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Modeling Conditional Dependence of Response Accuracy and Response Time with the 

Diffusion Item Response Theory Model – Supplementary Material 

 

This supplementary material presents a simulation study conducted to test if the diffusion IRT model with 

random variability (DIRT-RV) can recover its parameters (Section 4 of the article). In our first simulation, we 

generated data of RTs and binary responses with P = 200 persons and I = 15 items from the diffusion IRT model 

with random variability in drift rate and in starting point. We randomly generated or set true values of data-

generating parameters as follows (Table S1): log(𝑎!) ~	𝑈(−1,0), 𝑏! 	~	𝑈(−1.5, 0.5), log1𝛾"3	~	𝑁(0, 0.5), 

𝜃"	~	𝑁(0, 1), 𝜏"	~	𝑁(0.3, 1), 𝜂 = 1, and 𝑠#$ = 0.5 where 𝑈(𝑎, 𝑏) indicates a uniform distribution with the range of 

(𝑎, 𝑏) and 𝑁(𝜇%, 𝜎%) indicates a normal distribution with mean 𝜇% and standard deviation 𝜎%.  

To estimate the joint posterior distributions of the model parameters, prior distributions should be specified 

(Table S1). For person boundary separation and drift rate, we used log1𝛾"3	~	𝑁(0, 1) and 𝜃"	~	𝑁(0, 1). We set the 

standard deviations in these prior distributions to 1 as done in Van der Mass et al. (2011). For person-wise 

nondecision time, a natural choice was to put 𝜏"	~	𝑈 =0,𝑚𝑖𝑛! 1𝑇"!3B since the nondecision time of person 𝑝 should 

be smaller than the minimum RT of the same person. For item time-pressure and difficulty parameters, we set 

𝑎! 	~	𝑈(0, 1.5) and 𝑏! 	~	𝑁(0, 2), respectively, which have sufficiently wide range and large variance to cover typical 

ranges of the parameter estimates (Molenaar, Tuerlinckx, & Van der Mass, 2015). For the two variability 

parameters, we chose to use 𝜂	~	𝑇𝑁(0, 3; 0,∞) and 𝑠#$	~	𝐵𝑒𝑡𝑎(3, 2) where 𝑇𝑁(𝜇&, 𝜎&; 𝑐, 𝑑) indicates a truncated 

normal distribution with 𝜇& and 𝜎& as the mean and standard deviation of a normal random variable, respectively, 

and (𝑐, 𝑑) as the range of the distribution, and 𝐵𝑒𝑡𝑎(𝑚, 𝑛) indicates a beta distribution with two shape parameters 𝑚 

and 𝑛. The truncated normal prior for 𝜂 is noninformative or weakly informative with a sufficiently large variance 

but with a constraint to make the variance component positive. The beta prior for 𝑠#$ is weakly informative in that it 

favors intermediate values with mean of 0.6 and puts a little weight on extreme values close to 0 or 1. 

 

Parameters 𝒂𝒊 𝒃𝒊 𝝉𝒑 𝒍𝒐𝒈(𝜸𝒑) 𝜽𝒑 𝜼 𝒔𝒛𝒓 
Data-generating exp$𝑈(−1,0), 𝑈(−1.5, 1.5) 𝑈(0.3, 1) 𝑁(0, 0.5) 𝑁(0, 1) 1 0.5 

Prior 𝑈(0, 1.5) 𝑁(0, 2) 𝜏!	~	𝑈 50,𝑚𝑖𝑛" $𝑇!",: 𝑁(0, 1) 𝑁(0, 1) 𝑇𝑁(0, 3; 0,∞) 𝐵𝑒𝑡𝑎(3, 2) 

Table S1. Data-generating and Prior Distributions for the Simulation Study. 



