Supplementary Material for "A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses"

In this supplementary material, the proof of Theorem 3 (clustering consistency) is presented in Appendix 1. Then Corollary 2 (consistency of item parameters) is proved in Appendix 2. In Appendix 3, more simulation results are provided to show the good performance of the proposed EM-tensor method.

Appendix 1: Proof of Theorem 3

Outline of proof idea. The proof follows the following 8 steps.

Step 1: Express $\ell(\mathbf{R}; \mathbf{Z}) - \bar{\ell}(\mathbf{Z})$ in terms of $\sum_a n_a \sum_j D(\widehat{\theta}_{j,a} || \bar{\theta}_{j,a}) + X - \mathbb{E}(X)$, where X is a random variable depending on \mathbf{R} and $\bar{\theta}^{(\mathbf{Z})}$ under \mathbf{Z} , and $n_a = \sum_{i=1}^N Z_{i,a}$.

Step 2: Bound the first term $\sum_{j} \sum_{a} n_{j,a} D(\hat{\theta}_{j,a} \| \bar{\theta}_{j,a})$ in the above display uniformly over all possible **Z**.

Step 3: Bound the second term $X - \mathbb{E}(X)$ using Bernstein type inequality. Combine this and Step 2 to obtain a bound for $\sup_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \overline{\ell}(\mathbf{Z})|$.

Step 4: (Denote the true latent class memberships by \mathbf{Z}^0 and joint MLE by $\hat{\mathbf{Z}}$.) Establish $\bar{\ell}(\mathbf{Z}^0) \geq \bar{\ell}(\mathbf{Z})$ for all \mathbf{Z} . Use triangle inequality to upper-bound the non-negative quantity $\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\hat{\mathbf{Z}})$.

$$0 \leq \bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\widehat{\mathbf{Z}}) \leq [\bar{\ell}(\mathbf{Z}^0) - \ell(\mathbf{R}; \mathbf{Z}^0)] + [\ell(\mathbf{R}; \mathbf{Z}^0) - \ell(\mathbf{R}; \widehat{\mathbf{Z}})] + [\ell(\mathbf{R}; \widehat{\mathbf{Z}}) - \bar{\ell}(\widehat{\mathbf{Z}})]$$

Since in the above display the middle group of terms $[\ell(R; \mathbf{Z}^0) - \ell(R; \mathbf{\widehat{Z}})] \leq 0$, we have $0 \leq \overline{\ell}(\mathbf{Z}^0) - \overline{\ell}(\mathbf{\widehat{Z}}) \leq 2 \sup_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \overline{\ell}(\mathbf{Z})|.$

Step 5: Introduce the notion of partitions and generalize $\bar{\ell}(\mathbf{Z})$ to $\bar{\ell}(\Pi)$.

Step 6: Show that a refined partition increases $\bar{\ell}(\cdot)$. To be concrete, let Π^* be a refined partition of Π , then we have $\bar{\ell}(\Pi^*) \geq \bar{\ell}(\Pi)$.

Step 7: Show that for any latent class assignment \mathbf{Z} , we can find a partition Π^* that refines $\Pi^{\mathbf{Z}}$ and $\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\Pi^*) \geq \frac{1}{2} J \beta_J N_e(\mathbf{z}).$

Step 8: Apply results in step 6 and step 7 to MLE $\hat{\mathbf{z}}$, we have

bound in step
$$4 \ge \overline{\ell}(\mathbf{Z}^0) - \overline{\ell}(\Pi^{\widehat{\mathbf{Z}}}) \ge \overline{\ell}(\mathbf{Z}^0) - \overline{\ell}(\Pi^*) \ge \frac{1}{2} J\beta_J N_e(\widehat{\mathbf{z}}).$$

Now we formally begin the proof of Theorem 3 in the above several steps. In derivations below we abbreviate $\bar{\theta}^{(\mathbf{Z})}$ as $\bar{\theta}$ and $\hat{\theta}^{(\mathbf{Z})}$ as $\hat{\theta}$ to simplify notations.

Step 1. Define $D(p||q) = p \log(p/q) + (1-p) \log((1-p)/(1-q))$, the Kullback-Leibler divergence of a Bernoulli distribution with parameter p from that with parameter q. In this step we prove a lemma as follows.

