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Supplement to “Estimating Finite Mixtures of Ordinal Graphical Models”

We have organized the appendices in the following way. Appendix I describes the details

about the M step of the proposed generalized EM algorithm. Appendix II evaluates the numerical

performance of the proposed method when K = 3. Appendix III evaluates the numerical

performance of the proposed method when L = 7. Appendix IV compares the numerical

performance of the proposed method with the probit graphical model. Appendix V presents the

details about the 33 survey questions for the sports fan application we present. Appendix VI

summarizes the average responses to the survey questions. Appendix VII presents the aggregate

level network generated by the probit graphical model.

Appendix I: Details about the M Step of the Proposed Generalized EM Algorithm

In the M step of the (t+ 1)-th iteration, we need to estimate the parameters (π,Π,Ω) that

maximize the conditional expectation of the “complete” `1-penalized log-likelihood function

Lcmp = `cmp − λ
∑K

k=1 ‖Σ
−1
k ‖1,off given the latest membership probabilities Γ(t+1) updated in the

E step and current estimates (π(t),Π(t),Ω(t)), which is also known as the Q function. Note that

the maximization of the Q function is equivalent to the maximization of the conditional

expectation of:
N∑
i=1

K∑
k=1

γ̃
(t+1)
ik log πk1(yi ∈ C(xi, Θ̂)), (18)

subject to
∑K

k=1 πk = 1, and for k = 1, . . .K, the maximization of the conditional expectation of:

N∑
i=1

γ̃
(t+1)
ik

[
1

2
log |Σ−1

k | −
1

2
(yi − µk)′Σ−1

k (yi − µk)
]
1(yi ∈ C(xi, Θ̂))− λk‖Σ−1

k ‖1,off , (19)

respectively.

The subproblem (18) can solved by using the method of Lagrange multipliers, which yields

the closed-form update of πk as:

π
(t+1)
k =

1

N

N∑
i=1

γ̃
(t+1)
ik . (20)
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In the subproblem (19), µ
(t+1)
k has the closed-form solution that:

µ
(t+1)
k =

1

N

N∑
i=1

γ̃
(t+1)
ik yi, (21)

which cannot be directly estimated but we use xi to construct the surrogate and provide an

approximate estimate. However, Σ−1
k

(t+1)
is more challenging to solve, and it is infeasible to

generate random samples from the truncated multivariate Gaussian mixture distribution when

K > 1. Hence, the empirical conditional second moment is unavailable. To address the

computational challenge, we further reduce the subproblem (19) to a sequence of penalized

estimation problems as follows:

Σ−1
k

(t+1)
= arg max

Σ−1
k

{
log |Σ−1

k | − tr(Σ−1
k Rk)− λ‖Σ−1

k ‖1,off

}
, (22)

where Rk is the latent correlation matrix in the k-th mixture given the current estimates, for

k = 1, . . . ,K. The above penalized estimation problem is well studied and can be efficiently

solved by Friedman et al. (2008).

It remains to effectively estimate Rk without requiring the realizations of latent variables

yi’s. As a promising alternative, we may use a rank-based ensemble approach (Feng & Ning

2019), whose details are presented as follows. First, we obtain the binary form of the j-th ordinal

variable with respect to level l = 1, . . . , Lj as x
(l)
ij = 1(xij ≥ l), for j = 1, . . . , p. Second, we

calculate the preliminary rank-based estimators based on Kendall’s τ as follows:

τ̂
(l,l′)
jj′ =

1(
N
2

) ∑
1≤i<i′≤N

sign{(x(l)
ij − x

(l)
i′j)(x

(l′)
ij′ − x

(l′)
i′j′)}, (23)

with sign(0) = 0. Third, we derive the estimate of latent correlation between variables Yj and Yj′

from τ̂
(l,l′)
jj′ by solving:

R̂
(l,l′)
jj′ = F−1(τ̂

(l,l′)
jj′ ; ∆̂

(l)
j , ∆̂

(l′)
j′ ), (24)

where

∆̂
(l)
j = Φ−1(1− 1

N

N∑
i=1

x
(l)
ij ), (25)