 2 

 

With the prior specification above and the model likelihood computed using Equation 5, we implemented a 

Bayesian estimation method to fit the model to the generated data. We used the Differential Evolution Markov 

Chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner et al., 2013) sampling method in which different chains 

interact with each other to efficiently approximate the joint posterior distribution. The key idea is to generate a new 

proposal for one chain based on the difference between the current states of some other chains. This sampling 

method is known to perform better than a conventional MCMC method for models with a correlated parameter 

space (Turner et al., 2013), as is the case with the model we examine in this article. We ran the sampling algorithm 

for 10,000 iterations with 8 chains to obtain the joint posterior distribution of the model parameters. We discarded 

the first 2,000 samples as burn-in. For the first half of the burn-in iterations, we implemented the migration step with 

the migration probability of 0.2. Finally, we assessed convergence by visually inspecting if the posterior densities of 

each parameter obtained by chain matched with each other and the Gelman-Rubin convergence diagnostic (𝑅M) which 

was estimated as smaller than 1.1 for all model parameters (Gelman, 1996; Gelman et al., 2013). 

To evaluate the parameter recovery, we obtained the Maximum A Posteriori (MAP) estimates of the item 

and person parameters and plotted them against the true parameter values (top panels in Figure S1). The parameter 

plotted in each panel is labeled on top: item-pressure (𝑎!; log-transformed), item difficulty (𝑏!), person-wise 

nondecision time (𝜏"), person boundary separation (𝛾"; log-transformed), and person drift rate (𝜃"), respectively, 

from the top-left panel to the bottom-right panel. At the top-left side of each panel, the Pearson correlations (𝑟) 

between the MAP estimates and true parameter values are shown as 0.972 (log(𝑎!)), 0.988 (𝑏!), 0.954 (𝜏"), 0.941 

(log1𝛾"3), and 0.868 (𝜃"), respectively. For all parameters, the MAP estimates are consistent with their parameter 

values without any noticeable bias. In general, the result shows that the model can recover the item and person 

parameters reasonably well. 
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Figure S1. Parameter Recovery of the Diffusion IRT Model with Random Variability: Item and Person Parameters. Each 
row presents recovery of item and person parameters with a different number of items 𝐼 (shown on the left). In the five panels, 
the Maximum A Posteriori (MAP) estimates of the parameters are plotted on the x-axis against the true parameter values on the 
y-axis. The parameter plotted in each panel is denoted on the top: item-pressure (𝑎"; log-transformed), item difficulty (𝑏"), 
person-wise nondecision time (𝜏!), person boundary separation (𝛾!; log-transformed), and person drift rate (𝜃!), respectively, 
from top-left to bottom-right. In each panel, the Pearson correlation (𝑟) between the MAP estimate and true parameter values is 
presented at the top-left side. 
 

Figure S2 (top panels) shows the posterior distributions of random variability in drift rate 𝜂 (left) and those 

of random variability in starting point 𝑠#$ (right). Each curve in a panel shows a posterior density of the parameter 

obtained from each chain (i.e., eight density estimates from the eight Bayesian chains). The consistency among the 

chains shows that there is no convergence issue in the estimation and the model can reach the same solution 

regardless of how chains are initialized. The gray vertical line in each panel represents the true value of the random 

variability parameter (𝜂 = 1 and 𝑠#$ = 0.5). The MAP estimates of the two random variability parameters 

are  �̂�'() = 1.204 and  �̂�#$'() = 0.467, which are fairly close to the true values but show slight bias. Note that the 

general central tendency and spread of the bivariate RT distributions are predicted by the main person and item 

parameters and the variability parameters provide additional improvement in model fit over and above this 

prediction, by producing the best balance between the correct and error RT distributions. Capturing the relative 

speed of correct and error RTs is difficult, particularly when there are fewer error observations because error RTs  
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Figure S2. Parameter Recovery of the Diffusion IRT Model with Random Variability: Variability Parameters. Each row 
presents the posterior distributions of random variability in drift rate 𝜂 (left) and those of random variability in starting point 𝑠#$ 
(right) obtained with a different number of items I (shown on the top-left side of each panel). Different curves in the same panel 
show posterior densities of the parameter obtained from different chains. The gray vertical line in each panel represents the true 
value of the random variability parameter (𝜂 = 1 and 𝑠#$ = 0.5). 

