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A Comparison of Bayesian Approaches to Structure Selection for Networks of
Binary Data

We have introduced novel edge screening and structure selection procedures for
estimating the topology of Ising networks. As discussed in our paper, other Bayesian ap-
proaches exist for structure selection for the Ising model (Pensar et al., 2017)—implemented
in the R-package BDgraph (Mohammadi and Wit, 2019)—and the multivariate probit model
(Talhouk et al., 2012)—implemented in the R-package BGGM (Williams and Mulder, 2020b).
We wish to compare the performance of these two approaches to that of our procedures in
terms of edge-selection sensitivity and specificity.

Similar to the other simulations in our paper, we focus on simulations in which
and Erdős and Rényi (1960) model is used to generate the topologies. The parameters
corresponding to present edges are simulated uniformly between 0.5 and 2, and set to zero
otherwise. In the simulations, we vary π, the probability of generating an edge between two
variables, p, the number of variables, and n, the number of observations and generate 100
datasets for each combination of values for π, p, and n.

We analyze the simulated datasets using the default settings of rbinnet (precision
= .975), BDgraph, and BGGM, except that for the latter we varied the specification of the
delta parameter. We have used delta values of 5, and 24, which translate into a prior
standard deviation for the partial correlation between the latent Gaussian variables of ap-
proximately .41, and .2, respectively. These delta values were suggested in Williams and
Mulder (2020a). We ran each of the sampling-based methods —structure selection, BDgraph
and BGGM—for 10, 000 iterations. Sensitivity and Specificity were computed as defined in
our paper. Table 1 shows the results for a generating probability π = 0.1 and Table 2 shows
the results for π = 0.5.

With increasing sample size, the sensitivity increases for all methods. In Table 1,
sensitivity starts around 13% for most methods (36% for BGGM, delta = 24), it increases to
around 80% (86% for rbinnet, edge screening). In Table 2, which considers denser networks,
sensitivity starts around 85% and increases to around 100%. The same observation could
be made for specificity. In Table 1, specificity starts around 95% for most methods (87%
for BGGM, delta = 24), it increases to 95% and above for all methods. In Table 2, specificity
already starts above 95% and slowly increases to over 99% for all methods, except that
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n
250 500 1, 000 10,000

Screening SEN .133 .193 .438 .859
SPE .954 .959 .966 .953

Selection SEN .141 .167 .394 .807
SPE .941 .964 .978 .987

Screening & Selection SEN .133 .172 .394 .807
SPE .954 .963 .975 .987

BDgraph SEN .117 .151 .306 .808
SPE .949 .976 .988 .988

BGGM (delta = 5) SEN .133 .163 .317 .802
SPE .941 .972 .985 .995

BGGM (delta = 24) SEN .362 .297 .446 .802
SPE .874 .921 .959 .996

Table 1
Sensitivity and specificity for π = 0.1, as a measure of performance of the methods
implemented in rbinnet, BDgraph, and BGGM.

for edge screening it appears to hover around 97%. There are no major differences in the
performance of the different methods, except that or smaller sample sizes BGGM—using a
delta value equal to 24—showed an increased sensitivity and reduced specificity.

Computing Time Differences Between the Methods and Their Implementations

The methods are currently implemented in the rbinnet package using native R
code. We therefore expect it to run considerably slower than other packages, such as BGGM
and BDgraph, which run code in a compiled language. To get a sense of the differences
in running time between the different methods and implementation, we simulated data for
n = 200, 500, and 1, 000 cases for a p = 10, and 15 variable network and ran the different
procedures. The samplers each ran for 10, 000 iterations. Simulations ran on a MacBook
pro with an Intel i5 CPU and clock speed 2.0 Ghz and 16Gb of memory.

The results are shown in Table 3. Observe that edge screening and eLasso are
both really fast. But these only do optimization. When comparing the simulation based
methods, we observe that structure selection is much slower than both BGGM and BDgraph.
Whereas BGGM is roughly four to six times faster than structure selection for the p = 10
variable network, it is seven to eight times faster for the p = 15 variable network. Thus,
BGGM becomes relatively faster than structure selection for increasing network sizes. Inter-
estingly, the relative speed difference shrinks with increasing sample sizes. BDgraph, on the
other hand, is roughly 30 to 50 times faster than structure selection. In contrast to the
implementation of BGGM, BDgraph does not become relatively faster than structure selection
when the network’s size increases, although it does appear to become relatively faster for
increasing sample sizes.



BSS-NET 3

n
250 500 1, 000 10,000

Screening SEN .846 .966 .994 1.000
SPE .978 .959 .971 .964

Selection SEN .859 .966 .991 1.000
SPE .970 .957 .983 .995

Screening & Selection SEN .846 .960 .994 1.000
SPE .978 .962 .983 .995

BDgraph SEN .815 .895 .948 1.000
SPE .977 .992 .995 .999

BGGM (delta = 5) SEN .816 .934 .977 1.000
SPE .984 .994 .989 .992

BGGM (delta = 24) SEN .882 .957 .986 1.000
SPE .956 .988 .975 .989

Table 2
Sensitivity and specificity for π = 0.5, as a measure of performance of the methods
implemented in rbinnet, BDgraph, and BGGM.

p n Screening Selection BGGM BDgraph IsingFit
10 200 0.4 55.4 10.1 1.4 0.3

500 0.5 84.1 19.7 2.0 0.3
1,000 0.7 166.4 38.9 4.9 0.4

15 200 1.1 150.8 19.0 4.7 0.5
500 1.3 342.2 44.7 7.7 0.6

1,000 2.2 640.0 88.9 13.5 0.8
Table 3
Running time in seconds for the different methods and implementations in rbinnet,
BDgraph, BGGM, and IsingFit. The simulation based methods ran for 10, 000 iterations
each.
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