04231, 1220%12\/{3. Cells colored in white indicate zero covariances,
cells colored in gray indicate permissible and interpretable variances and covariances among the latent variables. Cells in

light gray indicate covariances among the latent variables that should be fixed to zero for parsimony.

(k = 1) is chosen as reference method (without loss of generality), then the following mean structure
holds for allr e R={1,...,a},t €T ={1,...,b},i €I ={1,...,c},j e J={1,...,d},
ke K={1,...;e},le L={1,..., [}

E(Yyijm) =riji + ArijaE(Teijn ), (72)
E(Y,1ij01) =qijor + AijorB(Thign)- (73)
E(O¢ij1) =0, (74)
E(T}52) =0, (75)
E(T{5) =0, (76)

E( t”k) =0, Vk>2, (77)
E(Orj21) =0, (78)
E(Ogja1) =0, (79)
(Ot_]k:l) =0, Vk>2, (80)
E(etijr) =0, Yk # 2, (81)
E(ertijor) =0, (82)



where E(.) denotes expected value.

Proof. Mean structure

The observed variables Y, +i;1, Pertaining to the reference method are given by:
Yiiju = ariju + ArijuTiipn + Oriju + €tiju-
The expectation (mean) of Yy, is
E(Yyi51) = Elagijn) + E(A i1 Trij1) + E(Owijn) + E(eriju)-
According to the Equations 74 and 81 in the above Theorem 2, it follows:
E(Yyi51) = ariju + ApijuE(Tejn)-

Equations 74 and 81 in the above Theorem 2 state that the latent occasion-specific variables Oy;;1; as
well as the measurement error variables e;1; are defined as residuals. If one sets oij1; to zero and
Agiju to one, it follows that E(Y,;;1;) = E(Tt;1). In a similar way, the observed variable Y, ;o of the

interchangeable non reference method is given by

_ 3 oM
Yotijor =Qrijor + ApijorTrijn + )‘Tij2l tij2 b+ )\T”zz mjz"'

cM
)‘011210“1” + )‘OszZOfﬂl + )‘OszZOrtJQZ + €rtijol-

Hence, the expectation (mean) of Y, ;.o is given by

E(Y,4i501) =E(aqi o) + E(Aqyjo Thij1) + E(/\ngzl tij2 5+ E(/\ngzl [{ngz)"‘

E()‘Oz]% O“Jll) + E()‘Oz]% Ot]2l ) + E()‘Oz]2l Ortj2l) + E(Ertij2l)~

Again, the expected values of the T, 1]2 , m;zv Orij, Of]2l , Orszl» and €,4;59;-variables are zero with

respect to the above theorem. Thus, the equation simplifies to (see Equation 73):
E(Y,tijo1) = @rijor + Apijor B(Tijn)-

By definition of the LST-COM model the latent variables T, ”]2 , TY ”]2, Oyijui, Og%, Offt%l, and €501
are defined as zero-mean residual variables. The observed variable Y}, .5, of the structurally different

non reference method is decomposed into:
_ M M M M
Yigat = arijar + Arijai Trijn + Arijai Tiizs + Aoijai Oriju + Aoija Ogjar + €rigai-
The expectation (mean) of Y}, 5 is then given by

E(Yiija) = E(arijz) + E(A i3 Thii) + E()‘%jSITt%S)

+ E()\O’Lj3l O“Jll) + E()‘Ozg?)l Ot]3l) + E(etij3l)'



According to the Equations 74, 77, 80, and 81 of the above Theorem 2, it follows that the expectations
(means) of the latent variables Oy;;1;, Tt%3, Of‘fgl and ;53 are zero. Thus, the above equation

simplifies to (see Equation 72):
E(Y,ij5) = arijar + ApijsiE(Teijn ).

Equations 74, 77, 80 and 81 follow by definition of the LST-COM model, given that Oy;;1;, Tt%3, Of‘;fgl
and €53, are defined as zero-mean residual variables (Steyer, 1989; Steyer & Eid, 2001). The intercepts
(apijiy) of the non reference method indicators are identified, if the factor loading parameters (Ap;;y;)

are set to a value greater than 0 (usually 1) or if the E(T3;;1) is set to zero.

Remark 4. Equations 72 and 73 clarify that the means of the observed variables are equal to
ariipr T ArijB(Thij1) and ag o + Apy i E(Thij1), respectively. Equations 74 to 80 reveal that the
latent occasion-specific variables as well as the trait-specific and occasion-specific method factors are
defined as residuals and therefore have an expected value of zero. The same holds for the measurement

error variables (see Equation 81 and 82).

1.11. Identification

Theorem 3. (Identification of the LST-COM covariance structure) Let
M=((Q,o,2), Ty, TIM TEM TM O, OYM, O™, OM, €4, €1, ap, Ap, ATM AEM AN
Aos )\gM, AgM, )\]‘O/[) be a LST-COM model with CRI, then the parameters of the vector pr, and the
matrices Az, @1y, Aoy, oy, oy, ATg, s, Aog, Pos, g, are identified, if either one factor

TCM TUM 0]

CM  \UM cM
ijr Ltij2 s Lrtij2s

. M M UM
loading )‘Tijklv )‘Tijklv )‘Tijma Tij205 /\Oijkl7 /\Oijkl7 /\Oij2l7 )‘Oij2l for each factor T; tijl

Og% , Ogt%l or the variance of these factors are set to any real value larger than 0 (typically to 1), and

(a) iffi=2,>2,k>2,1>3and ®&7,, ®o,,, r,, o, contain permissible correlations among the

latent variables (i.e., nonzero elements in the off-diagonal), otherwise

(b) iff i >3,j>1,k>3,1>3.