 

 

can be much more variable in this case (Ratcliff & Tuerlinckx, 2002; Ratcliff & McKoon, 2008). This makes the 

variability parameters harder to precisely estimate compared to the person and item parameters. Considering this 

model mechanism, it can be concluded that the recovery of the variability parameters is reasonably good. 

There would be potential ways to improve recovery of the model parameters (particularly, the variability 

parameters). For example, increasing sample sizes can be beneficial. As we focus on the joint estimation of person 

and item parameters, more persons (items) in the data require more person (item) parameters to estimate. As our first 

simulation result showed that the item parameters can be recovered well with 𝑃 = 200, we examined the recovery 

with more items. To this end, we simulated data with 𝐼 = 25 and 𝐼 = 35 and fitted the model. Due to the 

computational cost, we conducted the recovery simulation once per condition without repetition.  
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 The middle and bottom panels in Figure S1 show recovery of the item and person parameters and those in 

Figure S2 show recovery of the variability parameters, with 𝐼 = 25 and 𝐼 = 35, respectively. In addition, Table S2 

(‘Non-hierarchical Prior’ Columns) shows the MAP estimates and 95% credible interval (in parentheses) of the 

variability parameters and Table S3 (‘Non-hierarchical Prior’ Columns) shows the Pearson correlations between true 

parameter values and their estimates and the mean squared errors (MSEs) of estimation obtained with three different 

number of items conditions. 

Generally, an increase in the number of items improved the estimation of person parameters as shown by 

increases in the Pearson correlation and decreases in MSE. Also, the variability parameters were more precisely 

estimated (narrower posterior densities) with more items. It can be inferred that, as the person parameters are more 

stably estimated, the related variability parameters can also be more reliably estimated. The point estimates of the 

variability parameters were not necessarily closer to the true value when the dataset was larger. This would be due to 

the sampling variability as we conducted a simulation only once per condition.  

Another estimation method that can probably improve the estimation quality is to implement a hierarchical 

structure. For example, when the model includes a hierarchical population distribution on person-wise drift rates and 

boundary separations (e.g., a bivariate normal distribution), an individual person parameter can be better estimated 

due to additional information from other persons. Also, explicitly modeling the correlation between the two person-

wise parameters across persons can help improve the estimation. Similarly, an over-arching item distribution can be 

implemented in the model. In this study, we only examined the population distribution because item parameters 

were generally more accurately and precisely estimated in our earlier simulation. As done with non-hierarchical 

priors, we fitted the model to the simulated data with different numbers of items (𝐼 = 15, 25, and 35) and the 

correlation between person drift rates and boundary separations of 0.2.  

 

 

 Non-hierarchical Prior Hierarchical Prior 
𝑰 𝜼 𝒔𝒛𝒓 𝜼 𝒔𝒛𝒓 

15 1.204 (0.650, 2.018) 0.467 (0.159, 0.641) 0.859 (0.419, 1.717) 0.379 (0.097, 0.616) 
25 1.035 (0.692, 1.676) 0.457 (0.174, 0.623) 1.038 (0.631, 1.766) 0.393 (0.109, 0.585) 
35 1.164 (0.825, 1.730) 0.501 (0.266, 0.627) 1.058 (0.737, 1.755) 0.453 (0.184, 0.626) 

Table S2. Maximum A Posterior (MAP) Estimates and 95% Credible Intervals (in Parentheses) of the Variability 
Parameters. The left two columns show the values obtained from the model fit with non-hierarchical priors on the person 
parameters and the right two columns show those with a hierarchical population prior. 
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  Non-hierarchical Prior Hierarchical Prior 
 𝑰 𝒍𝒐𝒈(𝒂𝒊) 𝒃𝒊 𝝉𝒑 𝒍𝒐𝒈(𝜸𝒑) 𝜽𝒑 𝜼 𝒔𝒛𝒓 𝒍𝒐𝒈(𝒂𝒊) 𝒃𝒊 𝝉𝒑 𝒍𝒐𝒈(𝜸𝒑) 𝜽𝒑 𝜼 𝒔𝒛𝒓 

