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A Newton-Raphson algorithm for the MM method

This section derives the components of the Newton-Raphson algorithm for solving system
of nonlinear MM equations. The updating formula is

θ(r+1) = θ(r) −H−1(θ(r))f(θ(r)),

where θ1 = β1, . . . , θp = βp, θp+1 = φ and

θ = col
1≤k≤p+1

(θk), f(θ) = col
1≤k≤p+1

(fk(θ)), H(θ) =

(
∂fa(θ)

∂θb

)
a,b=1,...,p+1

.

Recall that the moment generating function of the univariate Gaussian y ∼ N(µ, σ2) is

ψ(t|µ, σ2) = E
[

exp{ty}
]

=

∫
R
etyf(y|µ, σ2) dy = exp

{
µt+

1

2
σ2t2

}
,

and that the moment generating function of the multivariate Gaussian y ∼ Np1(µ,Σ) is

Ψ(t|µ,Σ) = E
[

exp{t′y}
]

=

∫
Rp1

exp
{
t′y
}
f(y|µ,Σ) dy = exp

{
t′µ+

1

2
t′Σt

}
.

We need to calculate the expectations appearing in f(θ) as well as its partial derivatives.
We start with the first p MM equations that correspond to the regression parameters. The
expectation (first moment) of yd is calculated according to

Eθ[yd] = Eu,v
[
Eθ[yd|u,v]

]
= Eu,v[νdpd] = Eu,v

[
νd exp

{
xdβ + β′ud + φvd

}]
=

∫
Rp1+1

νd exp
{
xdβ + β′ud + φvd

}
f(vd)f(ud) dvd ud

= νd exp{xdβ}
(∫

R
exp{φvd}f(vd) dvd

)(∫
Rp1

exp{β′ud}f(ud)ud

)
= νd exp{xdβ}ψ(φ|0, 1)Ψ(β|0,Σd) = νd exp{xdβ} exp

{1

2
φ2
}

exp
{1

2
β′1Σdβ1

}
= νd exp

{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
.
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Based on these developments, we can conclude that

fk(θ) =

D∑
d=1

νd exp
{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
xdk −

D∑
d=1

ydxdk, k = 1, . . . p.

The derivatives of Eθ[yd] are given by

∂Eθ[yd]

∂βk
= νd exp

{
xdβ +

1

2

(
φ2 + β′1Σdβ1

)}
(xdk + δ′kΣdβ1), k = 1, . . . , p1,

∂Eθ[yd]

∂βk
= νd exp

{
xdβ +

1

2

(
φ2 + β′1Σdβ1

)}
xdk, k = p1 + 1, . . . , p,

∂Eθ[yd]

∂φ
= νd exp

{
xdβ +

1

2

(
φ2 + β′1Σdβ1

)}
φ.

Regarding the second moment, the expectation of y2
d is Eθ[y

2
d] = Eu,v

[
Eθ[y

2
d|u,v]

]
, where

Eθ[y
2
d|u,v] = varθ[yd|u,v] + E2

θ [yd|u,v] = νdpd + ν2
dp

2
d.

Accordingly, it follows that

Eθ[y
2
d] = Eu,v

[
Eθ[y

2
d|u,v]

]
=

∫
Rp1+1

νdpdf(vd)f(ud) dvd dud+

∫
Rp1+1

ν2
dp

2
df(vd)f(ud) dvd dud.

We have

I2 =

∫
Rp1+1

p2
df(vd)f(ud) dvd dud =

∫
Rp1+1

exp
{

2xdβ + 2β′ud + 2φvd

}
f(vd)f(ud) dvd dud

= exp
{

2xdβ
}
ψ(2φ|0, 1)Ψ(2β|0,Σd) = exp

{
2xdβ

}
exp

{
2φ2
}

exp
{

2β′1Σdβ1

}
= exp

{
2xdβ + 2φ2 + 2β′1Σdβ1

}
.

and

Eθ[y
2
d] = νd exp

{
xdβ +

1

2
β′1Σdβ1 +

1

2
φ2
}

+ ν2
d exp

{
2xdβ + 2β′1Σdβ1 + 2φ2

}
.