Lemma 1. Let $(R_{i,j}; 1 \le N, 1 \le J)$ denote independent Bernoulli trials with parameters $(P_{i,j}; 1 \le N, 1 \le J)$. Under a general latent class model, given an arbitrary \mathbf{Z} , there is

$$\sup_{\boldsymbol{\theta}} \ell(\mathbf{R}; \mathbf{Z}, \boldsymbol{\theta}) - \sup_{\boldsymbol{\theta}} \mathbb{E}[\ell(\mathbf{R}; \mathbf{Z}, \boldsymbol{\theta})]$$
(1)
$$= \sum_{a=1}^{L} n_a \sum_{j} D(\widehat{\theta}_{j,a} \| \bar{\theta}_{j,a}) + \sum_{i} \sum_{j} (R_{i,j} - P_{i,j}) \log\left(\frac{\bar{\theta}_{j,z_i}}{1 - \bar{\theta}_{j,z_i}}\right)$$
$$= \sum_{a=1}^{L} n_a \sum_{j} D(\widehat{\theta}_{j,a} \| \bar{\theta}_{j,a}) + X - \mathbb{E}X,$$

where $X = \sum_{i} \sum_{j} R_{i,j} \log \left(\frac{\bar{\theta}_{j,z_i}}{1 - \bar{\theta}_{j,z_i}} \right)$ is random variable depending on **Z** and

$$\widehat{\theta}_{j,a} = \frac{\sum_{i} Z_{i,a} R_{i,j}}{\sum_{i} Z_{i,a}}, \quad \overline{\theta}_{j,a} = \frac{\sum_{i} Z_{i,a} P_{i,j}}{\sum_{i} Z_{i,a}}$$
(2)

Given a fixed **Z**, denote $n_a^{(\mathbf{Z})} = \sum_{i=1}^N Z_{i,a}$. The maximizing properties of $\hat{\theta}_{j,a}$ and $\bar{\theta}_{j,a}$ in 2 imply that

$$n_a \widehat{\theta}_{j,a} = \sum_i Z_{i,a} R_{i,j}, \quad n_a \overline{\theta}_{j,a} = \sum_i Z_{i,a} P_{i,j}.$$
(3)

Using (3), we have the following,

$$\begin{split} \ell(\mathbf{R}; \mathbf{Z}) &- \bar{\ell}(\mathbf{Z}) \\ = \sum_{i} \sum_{j} \sum_{a=1}^{L} Z_{i,a}[R_{i,j} \log \hat{\theta}_{j,a} + (1 - R_{i,j}) \log(1 - \hat{\theta}_{j,a})] \\ &- \sum_{i} \sum_{j} \sum_{a=1}^{L} Z_{i,a}[P_{i,j} \log \bar{\theta}_{j,a} + (1 - P_{i,j}) \log(1 - \bar{\theta}_{j,a})] \\ = \sum_{j} \sum_{a=1}^{L} n_{a}[\hat{\theta}_{j,a} \log \hat{\theta}_{j,a} + (1 - \hat{\theta}_{j,a}) \log(1 - \hat{\theta}_{j,a})] - \sum_{j} \sum_{a=1}^{L} n_{a}[\bar{\theta}_{j,a} \log \bar{\theta}_{j,a} + (1 - \bar{\theta}_{j,a}) \log(1 - \bar{\theta}_{j,a})] \\ = \sum_{j} \sum_{a=1}^{L} \left\{ n_{a}[\hat{\theta}_{j,a} \log \hat{\theta}_{j,a} + (1 - \hat{\theta}_{j,a}) \log(1 - \hat{\theta}_{j,a})] - n_{a}[\hat{\theta}_{j,a} \log \bar{\theta}_{j,a} + (1 - \hat{\theta}_{j,a}) \log(1 - \bar{\theta}_{j,a})] \right\} \\ &+ \sum_{j} \sum_{a=1}^{L} \left\{ n_{a}[\hat{\theta}_{j,a} \log \bar{\theta}_{j,a} + (1 - \hat{\theta}_{j,a}) \log(1 - \bar{\theta}_{j,a})] - n_{a}[\bar{\theta}_{j,a} \log \bar{\theta}_{j,a} + (1 - \bar{\theta}_{j,a}) \log(1 - \bar{\theta}_{j,a})] \right\} \\ &= \sum_{a=1}^{L} n_{a} \sum_{j} D(\hat{\theta}_{j,a} || \bar{\theta}_{j,a}) + \sum_{i} \sum_{j} \left\{ [R_{i,j} \log \bar{\theta}_{j,z_{i}} + (1 - R_{i,j}) \log(1 - \bar{\theta}_{j,z_{i}})] \right\} \\ &= \sum_{a=1}^{L} n_{a} \sum_{j} D(\hat{\theta}_{j,a} || \bar{\theta}_{j,a}) + \sum_{i} \sum_{j} R_{i,j} \log \left(\frac{\bar{\theta}_{j,z_{i}}}{1 - \bar{\theta}_{j,z_{i}}}\right) - \sum_{i} \sum_{j} P_{i,j} \log \left(\frac{\bar{\theta}_{j,z_{i}}}{1 - \bar{\theta}_{j,z_{i}}}\right). \end{split}$$

Define the random variable

$$X = \sum_{i} \sum_{j} R_{i,j} \log(\bar{\theta}_{j,z_i}/(1-\bar{\theta}_{j,z_i})), \qquad (4)$$

then X depends on **Z** and the above display becomes the summation of $\sum_{a=1}^{L} n_a \sum_j D(\hat{\theta}_{j,a} || \bar{\theta}_{j,a})$ and $X - \mathbb{E}[X]$. This establishes (1) in Lemma 1. In the following, we bound the first term $\sum_{a=1}^{L} n_a \sum_j D(\hat{\theta}_{j,a} || \bar{\theta}_{j,a})$ and the second term $X - \mathbb{E}[X]$ in the above display uniformly over all possible **Z**, respectively in Step 2 and Step 3.