𝒓 
15 0.972 0.988 0.954 0.941 0.868   0.985 0.971 0.960 0.954 0.841   
25 0.991 0.963 0.981 0.968 0.899   0.993 0.957 0.971 0.967 0.909   
35 0.972 0.971 0.985 0.971 0.935   0.992 0.956 0.988 0.975 0.937   

𝑴𝑺𝑬 
15 0.085 0.112 0.010 0.140 0.542 0.170 0.017 0.041 0.210 0.008 0.083 0.657 0.150 0.033 
25 0.075 0.171 0.004 0.105 0.443 0.068 0.015 0.035 0.219 0.005 0.064 0.487 0.095 0.027 
35 0.105 0.176 0.003 0.112 0.364 0.082 0.009 0.033 0.243 0.003 0.057 0.438 0.076 0.015 

Table S3. Pearson Correlations between True Parameter Values and Their Estimates (𝒓) and Mean Squared Errors 
(MSEs). The left seven columns show the values obtained from the model fit with non-hierarchical priors on the person 
parameters and the right seven columns show those with a hierarchical population prior. 

 

In general, the estimation results with a hierarchical distribution were very similar to our earlier results with 

non-hierarchical priors (‘Hierarchical Prior’ columns in Tables S2 and S3). One thing to note is that when the 

number of items is small (e.g., 𝐼 = 15), there would not be sufficient information in the data to appropriately 

constrain person-wise parameters and so their estimates can shrink toward the group mean (which is fixed to 0 for 

identifiability). The underestimation bias can also propagate to the variability parameter estimation. This would not 

happen when the number of items is not too small, with which the estimation results are similar to those obtained 

with non-hierarchical priors. Different parameters can be better or worse estimated in this case. However, it should 

be noticed that this simulation study is limited in that the model fitting was conducted only once per condition and 

per prior specification due to the computational cost.  

Although we focus on the joint estimation of person and item parameters, a marginalized method such as 

the Marginal Maximum Likelihood (MML) can also be applied to fit the proposed model. With all person 

parameters (latent traits/abilities) marginalized out, this method can potentially improve the estimation of the 

variability parameters. However, the improvement would be at the expense of losing the uncertainty information of 

the person-wise parameters, which are of primary importance in the diffusion modeling.  

In the current simulation study, we tried to generate data with a reasonable choice of parameter values. Our 

choice was motivated by the data-generating distributions implemented in simdiff() function in the diffIRT package 

in R (Molenaar et al., 2015). For a diffusion IRT model with drift rate defined as a difference between person drift 

rate and item difficulty (threshold) parameter, this function by default generates main item and person parameter 

values with log(𝑎!)~	𝑈(−1,0), 𝑏! 	~	𝑈(−1.5, 0.5), 𝛾"	~	𝐿𝑁(0, 0.3), and 𝜃"	~	𝑁(0, 0.5). For the item parameters, 

we used the same distributions and for the person parameters, we used similar distributions but with wider ranges. 

However, it can be questioned if the model can recover its parameters from different distributions. For example, one 

of our reviewers pointed out that our prior choice for (log-transformed) boundary separation 𝑙𝑜𝑔(𝛾") may favor the 
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true data-generating values. To address this issue, we conducted another simulation study with different data-

generating distributions for 𝑙𝑜𝑔(𝛾"): 𝑁(0, 0.25) and 𝑁(0, 1). Our original choice was 𝑁(0, 0.5) while the prior 

distribution is 𝑁(0, 1). Thus, this simulation can show how the estimation quality changes as a function of a prior 

choice.  

Figures S3 and S4 show the results. The top, middle, and bottom panels in these figures present the 

recovery results when the true data-generating values for 𝑙𝑜𝑔(𝛾") are sampled with standard deviations of 0.25, 0.5 

(the original result presented in Figures S1 and S2), and 1, respectively. In general, the results show that the model 

performed well in parameter recovery across the conditions examined. When the prior distribution for 𝑙𝑜𝑔(𝛾") was 

much wider than its true underlying distribution (top panels), the estimation of 𝑙𝑜𝑔1𝛾"3 got worse but still produced 

a reasonable recovery.  