We can conclude that

fp+1(θ) =
D∑
d=1

{
νd exp

{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
+ ν2

d exp
{

2xdβ + 2φ2 + 2β′1Σdβ1

}}
−

D∑
d=1

y2
d.

The derivatives of Eθ[y
2
d] are

∂Eθ[y
2
d]

∂βk
= νd exp

{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
(xdk + δ′kΣdβ1)

+ 2ν2
d exp

{
2xdβ + 2φ2 + 2β′1Σdβ1

}
(xdk + δ′kΣdβ1), k = 1, . . . , p1,

∂Eθ[y
2
d]

∂βk
= νd exp

{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
xdk

+ 2ν2
d exp

{
2xdβ + 2φ2 + 2β′1Σdβ1

}
xdk, k = p1 + 1, . . . , p,

∂Eθ[y
2
d]

∂φ
= νd exp

{
xdβ +

1

2
φ2 +

1

2
β′1Σdβ1

}
φ+ 4ν2

d exp
{

2xdβ + 2φ2 + 2β′1Σdβ1

}
φ.
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The elements of the Jacobian matrix are

Hrk =
∂fr(θ)

∂θk
=

D∑
d=1

∂Eθ[yd]

∂θk
xdk, r = 1, . . . , p, k = 1, . . . , p+ 1,

Hp+1k =
∂fp+1(θ)

∂θk
=

D∑
d=1

∂Eθ[y
2
d]

∂θk
, k = 1, . . . , p+ 1.

B Consistency of the MM estimator

This section deals with the consistency of the MM estimator as D → ∞. It presents the
adaptations of Lemma 1 and Theorem 1 of Jiang (1998) to the new MEPM model. Jiang
(1998) gives a proof for GLMMs where the moments that appear in the MM equations
must be calculated by the Monte Carlo method. In the case of the Poisson distribution,
these moments can be calculated explicitly and this simplifies the proofs because it is not
necessary to impose regularity conditions for the Monte Carlo approach.

Note that for models with intercept, the MM equation 1 is

D∑
d=1

Eθ[yd] =
∑
d=1

yd.

As ( D∑
d=1

yd

)2

=

D∑
d=1

y2
d +

D∑
d6=`

ydy`,

we can follow Jiang (1998) and substitute the MM equation p+ 1 by

D∑
d6=`

Eθ[ydy`] =
D∑
d 6=`

ydy`.

Let X
L2

−→ 0 denote L2-convergence, i.e. E[X2] −→ 0. Denote η0d = ηd(θ0), d = 1, . . . , D,
where θ0 is the true parameter. Define the subset of R4

Q =
{

(1, 0, 0, 0), (1, 1, 0, 0), (2, 1, 0, 0), (2, 2, 0, 0), (1, 1, 1, 1)
}
.

We first give a lemma that states the convergence of equations (3) and (4) of the main
text to zero. In Lemma 1, condition (1) states the requirements for the expectations of the
products of derivatives of b(η) = eη. The conditions (2) and (3) specify the orders of the
normalizing constants aDk and bD. The conclusions appear in (4) and (5).

Lemma 1. Suppose that

KD = max
1≤d,`,d′,`′≤D

max
(a,b,c,r)∈Q

Eθ0
[
eaη0debη0`ecη0d′erη0`′

]
<∞, lim sup

D→∞
KD <∞, (1)

and that the sequences {aDk}, k = 1, . . . , p, and {bD} satisfy

εD,k = max
1≤d≤D

{
1

a2
Dk

max

{ D∑
d=1

x2
dk,

D∑
d=1

D∑
`=1

|xdkxd`|
}}

−→
D→∞

0, k = 1, . . . , p. (2)
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and