Step 2. In this step we prove the following theorem.

Theorem 1. The following event happens with probability at least $1 - \delta$,

$$\max_{\mathbf{Z}} \left\{ \sum_{j} \sum_{a} n_{a} D(\widehat{\theta}_{j,a}^{\mathbf{Z}} \| \bar{\theta}_{j,a}^{\mathbf{Z}}) \right\} < N \log L + JL \log \left(\frac{N}{L} + 1\right) - \log \delta.$$

Given any fixed latent class memberships \mathbf{Z} , every $\hat{\theta}_{j,a}$ is an average of n_a independent Bernoulli random variables $R_{1,j}, \ldots, R_{N,j}$ with mean $\bar{\theta}_{j,a}$. We apply the Chernoff-Hoeffding theorem to obtain

$$\mathbb{P}(\widehat{\theta}_{j,a} \ge \bar{\theta}_{j,a} + t) \le e^{-n_a D(\bar{\theta}_{j,a} + t \| \bar{\theta}_{j,a})}, \quad \mathbb{P}(\widehat{\theta}_{j,a} \le \bar{\theta}_{j,a} - t) \le e^{-n_a D(\bar{\theta}_{j,a} - t \| \bar{\theta}_{j,a})}.$$
(5)

Note that given a fixed \mathbf{Z} , each $\hat{\theta}_{j,a}$ can take values only in the finite set $\{0, 1/n_a, 2/n_a, \dots, 1\}$ of cardinality $n_a + 1$. We denote this range of $\hat{\theta}_{j,a}$ by $\hat{\Theta}^{j,a}$. Then $\mathbb{P}(\hat{\theta}_{j,a} = \vartheta) \leq \exp\{-n_a D(\vartheta \| \bar{\theta}_{j,a})\}$ for any $\vartheta \in \hat{\Theta}^{j,a}$. Now consider the cardinality of the set $\hat{\Theta}$ given \mathbf{Z} . Since for each of the $J \times L$ entries in $\hat{\theta}$, $\hat{\theta}_{j,a}$ can independently take on $n_a + 1$ different values, there is $|\hat{\Theta}| = [\prod_a (n_a + 1)]^J$. Considering the natural constraint $\sum_{a=1}^L n_a = N$, we have

$$|\widehat{\Theta}| = \left[\prod_{a=1}^{L} (n_a + 1)\right]^J \le \left[\left(\frac{N}{L} + 1\right)^L\right]^J.$$
(6)

Define $\widehat{\Theta}_{\epsilon} = \{ \widetilde{\boldsymbol{\theta}} \in \widehat{\Theta} : \sum_{j} \sum_{a} n_{a} D(\widetilde{\theta}_{j,a} \| \overline{\theta}_{j,a}) \geq \epsilon \}$, then $\widehat{\Theta}_{\epsilon} \subseteq \widehat{\Theta}$. Note that the components of $\widehat{\boldsymbol{\theta}}$ depend on different components of $\{R_{i,j}, i \in [N], j \in [J]\}$ and thus are independent. We have

$$\mathbb{P}\Big(\sum_{j=1}^{J}\sum_{a=1}^{L}n_{a}D(\widehat{\theta}_{j,a}\|\overline{\theta}_{j,a}) \geq \epsilon\Big)$$

$$=\sum_{\widetilde{\theta}\in\widehat{\Theta}_{\epsilon}}\mathbb{P}\Big(\widehat{\theta}=\widetilde{\theta}\Big)$$

$$\leq\sum_{\widetilde{\theta}\in\widehat{\Theta}_{\epsilon}}\prod_{j}\prod_{a}\exp\{-n_{a}D(\widetilde{\theta}_{j,a}\|\overline{\theta}_{j,a})\}$$

$$\leq\sum_{\widetilde{\theta}\in\widehat{\Theta}_{\epsilon}}\exp\{-\sum_{j}\sum_{a}n_{a}D(\widetilde{\theta}_{j,a}\|\overline{\theta}_{j,a})\}$$

$$\leq\sum_{\widetilde{\theta}\in\widehat{\Theta}_{\epsilon}}\exp\{-\epsilon\}$$

$$\leq|\widehat{\Theta}_{\epsilon}|e^{-\epsilon}\leq|\widehat{\Theta}|e^{-\epsilon}\leq\Big(\frac{N}{L}+1\Big)^{JL}e^{-\epsilon}$$