Remark 5. According to the above Theorem 3 the LST-COM model parameter are uniquely
identified for the minimal condition of two indicators, two constructs, two sets of methods (one
structurally different and one set of interchangeable methods) and three occasions of measurement.
Given that the between covariance matrix X g of the LST-COM can be seen as restrictive variant of the
total covariance matrix of the MM-LST model by Courvoisier (2006), the model identification for the
parameter with respect to the between covariance matrix X5 is shown by Courvoisier (2006,
chapter 5.4.11). The identification for the parameters of the within covariance matrix Xy is

demonstrated for the case of a 2 x 2 X 2 x 3 measurement design (Koch, 2013).
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1.12. Mplus Input Template for MC Simulation

Title :
LST-COM Model Simulation
1 Constructs
2 Methods
2 Occasions
Montecarlo:
names =Y 1111 Y2111 Y3111
Y1112 Y2112 Y3112
Y1121 Y2121 Y3121
Y1122 Y2122 Y3122;
nreps = 500;
seed = 55719;
repsave = ALL;
save = Datax*.dat;
ncsizes = 1;
csizes = 350 ( 2 );
nobservations = 700 ;
between =Y1111 Y2111 Y3111
Y1112 Y2112 Y3112;
Model Population:
%Within%
UM State Loadings
UMS121 BY Y1121@1
Y2121%1 (gZum212)
Y3121%1 (gZum312);
UMS122 BY Y1122@1
Y2122%1 (gZum212)
Y3122%1 (gZum312);
UM Trait Loadings
UMT112 BY Yl1l121@1
Y1122@1;
UMT212 BY Y2121@1
Y2122@1 ;
UMT312 BY Y3121Q1
Y3122@1;
!Latent Variances
UMS121%0.16;
UMS122%0.16;
UMT112%0.16;
UMT212%0.16;
UMT312%0.16;

!Latent Covariances

UMSI121 with UMS122@0 UMT112@0 UMT212@0 UMT312@0

)
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UMS122 with UMT112@0 UMT212@0 UMT312@0
UMT112 with UMT212%0.096 UMT312%0.096;

UMT212 with UMT312%0.096;

!Residual Variances
Y1121%0.19;
Y2121%0.19;
Y3121%0.19;
Y1122%0.19;
Y2122%0.19;
Y3122%0.19;
%Between%

ICM State Loadings
CMS121 BY Y1121@1

Y2121%1 (gZcm212)
Y3121%1 (gZcm312);

CMS122 BY Y1122@1

Y2122%1 (gZcm212)
Y3122%1 (gZcm312);

!State Loadings
S111 BY Y1111@1
Y2111%1 (1Z211)
Y3111x1 (12Z311)
Y1121%0.5833333
Y2121%0.5833333
Y3121%0.5833333
S112 BY Y1112@1
Y2112+1 (1Z211)
Y3112+1 (1Z311)
Y1122%0.5833333
Y2122%0.5833333
Y3122%0.5833333
ICM Trait Loadings
CMT112 BY Y1121@Q1
Y1122@1;
CMT212 BY Y2121@1
Y2122@1;
CMT312 BY Y3121@1
Y3122@1;

(1Z112)
(1Z212)
(1Z312);

(1Z112)
(1Z212)
(1Z312);

! Trait Loadings (Reference)

T111 BY Ylll1i@1l
Y1ll12@1

Y1121%0.5(1X112)

Y1122%0.5(1X112);

T211 BY Y2111@1
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Y2112@1
Y2121%0.5(1X212)
Y2122%0.5(1X212);
T311 BY Y3111@1
Y3112@1
Y3121%0.5(1X312)
Y3122%0.5(1X312);
!Latent Variances
S111%0.36;
CMS121%0.1225;
S112%0.36;
CMS122%0.1225;
T111%0.49;
T211%0.49;
T311%0.49;
CMT112%0.1225;
CMT212%0.1225;
CMT312%0.1225;
!Latent Covariances
S111 with CMS121@Q0 S112@0 CMS122@0 T111@0 T211@0 T311@Q0 CMT112@0 CMT212@0 CMT312Q0;
CMS121 with S112@0 CMS122@0 T111@0 T211@0 T311@0 CMT112@0 CMT212@0 CMT312Q0;
S112 with CMS122Q0 T111@0 T211@0 T311@0 CMT112@0 CMT212@0 CMT312Q0;
CMS122 with T111@0 T211@0 T311@0 CMT112@0 CMT212@0 CMT312@0;
T111 with T211%0.392 T311%0.392 CMT112@0 CMT212@0 CMT312Q0;
T211 with T311%0.392 CMT112@0 CMT212@0 CMT312Q0 ;
T311 with CMT112@0 CMT212@0 CMT312Q@0;
CMT112 with CMT212%0.0735 CMT312%0.0735;
CMT212 with CMT312%0.0735;
!Residual Variances
Y1111%0.15;
Y2111%0.15;
Y3111%0.15;
Y1112%0.15;
Y2112%0.15;
Y3112%0.15;
Y1121@Q0;
Y2121@Q0;
Y3121Q0;
Y1122Q0;
Y2122Q0;
Y3122Q0;
!Intercepts
[Y1111@0];
[Y2111@0];



132
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[Y3111@0];

[Y1112@0];

[Y2112@0] ;

[Y3112@0] ;

[Y1121@0];

[Y2121@0];

[Y3121@0];

[Y1122@0];

[Y2122@0] ;

[Y3122@0] ;

!Latent Means

[T111%0];

[T211%0];

[T311%0];

Analysis:
Type=Twolevel ;
HllIterations=15000;
Processors =4;

Model:

! repeat model from above!

Output: Tech9;
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