εD,p+1 = max
1≤d≤D

D4

b2D
−→
D→∞

0. (3)

Then

1

aDk

D∑
d=1

xdk
(
yd − Eθ0 [yd]

) L2

−→
D→∞

0, k = 1, . . . p, (4)

and

1

bD

D∑
d 6=`

(
ydy` − Eθ0 [ydy`]

) L2

−→
D→∞

0. (5)

Proof. We use the notation Eθ[·] and E[·] for expectations with respect to distributions
depending and not depending on θ, respectively. More concretely, we use Eθ[·] for the
distributions of yd and yd|(vd,ud), and E[·] for the distribution of (vd,u

′
d).

For the equation k, k = 1, . . . , p, it holds that

Ek = Eθ0

[( D∑
d=1

xdk
(
yd−Eθ0 [yd]

))2]
= Eθ0

[( D∑
d=1

xdk
(
yd−ḃ(η0d)

)
+

D∑
d=1

xdk
(
ḃ(η0d)−Eθ0 [yd]

))2]
.

We recall that
Eθ0 [yd] = E

[
Eθ0 [yd|vd,ud]

]
= E

[
eη0d

]
= E

[
ḃ(η0d)

]
and that

(a+ b)2 = a2 + b2 + 2ab = 2a2 + 2b2 − (a2 + b2 − 2ab) = 2a2 + 2b2 − (a− b)2 ≤ 2a2 + 2b2.

Take

a =
D∑
d=1

xdk
(
yd − ḃ(η0d)

)
, b =

D∑
d=1

xdk
(
ḃ(η0d)− Eθ0 [yd]

)
.

Then, we have

Ek ≤ 2

{
Eθ0

[( D∑
d=1

xdk
(
yd − ḃ(η0d)

))2]
+ E

[( D∑
d=1

xdk
(
ḃ(η0d)− Eθ0 [yd]

))2]
= 2(S1 + S2).

The first summand is

S1 =
D∑
d=1

x2
dkEθ0

[(
yd − ḃ(η0d)

)2]
+

D∑
d 6=`

xdkxd`Eθ0

[(
yd − ḃ(η0d)

)(
y` − ḃ(η0`)

)]
.

The first expectations are

Eθ0

[(
yd − ḃ(η0d)

)2]
= E

[
Eθ0

[(
yd − Eθ0 [yd|vd,ud]

)2∣∣vd,ud]] = E
[
b̈(η0d)

]
.

Because of the independence, conditioned to v and u, the second expectations are

Eθ0

[(
yd − ḃ(η0d)

)(
y` − ḃ(η0`)

)]
= E

[
Eθ0

[(
yd − Eθ0 [yd|vd,ud]

)(
y` − Eθ0 [y`|v`,u`]

)∣∣v,u]]
= E

[
Eθ0

[
yd − Eθ0 [yd|vd,ud]

∣∣vd,ud]Eθ0[y` − Eθ0 [y`|v`,u`]
∣∣v`,u`]] = 0.
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Therefore, the first summand takes the form

S1 =

D∑
d=1

x2
dkE

[
b̈(η0d)

]
.

The second summand is

S2 =
D∑
d=1

x2
dkE

[(
ḃ(η0d)−E

[
ḃ(η0d)

])2]
+

D∑
d6=`

xdkxd`Eθ0

[(
ḃ(η0d)−E

[
ḃ(η0d)

])(
ḃ(η0`)−E

[
ḃ(η0`)

])]
.

The expectations are

E
[(
ḃ(η0d)− E

[
ḃ(η0d)

])2]
= var

(
ḃ(η0d)

)
,

E
[(
ḃ(η0d)− E

[
ḃ(η0d)

])(
ḃ(η0`)− E

[
ḃ(η0`)

])]
= cov

(
ḃ(η0d), ḃ(η0`)

)
.

Therefore, the second summand takes the form

S2 =

D∑
d=1

D∑
`=1

xdkxd`cov
(
ḃ(η0d), ḃ(η0`)

)
.