The above result holds for fixed \mathbf{Z} , so applying a union bound over all the L^N possible assignment \mathbf{Z} , there is

$$\mathbb{P}\Big(\max_{\mathbf{Z}}\left\{\sum_{j}\sum_{a}n_{a}D(\widehat{\theta}_{j,a}\|\bar{\theta}_{j,a})\right\} \ge \epsilon\Big) \le L^{N}\Big(\frac{N}{L}+1\Big)^{JL}e^{-\epsilon}$$

Now take $\delta = L^N \left(\frac{N}{L} + 1\right)^{JL} e^{-\epsilon}$, then $\epsilon = N \log L + JL \log(\frac{N}{L} + 1) - \log \delta$. Therefore the following event happens with probability at least $1 - \delta$,

$$\max_{\mathbf{Z}} \left\{ \sum_{j} \sum_{a} n_{a} D(\widehat{\theta}_{j,a} \| \bar{\theta}_{j,a}) \right\} < \epsilon = N \log L + JL \log \left(\frac{N}{L} + 1\right) - \log \delta.$$

This concludes the proof of Theorem 1.

Step 3. In this step we bound $|X - \mathbb{E}[X]|$, with X defined in (4). Denote $X_{i,j} = R_{i,j} \log(\overline{\theta}_{j,z_i}/(1 - \overline{\theta}_{j,z_i}))$, then $X = \sum_i \sum_j X_{i,j}$. Under Assumption 1, we have $|X_{i,j}| \leq \gamma \log J$. Then we have $\sum_i \sum_j \mathbb{E}[X_{i,j}^2] \leq \sum_i \sum_j \mathbb{P}(R_{i,j} = 1)\gamma^2 (\log J)^2 = \gamma^2 \sum_i \sum_j P_{i,j} (\log J)^2 = \gamma^2 MNJ (\log J)^2$. Applying the Bernstein's inequality to the sum of independent bounded random variables, we have the

following holds for any fixed \mathbf{Z} ,

$$\begin{aligned} \mathbb{P}(|X - \mathbb{E}[X]| \geq \epsilon) &\leq 2 \exp\left\{-\frac{(1/2)\epsilon^2}{\sum_i \sum_j \mathbb{E}[X_{i,j}^2] + (1/3)\gamma \log(J)\epsilon}\right\} \\ &\leq 2 \exp\left\{-\frac{(1/2)\epsilon^2}{\gamma^2 MNJ(\log J)^2 + (1/3)\gamma \log(J)\epsilon}\right\}.\end{aligned}$$

We next prove the following theorem.

Theorem 2. Under the following scaling (as $N, J \rightarrow \infty$),

$$\frac{MJ}{\log L} \to \infty, \frac{N}{L} \to \infty,$$

$$\sqrt{\frac{M}{J}} \left(\frac{N}{L}\right)^{1-\xi} \to \infty \text{ for some small } \xi > 0,$$
(7)

we have

$$\frac{1}{NJ} \max_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \bar{\ell}(\mathbf{Z})| = o_P \left(\frac{\sqrt{M \log L}}{\sqrt{J}} (\log J)^{1+\eta}\right)$$

for any $\eta > 0$.

We need to bound $|\ell(\mathbf{R}; \mathbf{Z}) - \overline{\ell}(\mathbf{Z})|$ uniformly over all the \mathbf{Z} . Combining the results of Step 2 and Step 3, since there are L^N possible assignments of \mathbf{Z} , we apply the union bound to obtain

$$\mathbb{P}(\max_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \bar{\ell}(\mathbf{Z})| \geq 2\epsilon \delta_{NJ}) \tag{8}$$

$$\leq L^{N} \mathbb{P}\left[\left\{\sum_{j} \sum_{a} n_{a} D(\widehat{\theta}_{j,a} || \bar{\theta}_{j,a}) \geq \epsilon \delta_{NJ}\right\} \cup \{|X - \mathbb{E}[X]| \geq \epsilon \delta_{NJ}\}\right]$$

$$\leq \exp\left\{N \log L + JL \log\left(\frac{N}{L} + 1\right) - \epsilon \delta_{NJ}\right\}$$

$$+ 2 \exp\left\{N \log L - \frac{(1/2)\epsilon^{2}\delta_{NJ}^{2}}{\gamma^{2}MNJ(\log J)^{2} + (1/3)\gamma \log(J)\epsilon \delta_{NJ}}\right\}.$$

In order for the term on the right hand side of the above display to go to zero, the following of δ_{NJ} would suffice,

$$\delta_{NJ} = N\sqrt{MJ\log L} (\log J)^{1+\eta}.$$
(9)

for a small positive constant η . Then the right hand side of (8) goes to zero as N, J go large and hence the scaling of J described in the theorem yields $\mathbb{P}(\max_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \bar{\ell}(\mathbf{Z})| \geq 2\epsilon \delta_{NJ}) = o(1)$, which implies

$$\frac{1}{NJ} \max_{\mathbf{Z}} |\ell(\mathbf{R}; \mathbf{Z}) - \bar{\ell}(\mathbf{Z})| = o_P \left(\frac{\sqrt{M \log L}}{\sqrt{J}} (\log J)^{1+\eta}\right).$$
(10)

This proves Theorem 2.