∆̂
(l′)
j′ = Φ−1(1− 1

N

N∑
i=1

x
(l′)
ij′ ), (26)
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and

F (s; ∆j ,∆j′) = 2{Φ2(∆j ,∆j′ |s)− Φ(∆j)Φ(∆j′)} (27)

is an invertible function with respect to correlation s. Here, we have used the fact that:

τ
(l,l′)
jj′ := E(τ̂

(l,l′)
jj′ ) = F (Σjj′ ; ∆

(l)
j ,∆

(l′)
j′ ) (28)

and Φ2(·, ·|s) is the cumulative density function of the standard bivariate Gaussian density with

correlation s as in Feng & Ning (2019). Finally, for (j, j′), the rank-based ensemble estimator of

the (j, j′)-th entry of Rk can be constructed as:

R̂jj′ =
∑

1≤l≤Lj ,1≤l′≤Lj′

1

LjLj′
R̂

(l,l′)
jj′ . (29)



4

Appendix II: Numerical Performance of the Proposed Method when K = 3

In this section, we examine the numerical performance of our proposed method when we

assume the number of latent clusters is 3, i.e. K = 3.

Similar to the K = 2 simulation study, we would like to investigate the numerical

performance of our proposed method in various simulation settings. Here, we consider three

different factors: the number of respondents (N = 200, 300), the number of items/questions

(p = 30, 50), and the mixing proportions
(
π =

(
1
3 ,

1
3 ,

1
3

)
,
(

1
6 ,

2
6 ,

3
6

))
. Regarding the three different

graph structures to represent three groups, we use two different types of neighbor chain graph

structures, and a two-block diagonal graph structure. The first neighbor chain graph structure is

constructed with 1’s on the main diagonal, 0.5’s on the sub-diagonal and super-diagonal, and 0 at

all other entries. The second neighbor chain graph structure is constructed with 1’s on the main

diagonal, 0.5’s on the sub-diagonal and super-diagonal, and 0.25’s on the diagonal that lies

directly below and to the left of the sub-diagonal and on the diagonal that lies directly above and

to the right of the super-diagonal, and 0 at all other entries. The two-block diagonal graph

structure is constructed with 1’s on the main diagonal and 0.35 on the first and second block of

off-diagonal entries with probability of 0.1.

Regarding the data generation procedure, it follows the same procedure as K = 2 except now

we draw z ∼ Multinomial(1; π1,π2,π3) and if z = (1, 0, 0) draw Y ∼ N(0,Σ1) else if z = (0, 1, 0)

draw Y ∼ N(0,Σ2) else draw Y ∼ N(0,Σ3).

We check the overall performance of our proposed mixture of ordinal graphical models where

we obtain the average values over all 23 different simulation settings. The results are summarized

in Table 1 in this appendix. Our proposed method achieves much higher ATPR and lower AFPR

than the naive finite mixture of Gaussian graphical models. We can also see that the graph

structure recovery performance of our method is comparable to the oracle method. Regarding the

graph estimation performance, our method performs better than the naive finite mixture of

Gaussian graphical models.

We create many different simulation settings to check the performance of our proposed

method more realistically. The results are summarized by factor in Table 2 and Table 3 in this



5

Table 1.

Overall summary of ATPR, AFPR, and AFL. The Gaussian method applies finite mixture of Gaussian graphical

model to the ordinal data set. The oracle method applies the graphical Lasso algorithm to the latent continuous data

in each group. The oracle method is an ideal benchmark but not feasible in practice. The results are averaged over

different scenarios and the corresponding standard deviations are written in the parentheses.

Gaussian Oracle Proposed

ATPR

0.69 (0.03) 0.84 (0.02) 0.74 (0.02)

AFPR

0.26 (0.02) 0.09 (0.02) 0.17 (0.03)

AFL

11 (1.32) 3.68 (0.61) 6.48 (1.42)

appendix. In all simulation settings, our proposed method shows better performance than the

naive finite mixture of Gaussian graphical models and shows reasonable performance even

compared to the oracle method.

Next, we examine the estimation performance of mixing proportions and the clustering

performance of our method in various simulation settings using (RASEπ) and RI respectively.

The results reported in Table 4 tells us that overall our method shows convincing cluster

recovering performance.
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Table 2.