Going back to Ek, we have

Ek ≤ 2

{ D∑
d=1

x2
dkE

[
b̈(η0d)

]
+

D∑
d=1

D∑
`=1

xdkxd`cov
(
ḃ(η0d), ḃ(η0`)

)}

≤ 2KD

{ D∑
d=1

x2
dk +

D∑
d=1

D∑
`=1

|xdkxd`|
}
.

Thus (4) follows by (1) and (2).

Concerning the equation p+ 1, it holds that

Ep+1 =

D∑
d6=`

(
ydy` − Eθ0 [ydy`]

)
=

D∑
d 6=`

(yd − ḃ(η0d))(y` − ḃ(η0`)) +

D∑
d 6=`

ḃ(η0d)(y` − ḃ(η0`))

+
D∑
d6=`

(yd − ḃ(η0d))ḃ(η0`) +
D∑
d6=`

{
ḃ(η0d)ḃ(η0`)− Eθ0 [ydy`]

}
= I1 + I2 + I3 + I4.

In what follow, we apply the following property. IfX1, . . . , Xn are independent with E[Xi] =
0 and E[X4

i ] <∞, and if A =
(
aij
)

1≤i,j≤n is a symmetric matrix, then

E

[( n∑
i=1

n∑
j=1

aijXiXj −
n∑
i=1

aiiE[X2
i ]

)2

=

n∑
i=1

a2
iivar(X2

i ) + 2

n∑
i 6=j

a2
ijE[X2

i ]E[X2
j ]

≤ 2
n∑
i 6=j

a2
ijE[X2

i ]E[X2
j ].
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Using this fact and recalling that

Eθ0 [yd|vd,ud] = ḃ(η0d) = eη0d , varθ0 [yd|vd,ud] = b̈(η0d) = eη0d ,

leads to

Eθ0 [I2
1 ] = E

[
Eθ0

[( D∑
d=1

D∑
`=1

δd`(yd − ḃ(η0d))(y` − ḃ(η0`))

)2∣∣∣v,u]]

≤ 2E

[ D∑
d6=`

Eθ0

[
(yd − ḃ(η0d))

2
∣∣vd,ud]Eθ0[(y` − ḃ(η0`))

2
∣∣vd,ud]]

= 2

D∑
d 6=`

E
[
b̈(η0d)b̈(η0`)

]
= 2

D∑
d6=`

E
[
eη0deη0`

]
≤ 2D(D − 1)KD ≤ 2D2KD,

where δd` is the Kronecker’s delta.

Eθ0 [I2
2 ] = E

[
Eθ0

[( D∑
d=1

D∑
`=1

δd`ḃ(η0d)(y` − ḃ(η0`))

)2∣∣∣v,u]]

≤ 2E

[ D∑
d6=`

ḃ2(η0d)Eθ0

[
(y` − ḃ(η0`))

2
∣∣v`,u`]]

= 2
D∑
d6=`

E
[
ḃ2(η0d)b̈(η0`)

]
= 2

D∑
d6=`

E
[
e2η0deη0`

]
≤ 2D(D − 1)KD ≤ 2D2KD.

Similarly Eθ0 [I2
3 ] ≤ 2D2KD.

Eθ0 [I2
4 ] = E

[( D∑
d 6=`

{
ḃ(η0d)ḃ(η0`)− Eθ0 [ydy`]

})2]

=
D∑
d 6=`

D∑
d′ 6=`′

E

[{
ḃ(η0d)ḃ(η0`)− E

[
ḃ(η0d)ḃ(η0`)

]}{
ḃ(η0d′)ḃ(η0`′)− E

[
ḃ(η0d′)ḃ(η0`′)

]}]

=

D∑
d 6=`

D∑
d′ 6=`′

cov
(
ḃ(η0d)ḃ(η0`), ḃ(η0d′)ḃ(η0`′)

)
≤

D∑
d6=`

D∑
d′ 6=`′

E
[
ḃ(η0d)ḃ(η0`)ḃ(η0d′)ḃ(η0`′)

]

=
D∑
d 6=`

D∑
d′ 6=`′

E
[
eη0deη0`eη0d′eη0`′

]
≤ D4KD.