Step 4. Denote the true class assignments by \mathbf{Z}^0 . We first establish

$$\bar{\ell}(\mathbf{Z}^0) \ge \bar{\ell}(\mathbf{Z}), \quad \text{for all } \mathbf{Z}.$$
 (11)

First note that $\theta_{j,z_i^0}^0 = P_{i,j}$, and

$$\bar{\theta}_{j,z_i^0} = \frac{\sum_{m=1}^N Z_{m,z_i^0}^0 P_{m,j}}{\sum_{m=1}^N Z_{m,z_i^0}^0} = \frac{\sum_{m=1}^N Z_{m,z_i^0}^0 P_{i,j}}{\sum_{m=1}^N Z_{m,z_i^0}^0} = P_{i,j}.$$

The difference $\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\mathbf{Z})$ can be written as

$$\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\mathbf{Z}) = \sum_j \sum_i [P_{i,j} \log\left(\frac{\bar{\theta}_{j,z_i^0}^0}{\bar{\theta}_{j,z_i}^2}\right) + (1 - P_{i,j}) \log\left(\frac{1 - \bar{\theta}_{j,z_i^0}^0}{1 - \bar{\theta}_{j,z_i}^2}\right)]$$

$$=\sum_{j}\sum_{i}\left[P_{i,j}\log\left(\frac{P_{i,j}}{\overline{\theta}_{j,z_{i}}^{\mathbf{Z}}}\right)+(1-P_{i,j})\log\left(\frac{1-P_{i,j}}{1-\overline{\theta}_{j,z_{i}}^{\mathbf{Z}}}\right)\right]=\sum_{i}\sum_{j}D(P_{i,j}\|\overline{\theta}_{j,z_{i}}^{\mathbf{Z}})\geq 0,$$

therefore establishing (11). Since the above holds for every \mathbf{Z} , it also holds for the maximum likelihood estimator $\hat{\mathbf{Z}}$. We further upper bound $\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\mathbf{Z})$ from above as follows,

$$0 \leq \bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\widehat{\mathbf{Z}}) \leq [\bar{\ell}(\mathbf{Z}^0) - \ell(\mathbf{R}; \mathbf{Z}^0)] + \underbrace{[\ell(\mathbf{R}; \mathbf{Z}^0) - \ell(\mathbf{R}; \widehat{\mathbf{Z}})]}_{\leq 0} + [\ell(\mathbf{R}; \widehat{\mathbf{Z}}) - \bar{\ell}(\widehat{\mathbf{Z}})],$$

where $[\ell(\mathbf{R}; \mathbf{Z}^0) - \ell(\mathbf{R}; \widehat{\mathbf{Z}})] \leq 0$ results from the definition of $\widehat{\mathbf{Z}}$ as the MLE, that is \mathbf{Z} maximizes the $\ell(\mathbf{R}; \mathbf{Z}, \widehat{\boldsymbol{\theta}}^{\mathbf{Z}})$. Therefore

$$0 \leq \bar{\ell}(\mathbf{Z}^{0}) - \bar{\ell}(\widehat{\mathbf{Z}}) \leq [\bar{\ell}(\mathbf{Z}^{0}) - \ell(\mathbf{R}; \mathbf{Z}^{0})] + [\ell(\mathbf{R}; \widehat{\mathbf{Z}}) - \bar{\ell}(\widehat{\mathbf{Z}})]$$
$$\leq 2 \sup_{\mathbf{Z}} |\bar{\ell}(\mathbf{Z}) - \ell(\mathbf{R}; \mathbf{Z})|$$
$$= o_{p}(\delta_{NJ}).$$

Step 5. To establish the consistency of MLE in clustering subjects into latent classes, we need to introduce the notion of partitions. First we observe that any latent class assignment \mathbf{Z} defines a partition on [N] into T subsets (S_1, \ldots, S_T) via mapping $\Pi^{\mathbf{Z}}$ from [N] to [T] such that for any subject we have $\theta_{j,z_i}^0 = \theta_{j,\Pi_i^{\mathbf{Z}}}^0$ for all j. We now generalize this notion. For any partition on [N], define

$$\bar{\theta}_{j,a}^{\Pi} = \frac{1}{|S_a|} \sum_{i=1}^N \theta_{j,z_i^0}^0 I(i \in S_a) = \frac{1}{|S_a|} \sum_{i=1}^N P_{i,j} I(i \in S_a)$$

as the average over all i in the subset S_a indexed by $\Pi_i = a$. We then define generalization of $\bar{\ell}(\mathbf{Z})$ as

$$\bar{\ell}(\Pi) = \sum_{i} \sum_{j} [P_{i,j} \log(\bar{\theta}_{j,\Pi_i}^{\Pi}) + (1 - P_{i,j}) \log(1 - \bar{\theta}_{j,\Pi_i}^{\Pi})].$$

Note that $\bar{\theta}_{j,a}^{\Pi^{\mathbf{Z}}} = \bar{\theta}_{j,a}^{\mathbf{Z}}$ and hence $\bar{\ell}(\Pi^{\mathbf{Z}}) = \bar{\ell}(\mathbf{Z})$ when the partition $\Pi^{\mathbf{Z}}$ is induced by latent class assignment \mathbf{Z} .