The average true positive rate (ATPR) and the average false positive rate (AFPR) by the Gaussian method, oracle

method, and the proposed method. The Gaussian method applies finite mixture of Gaussian graphical model to the

ordinal data set. The oracle method applies the graphical Lasso algorithm to the latent continuous data in each

group. The oracle method is an ideal benchmark but not feasible in practice. The results are averaged over different

scenarios of fixed level for each factor and the corresponding standard deviations are written in the parentheses.

Gaussian Oracle Proposed

ATPR

Number of respondents (N)
200 0.69 (0.03) 0.83 (0.02) 0.73 (0.02)

300 0.68 (0.03) 0.85 (0.02) 0.75 (0.02)

Number of items/questions (p)
30 0.69 (0.06) 0.83 (0.02) 0.74 (0.02)

50 0.69 (0.02) 0.86 (0.02) 0.74 (0.02)

Mixing proportions (π)

(
1
3 ,

1
3 ,

1
3

)
0.703 (0.03) 0.85 (0.02) 0.75 (0.01)(

1
6 ,

2
6 ,

3
6

)
0.67 (0.02) 0.83 (0.03) 0.73 (0.02)

AFPR

Number of respondents (N)
200 0.27 (0.02) 0.1 (0.01) 0.18 (0.02)

300 0.25 (0.03) 0.07 (0.01) 0.15 (0.03)

Number of items/questions (p)
30 0.26 (0.03) 0.08 (0.02) 0.18 (0.03)

50 0.26 (0.06) 0.09 (0.02) 0.16 (0.02)

Mixing proportions (π)

(
1
3 ,

1
3 ,

1
3

)
0.26 (0.03) 0.09 (0.02) 0.19 (0.02)(

1
6 ,

2
6 ,

3
6

)
0.26 (0.03) 0.08 (0.02) 0.15 (0.02)
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Table 3.

The average Frobenius norm loss (AFL) by the Gaussian method, oracle method, and the proposed method. The

Gaussian method applies finite mixture of Gaussian graphical model to the ordinal data set. The oracle method

applies the graphical Lasso algorithm to the latent continuous data in each group. The oracle method is an ideal

benchmark but not feasible in practice. The results are averaged over different scenarios of fixed level for each factor

and the corresponding standard deviations are written in the parentheses.

Gaussian Oracle Proposed

Number of respondents (N)
200 10.6 (0.63) 3.70 (0.67) 6.36 (1.46)

300 11.5 (1.74) 3.66 (0.65) 6.60 (1.60)

Number of items/questions (p)
30 10.4 (1.97) 3.11 (0.03) 5.24 (0.53)

50 11.1 (2.48) 4.25 (0.04) 7.73 (0.55)

Mixing proportions (π)

(
1
3 ,

1
3 ,

1
3

)
10.8 (1.72) 3.70 (0.66) 6.93 (1.44)(

1
6 ,

2
6 ,

3
6

)
11.2 (0.99) 3.66 (0.66) 6.03 (1.45)
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Table 4.

The Rand Index (RI) and root average squared error (RASE) of mixing proportions by the Gaussian method and

the proposed method. The Gaussian method applies finite mixture of Gaussian graphical model to the ordinal data

set. The oracle method is an ideal benchmark but not feasible in practice. The results are averaged over different

scenarios of fixed level for each factor and the corresponding standard deviations are written in the parentheses.

Gaussian Proposed

RI

Number of respondents (N)
200 0.49 (0.03) 0.67 (0.07)

300 0.51 (0.03) 0.72 (0.05)

Number of items/questions (p)
30 0.49 (0.04) 0.67 (0.05)

50 0.51 (0.02) 0.72 (0.06)

Mixing proportions (π)

(
1
3 ,

1
3 ,

1
3

)
0.52 (0.03) 0.73 (0.02)(

1
6 ,

2
6 ,

3
6

)
0.48 (0.02) 0.66 (0.06)

Overall 0.5 (0.03) 0.7 (0.06)

RASEπ

Number of respondents (N)
200 0.36 (0.08) 0.1 (0.02)

300 0.38 (0.03) 0.11 (0.01)

Number of items/questions (p)
30 0.39 (0.06) 0.1 (0.02)

50 0.35 (0.05) 0.11 (0.02)

Mixing proportions (π)

(
1
3 ,

1
3 ,

1
3

)
0.33 (0.04) 0.1 (0.01)(

1
6 ,

2
6 ,

3
6

)
0.4 (0.04) 0.12 (0.01)

Overall 0.37 (0.05) 0.11 (0.02)
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Appendix III: Numerical Performance of the Proposed Method when L = 7

In this section, we examine the numerical performance of our proposed method when the

ordinal levels for survey items/questions are increased to 7 from 5.