Thus (5) follows by (1) and (3). �

Let us define

MD,k(θ) =
1

aDk

D∑
d=1

xdkEθ[yd], MD,p+1(θ) =
1

bD

D∑
d=1

Eθ[y
2
d],
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M̂D,k =
1

aDk

D∑
d=1

xdkyd, M̂D,p+1 =
1

bD

D∑
d=1

y2
d,

M̃D,k(θ) =
1

aDk

D∑
d=1

xdk ḃ(ηd), M̃D,p+1(θ) =
1

bD

D∑
d 6=`

ḃ(ηd)ḃ(η`),

and

MD(θ) =
(
MD,k(θ)

)
1≤k≤p+1

, M̂D =
(
M̂D,k

)
1≤k≤p+1

, M̃D(θ) =
(
M̃D,k(θ)

)
1≤k≤p+1

.

Lemma 1 gives sufficient conditions for

‖M̂D −MD(θ0)‖ L2

−→
D→∞

0

Let {ADk}, 1 ≤ k ≤ p, and {BD} any sequences such that ADk → ∞ and BD → ∞ as

D → ∞. Let θ̂ = (β̂
′
, φ̂) be any θ = (β′, φ) ∈ ΘD =

{
θ : |βk| ≤ ADk, 1 ≤ k ≤ p; 0 < φ ≤

BD
}

satisfying the inequality ∥∥M̃D(θ)− M̂D

∥∥ ≤ δD, (6)

where δD →∞ as D →∞.

The following theorem states the consistency of the MM estimators of the parameters
of the MEPM model. The proof follows from Theorem 1 of Jiang (1998) by doing the
particularization to the current MEPM model and by noting that:

(1) Jiang (1998) gives a proof for GLMMs with q random effects. Here we consider the
Poisson mixed model with one random effect, but we add p random measurement errors.
The random errors have a known multivariate normal distribution and are independent of
the random effect.

(2) The moments Mk(θ) are calculated analytically and not approximated by the Monte
Carlo method, and

(3) The expectations E[·] are taken with respect to the joint distribution of vd and ud,
d = 1, . . . , D, as it was shown in Lemma 1.

Because of (1)-(3), there are not remarkable difficulties in adapting and particularizing the
proof of Jiang. We present the sketch of the proof. For more details, see Jiang (1998).

Theorem 1. Suppose that the conditions of Lemma 1 are satisfied. Let θ0 be the true
parameter and let εD = max1≤k≤p+1{εD,k}.

(a) If εD/δ
2
D →∞, then θ̂ exists with probability tending to one as D →∞.

(b) If, furthermore, all the first derivatives of the expectations Eθ[yd] = E[ḃ(ηd(θ))] and
Eθ[ydy`] = E[ḃ(ηd(θ))ḃ(η`(θ))], with respect to the components of θ, can be taken
under the expectation sign; the quantities

sup
‖θ‖≤B

E
[(
ḃ(ηd(θ))

)4]
, E

[
sup
‖θ‖≤B

b̈(ηd(θ))

]
, E

[
sup
‖θ‖≤B

b̈(ηd(θ))
∣∣ḃ(η`(θ))

∣∣], d, ` = 1, . . . , D,
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are finite for any B > 0; and

lim inf
D→∞

inf
‖θ−θ0‖>ε

‖|MD(θ)−MD(θ0)‖ > 0

for any ε > 0, then θ̂ converges to θ0 with probability tending to one.

Proof.

(a) By the proof of Lemma 1, we have

Eθ0
[∥∥M̂D −MD(θ0)

∥∥2]
=

p+1∑
k=1

Ek ≤ (2p+ 4)KDεD −→
D→∞

0.