We will proceed as follows: in step 6 we show a refined partition increases $\bar{\ell}(\cdot)$. We then construct a refined partition Π^* for every partition $\Pi^{\mathbf{Z}}$ induced by \mathbf{Z} and prove $\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\Pi^*) \geq \frac{1}{2}N_e(\mathbf{z})\beta_J$ in step 7. Finally we apply the results to MLE $\widehat{\mathbf{Z}}$ and obtain the desired results in step 8.

Step 6. We prove the following lemma:

Lemma 2. Let Π^* be a refinement of any partition Π of [N], then we have $\overline{\ell}(\Pi^*) \geq \overline{\ell}(\Pi)$.

Given $a \in [T^*]$ indexing S_a^* in Π^* , since $S_a^* \subseteq S_b$ for some S_b in Π , let F(a) denote its index under Π (i.e. b). We have

$$\bar{\ell}(\Pi^*) = \sum_{a=1}^{T^*} |S_a^*| \sum_{j=1}^{J} \left\{ \bar{\theta}_{j,a}^{\Pi^*} \log \bar{\theta}_{j,a}^{\Pi^*} + \left(1 - \bar{\theta}_{j,a}^{\Pi^*}\right) \log \left(1 - \bar{\theta}_{j,a}^{\Pi^*}\right) \right\}$$
$$\geq \sum_{a=1}^{T^*} |S_a^*| \sum_{j=1}^{J} \left\{ \bar{\theta}_{j,a}^{\Pi^*} \log \bar{\theta}_{j,F(a)}^{\Pi} + \left(1 - \bar{\theta}_{j,a}^{\Pi^*}\right) \log \left(1 - \bar{\theta}_{j,F(a)}^{\Pi}\right) \right\}$$
$$= \sum_{b=1}^{T} |S_b| \sum_{j=1}^{J} \left\{ \bar{\theta}_{j,b}^{\Pi} \log \bar{\theta}_{j,b}^{\Pi} + \left(1 - \bar{\theta}_{j,b}^{\Pi}\right) \log \left(1 - \bar{\theta}_{j,b}^{\Pi}\right) \right\} = \bar{\ell}(\Pi).$$

The first equality is obtained by rewriting $\bar{\ell}(\Pi)$ in terms of subsets. The inequality follows from non-negativity of K-L distance. Then we combine terms in same class under Π and obtain the second equality.

Step 7. Now we prove a result on refinement.

Lemma 3. For any latent class assignment \mathbf{Z} , there exists a partition Π^* that refines $\Pi^{\mathbf{Z}}$ and

$$\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\Pi^*) \ge \frac{1}{2} N_e(\mathbf{z}) J\beta_J$$

For a given \mathbf{Z} , partition each latent class assigned by \mathbf{Z} into sub-classes according to true assignments \mathbf{Z}^0 of each sample. For each sample i_1 that is incorrectly assigned by \mathbf{Z} (by definition this means its true class under \mathbf{Z}^0 is not in the majority within its estimated class under \mathbf{Z}), we find another sample i_2 assigned to same class under \mathbf{Z} but i_1 and i_2 belong to different class under \mathbf{Z}^{0} and make these two samples (i_{1}, i_{2}) a pair. We allow two misclassified samples to form a pair. Note that since incorrectly assigned samples are not in the majority of that class, we can find a pair for each of them.

Here is a simple example. Suppose in one class of \mathbf{Z} , we have 7 samples and \mathbf{Z}^0 (true latent class assignments) assigns them as three sub-classes $\{1, 2, 3, 4\}, \{5, 6\}, \{7\}$. In this example samples indexed by 5,6 and 7 are misclassified. We can find pairs (4, 5), (6, 7).