 

 

Figure S3. Parameter Recovery of the Diffusion IRT Model with Random Variability: Item and Person Parameters. Each 
row presents recovery of item and person parameters with a different choice of the standard deviation in the data-generating 
distribution for 𝑙𝑜𝑔$𝛾!, (shown on the left). In the five panels, the Maximum A Posteriori (MAP) estimates of the parameters are 
plotted on the x-axis against the true parameter values on the y-axis. The parameter plotted in each panel is denoted on the top: 
item-pressure (𝑎"; log-transformed), item difficulty (𝑏"), person-wise nondecision time (𝜏!), person boundary separation (𝛾!; log-
transformed), and person drift rate (𝜃!), respectively, from top-left to bottom-right. In each panel, the Pearson correlation (𝑟) 
between the MAP estimate and true parameter values is presented at the top-left side. 
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Also, changes in the standard deviations of the data-generating distribution of 𝑙𝑜𝑔1𝛾"3 affected the 

estimation of nondecision time 𝜏". This is because the estimates of 𝜏" are highly associated with the minimum RT of 

the subject 𝑝 (across items). When 𝑙𝑜𝑔1𝛾"3 values are generally small, persons are more likely to have their 

minimum RTs close to the nondecision time. In contrast, when the distribution of 𝑙𝑜𝑔1𝛾"3 is wide and some persons 

have large boundary separations, their RTs for all item responses can largely deviate from their nondecision time. 

For these persons, 𝜏" would be overestimated. Consistent with this relation, the result shows that the estimation of 

𝜏" got worse when the distribution for 𝑙𝑜𝑔1𝛾"3 is wider. Particularly, when the standard deviation of 𝑙𝑜𝑔1𝛾"3 was 1, 

there was one simulated person with a too large 𝛾"; 𝛾" = 14.142 and 𝑙𝑜𝑔1𝛾"3 = 2.649 while the second largest 

values were 𝛾" = 7.180 and 𝑙𝑜𝑔1𝛾"3 = 1.9711. The nondecision time estimate for this person largely deviated from 

its true value (the right-most red dot in the bottom middle panel in Figure S3). However, excluding this person, the 

recovery was reasonably good with 𝑟 = 0.851 (a scatter plot is presented in the inset on the top-right side of the 

bottom middle panel in Figure S3). In practice, a good estimation of nondecision time can be secured when there are 

more items. Alternatively, the item set can intentionally include some items/trials to explicitly measure nondecision 

time only (e.g., an item asking for a response without actual problem-solving). 

 

 

 
1 It would be informative to provide empirical values of person-wise boundary separation to evaluate the appropriateness of the distribution 
examined in this study. In our empirical applications, most person-wise boundary separation (log-transformed) estimates are between -1 and 1 
(except for two persons in the extraversion data and two persons in the rotation data). The maximum estimate of log5𝛾%7 was 1.149 (𝛾% of 3.156) 
in the extraversion data and 1.184 (𝛾% of 3.267) in the rotation data. In another independent project, the model was applied to analogies and 
matrix reasoning data that have much longer RTs. The maximum estimate of log5𝛾%7 was 0.519 (𝛾% of 1.680) in the analogies data and 0.384 (𝛾% 
of 1.468) in the matrix reasoning data and so generally person-wise boundary separations and individual differences were smaller. Instead, longer 
data RTs were accounted for by smaller item-wise time-pressure parameters (𝑎&). 
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Figure S4. Parameter Recovery of the Diffusion IRT Model with Random Variability: Variability Parameters. Each row 
presents the posterior distributions of random variability in drift rate 𝜂 (left) and those of random variability in starting point 𝑠#$ 
(right) obtained a different choice of the standard deviation in the data-generating distribution for 𝑙𝑜𝑔$𝛾!, (shown on the top-left 
side of each panel). Different curves in the same panel show posterior densities of the parameter obtained from different chains. 
The gray vertical line in each panel represents the true value of the random variability parameter (𝜂 = 1 and 𝑠#$ = 0.5). 
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Code Availability 

The R scripts to fit the diffusion IRT model with random variability is available online at 

https://osf.io/vg2nf/  
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