Here, we consider a finite mixture of neighbor chain graph structure and random graph

structure, and assume the number of latent clusters is known as 2, i.e., K = 2. The neighbor

chain graph structure is constructed with 1’s on the main diagonal, 0.5’s on the sub-diagonal and

super-diagonal, and 0 at all other entries. Next the random graph structure is constructed with

1’s on the main diagonal and 0.25 on the off-diagonal entries with probability of 0.05 and this

ensures about 60 randomly chosen edges in the graph. The mixing proportions are set to be

π1 = 1
2 and π2 = 1

2 . The number of respondents and the number of survey items/questions are

chosen to be N = 100 and p = 50 respectively. We consider two different ordinal levels for survey

items/questions: L = 5 and 7.

We first examine the performance of graph structure recovery using ATPR and AFPR and

the estimation of precision matrices using AFL. The results are summarized in Tables 5 and 6.

Our proposed method achieves stable ATPR and AFPR even when the ordinal levels are

increased to 7. Moreover, by comparing our method with the oracle method, we can see that the

graph structure recovery performance of our method is reasonably good.
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Table 5.

Graph structure recovery of the oracle method and the proposed method. The oracle method applies the graphical

Lasso algorithm to the latent continuous data in each group. The oracle method is an ideal benchmark but not

feasible in practice. The results are averaged over 100 repetitions and the corresponding standard deviations are

written in the parentheses.

Number of Levels
Oracle Proposed

ATPR

5 0.94 (0.02) 0.83 (0.05)

7 0.94 (0.02) 0.83 (0.06)

AFPR

5 0.14 (0.03) 0.2 (0.02)

7 0.14 (0.03) 0.2 (0.03)

Table 6.

The average Frobenius norm loss by the oracle method and the proposed method. The oracle method applies the

graphical Lasso algorithm to the latent continuous data in each group. The oracle method is an ideal benchmark but

not feasible in practice. The results are averaged over 100 repetitions and the corresponding standard deviations are

written in the parentheses.

Number of Levels
Oracle Proposed

AFL

5 3.59 (0.05) 4.30 (0.12)

7 3.58 (0.05) 4.46 (0.12)
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Appendix IV: Numerical Performance Comparison of the Proposed Method with the

Probit Graphical Model

In this section, we compare the numerical performance of our proposed method with the

probit graphical model.

Here, we consider a finite mixture of neighbor chain graph structure and two-block diagonal

graph structure. The neighbor chain graph structure is constructed with 1’s on the main

diagonal, 0.5’s on the sub-diagonal and super-diagonal, and 0 at all other entries. The two-block

diagonal graph structure is constructed with 1’s on the main diagonal and 0.25 on the first and

second block of off-diagonal entries with probability of 0.1 and this ensures about 30 randomly

chosen edges in each block and overall about 60 edges in the graph. The mixing proportions are

set to be π1 = 1
2 and π2 = 1

2 . The number of respondents and the number of survey

items/questions are chosen to be N = 100 and p = 50 respectively. The number of ordinal levels

for survey items/questions is set to be L = 5.

Tables 7 and 8 summarize the performance of graph structure recovery and estimation. Our

proposed method achieves much higher ATPR than the probit graphical model at the similar

level of AFPR. Our proposed method also shows convincing graph structure recovery performance

when it is compared to the oracle method. The estimation performance in terms of the Frobenius

norm loss shows that our method performed better than the probit graphical model.

In this simulation, we only examine the performance of the probit graphical model under the

balanced setting with K = 2, i.e., π = (1
2 ,

1
2), and our method outperforms the probit graphical

model. The estimation performance of the probit graphical model is much worse under the

unbalanced setting or when there is a more significant difference between the underlying true

graph structures.
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Table 7.