The refined partition Π^* contains all such pairs and remaining correctly assigned samples in all classes assigned by **Z**. So for the above example, the refined subset for that class is $\{1, 2, 3\}, \{4, 5\}, \{6, 7\}$. Let $e(\mathbf{z})$ by the set of incorrectly assigned sample. Clearly Π^* is a refinement and we have

$$\bar{\ell}(\mathbf{Z}^{0}) - \bar{\ell}(\Pi^{*}) = \sum_{i} \sum_{j} D(P_{i,j} \| \bar{\theta}_{j,\Pi_{i}^{*}}^{\Pi^{*}})$$

$$\geq \sum_{i \in e(\mathbf{z})} \sum_{j} D(P_{i,j} \| \bar{\theta}_{j,\Pi_{i}^{*}}^{\Pi^{*}})$$

$$= \sum_{i \in e(\mathbf{z})} \sum_{j} D(P_{i,j} \| \frac{P_{i,j} + P_{i',j}}{2})$$

where i and i' are in different classes under \mathbb{Z}^0 while in same subset under Π^* by definition. Apply Pinsker's inequality we have

$$D(P_{i,j} \| \frac{P_{i,j} + P_{i',j}}{2}) \ge \frac{1}{2} \left[|P_{i,j} - \frac{P_{i,j} + P_{i',j}}{2}| + |1 - P_{i,j} - (1 - \frac{P_{i,j} + P_{i',j}}{2})| \right]^2$$
$$= \frac{1}{2} (P_{i,j} - P_{i',j})^2$$
$$= \frac{1}{2} (\theta_{j,z_i^0}^0 - \theta_{j,z_{i'}^0}^0)^2$$

Hence we have

$$\begin{split} \bar{\ell}(\mathbf{Z}^{0}) - \bar{\ell}(\Pi^{*}) &\geq \sum_{i \in e(\mathbf{z})} \sum_{j} \frac{1}{2} (\theta_{j,z_{i}^{0}}^{0} - \theta_{j,z_{i'}^{0}}^{0})^{2} \\ &\geq \sum_{i \in e(\mathbf{z})} \frac{1}{2} \| \boldsymbol{\theta}_{\cdot,z_{i}^{0}}^{0} - \boldsymbol{\theta}_{\cdot,z_{i'}^{0}}^{0} \|^{2} \\ &\geq \frac{1}{2} N_{e}(\mathbf{z}) J \beta_{J} \end{split}$$

Step 8. Apply Lemma 3 to MLE $\hat{\mathbf{z}}$, there exists a refinement of $\Pi^{\hat{\mathbf{Z}}}$ denoted as Π^* such that

$$\bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\Pi^*) \ge \frac{1}{2} N_e(\mathbf{z}) J\beta_J$$

By Lemma 2 we have $\bar{\ell}(\Pi^*) \geq \bar{\ell}(\Pi^{\widehat{\mathbf{Z}}})$. So we conclude that

$$o_P(\delta_{NJ}) = \bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\widehat{\mathbf{Z}})$$
$$\geq \bar{\ell}(\mathbf{Z}^0) - \bar{\ell}(\Pi^*)$$
$$\geq \frac{1}{2}N_e(\mathbf{z})J\beta_J$$

which completes the proof.

Appendix 2: Proof of Corollary 2

Recall $m_a = \arg \max_{l \in [L]} \sum_{i \in \widehat{C}_a} Z_{i,l}^0$ is the class index under \mathbf{Z}^0 for cluster \widehat{C}_a . For any $0 < \epsilon < \tau$, define the following event

$$A_N^{\epsilon} = \{ N_e(\widehat{\mathbf{z}}) / N \le \epsilon \}.$$

On the event A_N^{ϵ} , for any $l \in [L]$, since we assume $n_l^0/N \ge \tau > 0$, we claim that there is exactly one $a \in [L]$ such that $m_a = l$, i.e. the *a*-th cluster represents the *l*-th class. To see the existence of such *a*, assume by contradiction that for some *l* there is no *a* such that $m_a = l$, then all subjects in class *l* are misclassified and we have

$$N_e(\widehat{\mathbf{z}})/N \ge n_l^0/N \ge \tau > \epsilon,$$

a contradiction. Since for each l-th class we can find a - th cluster to represent it and there are exactly L clusters $\hat{C}_1, \ldots, \hat{C}_L$, such a must be unique for all the L classes. Note that $\mathbb{P}(A_N^{\epsilon}) \to 1$, the first statement in the corollary is proved.

For any $\epsilon \in (0, \tau)$, from the argument above, on the event A_N^{ϵ} for each l we can find exactly one

 $a \in [L]$ such that $m_a = l,$ then the joint MLE for $\theta_{j,l}^0$ is

$$\widehat{\theta}_{j,a} = \widehat{\theta}_{j,a}^{(\widehat{\mathbf{z}})} = \frac{\sum_{i=1}^{N} \widehat{Z}_{i,a} R_{i,j}}{\sum_{i=1}^{N} \widehat{Z}_{i,a}}.$$

Recall we can rewrite $\theta_{j,l}^0$ as

$$\theta_{j,l}^{0} = \frac{\sum_{i=1}^{N} Z_{i,l}^{0} \theta_{j,l}^{0}}{\sum_{i=1}^{N} Z_{i,l}^{0}} = \frac{\sum_{i=1}^{N} Z_{i,l}^{0} P_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}}.$$

