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A Estimating the Proportional Hazard Factor Model

In the proportional hazard (PH) factor model (Ranger & Ortner, 2012), the
conditional hazard function of the manifest variable (MV) Y ∗ij = y∗, y∗ ≥ 0, given the latent
variable (LV) X∗i = x∗ is subject to the following factorization:

hj(y
∗|x∗) = hj0(y

∗) · exp(βjx
∗), (A.1)

in which hj0(y
∗) is a non-parametric baseline hazard function, and the incremental hazard

exp(βjx
∗) is a log-linear regression on the LV. The corresponding conditional density

function can then be expressed as

f ∗j (y∗|x∗) = hj0(y
∗) exp (βjx

∗ − exp(βjx
∗)Hj0(y

∗)) , (A.2)

in which Hj0(y
∗) =

∫ y∗

0
hj0(t)dt is termed the cumulative baseline hazard function.

Assuming that X∗i ∼ N (0, 1) with density φ(·), the marginal likelihood for an observed MV
vector y∗i = (y∗i1, . . . , y

∗
im)> can be expressed as

f ∗(y∗i ) =

∫ ∞
−∞

m∏
j=1

f ∗j (y∗ij|x∗)φ(x∗)dx∗. (A.3)

To find βj and hj0(·), j = 1, . . . ,m, that maximize Equation A.2, Ranger and
Ortner (2012) proposed an Expectation-Maximization (EM) algorithm. Similar to our
algorithm detailed in Section 4.1 of the main text, Ranger and Ortner’s EM algorithm
iterates between an E-step, where posterior weights are computed at each quadrature node
for each individual, and an M-step, where a weighted sum of log conditional densities
(Equation A.2) is maximized for each j. Due to the presence of a non-parametric
component hj0(·), the M-step optimization (for each j) is done in two stages. Let r denote

the current EM iteration. After computing e
(r)
iq , i.e., the posterior weight at quadrature

node q = 1, . . . , Q for person i (computed in a fashion similar to Equation 24 in the main
document) in the E-step, we first compute the (weighted) Breslow estimator of the
cumulative baseline hazard:

H
(r+1)
0j (y∗) =

n∑
i=1

I{y∗ij ≤ y∗}h(r+1)
0j (y∗ij), (A.4)

in which

h
(r+1)
0j (y∗ij) =

n∑
i=1

I{y∗ij ≤ y∗}∑n
k=1 I{y∗kj ≥ y∗ij}

[∑Q
q=1 e

(r)
kq exp(β

(r)
j x∗q)

] (A.5)

is an estimate of the baseline hazard at the observed data points y∗ij, i = 1, . . . , n. In
Equations A.4 and A.5, I{·} stands for the indicator function, x∗q is the qth quadrature
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node for the LV, and β
(r)
j denotes the current regression coefficient. Then the updated

coefficient β
(r+1)
j is obtained by numerically maximizing

n∑
i=1

Q∑
q=1

e
(r)
iq

{
log h

(r+1)
j0 (y∗ij) + βjx

∗
q − exp(βjx

∗
q)H

(r+1)
j0 (y∗ij)

}
(A.6)

with respect to βj.
We implemented the aforementioned EM algorithm in R (R Core Team, 2020). We

verified on simulated data sets that our code and Dr. Jochen Ranger’s code produced
identical estimates for βj and the baseline hazard functions.

B Additional Simulation Results

We fit the PH model to the data sets generated in our simulation study (Section 5
of the main document). Similar to the configuration for fitting other candidate models, we
used a 49-point (i.e., Q = 49) Gauss-Hermite quadrature to approximate the intractable
marginal likelihood (Equation A.6) and terminate the algorithm when the log-likelihood
change between consecutive iterations is less than 0.0001. Note that the raw data
generated from the QMLV (i.e., quadratic mean function, log-linear variance function)
model resemble log response time (RT) and thus can take negative values; therefore, the
PH was fitted after the data was exponentiated.

Because the Breslow estimator (Equation A.4) is a step function, the corresponding
estimator of the conditional density (Equation A.2) vanishes at y∗ values that are not
contained in {y∗ij : i = 1, . . . , n}. We therefore cannot directly evaluate the empirical
Kullback-Leibler (KL) risk (Equation 25 in the main document) at the maximum likelihood
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Figure B.1: Boxplots of empirical Kullback-Leibler (KL) risk across 500 replications. Results
for LMCV and PH are shown in different colors, and the three sample sizes conditions
(n = 375, 750 and 3000) are shown in separate panels. LMCV: Linear mean function,
constant standard deviation (SD) function. PH: Proportional hazard.
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estimator of the PH model, because the calibration and validation data typically contain
different values. As a workaround, we fit a monotone polynomial of degree six (Murray,
Müller, & Turlach, 2016) to the Breslow estimate of the cumulative baseline hazard in the
final iteration; the conditional density was then evaluated using the smoothed version of
the cumulative baseline hazard and its derivative. Finally, we back-transformed the
estimated density to the log RT scale for comparison with other candidate models.

The KL risk estimates for PH and LMCV (linear mean, constant variance function)
are summarized as boxplots in Figure B.1; the graphical display is similar to Figure 2 in
the main text. It can be seen that PH exhibits a much higher empirical KL risk compared
to LMCV. As we have seen in Section 5.2 that LMCV already fits substantially worse than
QMLV (quadratic mean, log-linear variance function) and SP (semiparametric with the
optimal λ), we then concluded that the overall fit of PH to the particular data-generating
mechanism is not acceptable. Although the PH model features a nonparametric estimator
for the baseline hazard, it does involve a rather restrictive log-linear parameterization for
the incremental hazard (with respect to the LV), which is conjectured to the cause of the
undesirable fit.
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