On the other hand

Eθ0
[
(M̃D,k(θ0)−MD,k(θ0))2

]
= E

[(
1

aDk

D∑
d=1

xdk
(
ḃ(η0d)−E[ḃ(η0d)]

))2]
≤ KD

a2
Dk

D∑
d6=`
|xdkxd`| ≤ KDεD.

and similarly

Eθ0
[
(M̃D,p+1(θ0)−MD,p+1(θ0))2

]
≤ KD

b2D
D4 ≤ KDεD.

Thus, we have

P
(∥∥M̃D(θ0)− M̂D

∥∥ ≤ δD) ≤ P
(∥∥M̃D(θ0)−MD(θ0)

∥∥ ≤ δD
2

)
+ P

(∥∥MD(θ0)− M̂D

∥∥ ≤ δD
2

)
≤ [(p+ 1) + (2p+ 4)]

KDεD
δD

−→
D→∞

0.

Therefore, (6) holds and θ̂ exists with probability tending to one at θ = θ0.

(b) Because of the continuity of M with respect to θ, it enough to prove that for any δ > 0,
it holds

P
(
‖MD(θ̂)−MD(θ0)‖ ≥ δ

)
−→
D→∞

0.

We have that

‖MD(θ̂)−MD(θ0)‖ ≤ ‖MD(θ̂)− M̃D(θ̂)‖+ ‖M̃D(θ̂)− M̂D‖+ ‖M̂D −MD(θ0)‖
≤ sup

θ∈ΘD

‖MD(θ)− M̃D(θ)‖+ δD + ‖M̂D −MD(θ0)‖.

Because of Lemma 1, the third summand becomes bounded and close to zero as D → ∞.
By expanding MD(θ̂) and M̃D(θ̂) in Taylor’s series around some θ∗ in a neighborhood
of θ0, we mimic the same steps of the proof of Theorem 1(b) of Jiang (1988) to obtain a
bound for the first summand as D → ∞. This fact allows applying the the Chebyshev’s
inequality for bounded random variables and we get

P
(
‖MD(θ̂)−MD(θ0)‖ ≥ δ

)
≤ 1

δ
E
[
‖MD(θ̂)−MD(θ0)‖

]
−→
D→∞

0.

This completes the proof. �
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C Additional simulation experiments

C.1 Set up

This section presents additional simulation experiments, in which we compare the explicit
measurement error modelling implemented by the MEPM model against the simulative
approach used by SIMEX. For the latter, we use the R-package simex provided by Lederer
et al. (2019). Please note that this package does not yet allow to fit generalized linear mixed
models with measurement errors. However, it allows for the fitting of generalized linear
models with measurement errors (without random effects). Thus, in order to avoid giving
SIMEX an unfair disadvantage, we alter the data generating process presented in Section
5 of the main text by setting the random effect standard deviation to zero. Accordingly,
we consider the measurement error Poisson (MEP), the standard Poisson (P) model, and
the SIMEX approach that uses the standard Poisson as naive model. Since the objective
of the paper is the prediction of regional prevalence figures, we focus on mean parameter
prediction in the simulation hereafter.

A Monte Carlo simulation with I = 750, i = 1, . . . , I, iterations is conducted. We generate
a population of D domains, where D varies over scenarios. For d = 1, ..., D, we define

µd = νdpd, yd ∼ Poiss(µd), pd = exp{β0 + x1,dβ1 + x2,dβ2 + u′1,dβ1 + u′2,dβ2},

where νd = 300, β0 = −4 β1 = (0.5, 0.5)′, and β2 = −β1. Accordingly, we have an
intercept and four covariates that are measured with error. Note that the random effects
are generated in every iteration individually. The unbiased covariate predictors are drawn
from uniform distributions according to xdj ∼ U(1.0, 1.4), j = 1, ..., 4, and held fixed over
all Monte Carlo iterations. The covariate measurement errors ud = (u′1,d,u