Graph structure recovery of the probit graphical model, oracle method, and the proposed method. The oracle method

applies the graphical Lasso algorithm to the latent continuous data in each group. The oracle method is an ideal

benchmark but not feasible in practice. The results are averaged over 100 repetitions and the corresponding standard

deviations are written in the parentheses.

PGM Oracle Proposed

ATPR

0.73 (0.03) 0.88 (0.07) 0.83 (0.05)

AFPR

0.19 (0.02) 0.08 (0.03) 0.2 (0.02)

Table 8.

The average Frobenius norm loss by the probit graphical model, oracle method, and the proposed method. The oracle

method applies the graphical Lasso algorithm to the latent continuous data in each group. The oracle method is an

ideal benchmark but not feasible in practice. The results are averaged over 100 repetitions and the corresponding

standard deviations are written in the parentheses.

PGM Oracle Proposed

AFL

4.49 (0.20) 3.95 (0.06) 4.21 (0.12)
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Appendix V: Details about the 33 Likert scale survey questions.

ID Statement of the survey questions

1 I played varsity sports in high school

2 One of my parents or siblings is a X alumnus

3 I try to keep physically fit while attending X

4 I am an avid X football sports fan

5 People who know me consider me to be a knowledgeable football fan

6 I usually get very frustrated and angry when the X football team does not win

7 When I view X football, I tend to admire the beauty of the sport

8 I tend to be a very socially active person

9 I enjoy talking about sports to my friends

10 I often imagine I am one of the football players on the field

11 People who know me would consider me to be very studious

11 People who know me would consider me to be very studious

12 When I view X football games, I get so into the action that I lose touch with what is happening around me

13 I tend to admire the X football players that compete

14 I consider myself an expert on X football

15 I usually pay attention mostly to athletes with the most notoriety

16 I frequently visit web sites related to X football

17 I play intramural sports at X

18 Most of my friends are interested in X football

19 I frequently attend fraternity/sorority parties

20 I am an avid fan of Big Ten football

21 I am an avid NFL fan

22 I have paid higher than face value for tickets to watch X football

23 I attend games for the social experience more than to watch the game action

24 I frequently watch college football games of different teams on TV

25 Compared to the average X student, I tend to date less often

26 I emphasize my studies above the social aspects at X

27 I would love a career somewhere in the sports industry

28 I am an avid fan of collegiate football

29 I frequently watch College Football Game Day on ESPN

30 I am an avid fan of other X sports

31 I frequently watch NFL football games on TV

32 I enjoy sports related movies

33 Part of the reason I chose to attend X was because of their football team
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Appendix VI: The average responses to the 33 Likert scale survey questions.

Question ID Group 1 Group 2

1 5.77 5.36

2 2.39 2.99

3 6.01 5.88

4 5.96∗ 5.35∗

5 5.10 4.83

6 5.67∗ 4.84∗

7 5.02 4.74

8 6.34∗ 5.92∗

9 5.66 5.77

10 3.60∗ 2.95∗

11 5.68 5.42

12 4.38∗ 3.91∗

13 5.31∗ 4.60∗

14 3.69∗ 3.13∗

15 4.41 4.20

16 3.93 3.94

17 4.51 4.26

18 6.51∗ 6.21∗

19 3.82 3.73

20 4.96 4.78

21 5.07 5.18

22 3.98 3.73

23 3.58 3.71

24 4.39∗ 5.14∗

25 3.40 3.59

26 4.20 4.44

27 4.64 4.71

28 5.01 4.94

29 4.67 5.09

30 4.47 4.43

31 5.17 5.40

32 5.70 5.88

33 4.54 4.16

Note: ‘∗’denotes the significant difference between two average responses with α = 0.05.
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Appendix VII: Empirical Results of the Probit Graphical Model

We have applied the probit graphical model (PGM) to the real data set. Figure 1 presents

the network generated by the PGM. Because the PGM ignores the underlying heterogeneity of

the studied population, its generated network is not able to capture the mixtures in the

conditional relations among sub-populations. For example, as shown in Figure 1, Node 1 and 17

are not connected with any other nodes, and Node 17 is only connected with Node 24. However,

with our proposed model, as shown in Figure 3 of the main paper, Node 1 and 17 are hubs for

Group 1, and Node 24 is a hub for Group 2.

Figure 1.

The estimated conditional relations by the probit graphical model (PGM).
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