′
2,d)
′ are drawn

in each iteration individually according to

ud ∼ N4(0,Σd), Σd =


σ2

1,d σ12,d σ13,d σ14,d

σ21,d σ2
2,d σ23,d σ24,d

σ31,d σ32,d σ2
3,d σ34,d

σ41,d σ42,d σ34,d σ2
4,d

 , d = 1, . . . , D,

where σ2
j,d ∼ U(0.05, 0.15), σjk,d = ρjkσ

2
j,dσ

2
k,d, ρjk = 0.5 for j = 1 and k = 2, 3, 4, as well

as ρjk = −0.3 for j = 2, 3 and k = 3, 4, j 6= k. Just like in Section 5 of the main text, we
consider four simulation scenarios arising from the four different values for D. The scenarios
are defined as in Table 1 of the main text.

C.2 Results

We consider relative mean squared error (RMSE), relative root mean squared error (RRMSE),
absolute bias (ABIAS), as well as relative absolute bias (RABIAS) as performance measures.
They are given as follows:

RMSEd =

(
1

I

I∑
i=1

(µ
(i)
d − µ̂

(i)
d )2

)1/2

, RRMSEd =
RMSEd

µ̄d
, µ̄d =

1

I

I∑
i=1

µ
(i)
d ,

ABIASd =
1

I

I∑
i=1

|µ(i)
d − µ̂

(i)
d |, RABIASd =

ABIASd
µ̄d

.
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We further define the subsequent aggregated measures

RMSE =
1

D

D∑
d=1

RMSEd, ABIAS =
1

D

D∑
d=1

ABIASd,

RRMSE =
1

D

R∑
d=1

RRMSEd · 100, RABIAS =
1

D

D∑
d=1

RABIASd · 100%,

to allow for compact presentation. The results are summarized in Table 1 and Figure 1.

Method Scenario RMSE RRMSE ABIAS RABIAS

P 1 0.7086 19.2049 0.5631 15.4376
SIMEX 1 0.6963 18.8702 0.5548 15.2096
MEP 1 0.5770 15.6044 0.4460 12.2295

P 2 0.6376 17.1027 0.5059 13.5730
SIMEX 2 0.6226 16.7053 0.4958 13.4092
MEP 2 0.5357 14.3590 0.4163 11.1577

P 3 0.5747 15.4733 0.4560 12.2784
SIMEX 3 0.5615 15.1224 0.4471 12.1412
MEP 3 0.5477 14.7210 0.4236 11.3904

P 4 0.5449 14.7829 0.4318 11.7164
SIMEX 4 0.5294 14.3652 0.4212 11.5733
MEP 4 0.4788 12.9803 0.3746 10.1575

Table 1: Results of mean parameter prediction
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Figure 1: Domain-level mean parameter prediction performance
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In Table 1, we see that the SIMEX approach outperforms the standard Poisson model in
all scenarios and for all performance measures. This could be expected from theory, since
SIMEX has been introduced as an effective and flexible technique to deal with measure-
ment errors. However, the SIMEX approach does not reach the efficiency level of the MEP
approach. The latter dominates in all scenarios and all performance measures by a consid-
erable margin. This is likely due to the explicit consideration of the measurement errors in
the model equation. All inferential steps are strictly derived under this premise. That is to
say, for this particular setting, the proposed MEP approach is the best considered option.

Figure 1 displays the measure RRMSEd for all considered domains and simulation scenar-
ios. The predictions obtained under the standard Poisson model are marked in blue. The
predictions from the SIMEX approach are plotted in light red. And finally, the predictions
obtained under the proposed MEP approach are displayed in red. In accordance with Table
1, we see that the MEP approach outperforms the other methods significantly. Its RRMSE
on domain-level is always smaller. However, we further see that the range of RRMSE values
is also much narrower for the MEP approach. This implies that the method overall obtains
more stable results relative to standard Poisson and SIMEX.
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