By triangle inequality we have

$$\begin{split} & \max_{j} |\widehat{\theta}_{j,a} - \theta_{j,l}^{0}| \\ &= \max_{j} \left| \frac{\sum_{i=1}^{N} \widehat{Z}_{i,a} R_{i,j}}{\sum_{i=1}^{N} \widehat{Z}_{i,a}} - \frac{\sum_{i=1}^{N} Z_{i,l}^{0} P_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} \right| \\ &\leq \max_{j} \left| \frac{\sum_{i=1}^{N} \widehat{Z}_{i,a} R_{i,j}}{\sum_{i=1}^{N} \widehat{Z}_{i,a}} - \frac{\sum_{i=1}^{N} \widehat{Z}_{i,a} R_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} \right| + \max_{j} \left| \frac{\sum_{i=1}^{N} \widehat{Z}_{i,a} R_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} - \frac{\sum_{i=1}^{N} Z_{i,l}^{0} R_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} \right| \\ &+ \max_{j} \left| \frac{\sum_{i=1}^{N} Z_{i,l}^{0} R_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} - \frac{\sum_{i=1}^{N} Z_{i,l}^{0} P_{i,j}}{\sum_{i=1}^{N} Z_{i,l}^{0}} \right| \\ &\equiv I_{1} + I_{2} + I_{3}. \end{split}$$

We then analyze these three terms.

$$I_1 \le \max_j \sum_i \widehat{Z}_{i,a} R_{i,j} \frac{\sum_i |\widehat{Z}_{i,a} - Z_{i,l}^0|}{n_l^0 \sum_i \widehat{Z}_{i,a}} \le \frac{\sum_i |\widehat{Z}_{i,a} - Z_{i,l}^0|}{n_l^0}.$$

There are two cases in which $|\widehat{Z}_{i,a} - Z_{i,l}^0| = 1$:

- $\widehat{Z}_{i,a} = 1, Z_{i,l}^0 = 0$, i.e. subject i is in cluster *a* but not in class *l*. Since $m_a = l$, subject *i* is misclassified and counted in $N_e(\widehat{\mathbf{z}})$.
- $\widehat{Z}_{i,a} = 0, Z_{i,l}^0 = 1$, i.e. subject i is in class l but not in cluster a. Since cluster a is the only cluster that represents class l, subject i must be misclassified and counted in $N_e(\widehat{\mathbf{z}})$.

By clustering consistency we have

$$I_1 \leq \frac{N_e(\widehat{\mathbf{z}})}{n_l^0} \leq \frac{N_e(\widehat{\mathbf{z}})}{\tau N} \xrightarrow{P} 0.$$

For the second term we have

$$I_{2} = \frac{\max_{j} |\sum_{i} R_{i,j}(\widehat{Z}_{i,a} - Z_{i,l}^{0})|}{n_{l}^{0}} \le \frac{\sum_{i} |\widehat{Z}_{i,a} - Z_{i,l}^{0}|}{n_{l}^{0}} \le \frac{N_{e}(\widehat{\mathbf{z}})}{n_{l}^{0}} \xrightarrow{P} 0.$$

For the third term, we apply Hoeffding's inequality and obtain

$$\mathbb{P}(I_3 \ge \delta) = \mathbb{P}\left(\max_j \frac{|\sum_i Z_{i,l}^0(R_{i,j} - P_{i,j})|}{n_l^0} \ge \delta\right) \le J \exp(-2n_l^0 \delta^2) \le J \exp(-2\tau N \delta^2) \to 0$$

where in the last step we use the scaling condition $\sqrt{\frac{M}{J}} \left(\frac{N}{L}\right)^{1-\xi} \to \infty$. This shows

$$I_3 \xrightarrow{P} 0.$$

Note that on $(A_N^{\epsilon})^c$ we may not be able to define $\hat{\theta}_{j,a}$ since the first statement in the corollary may not hold (we may not find the a - th cluster for each l-th class). Mathematically we can arbitrarily define any $\hat{\theta}_{j,a}$ as long as it is in [0, 1]. Since $\mathbb{P}(A_N^{\epsilon}) \to 1$, we only need to focus on the situation on A_N^{ϵ} . We then have

$$\mathbb{P}(\max_{j} |\widehat{\theta}_{j,a} - \theta_{j,l}^{0}| \ge \epsilon)$$

$$\leq \mathbb{P}(\max_{j} |\widehat{\theta}_{j,a} - \theta_{j,l}^{0}| I_{(A_{N}^{\epsilon})^{c}} \ge \epsilon/2) + \mathbb{P}(\max_{j} |\widehat{\theta}_{j,a} - \theta_{j,l}^{0}| I_{A_{N}^{\epsilon}} \ge \epsilon/2)$$

$$\leq \mathbb{P}((A_{N}^{\epsilon})^{c}) + \mathbb{P}(I_{1}I_{A_{N}^{\epsilon}} \ge \epsilon/6) + \mathbb{P}(I_{2}I_{A_{N}^{\epsilon}} \ge \epsilon/6) + \mathbb{P}(I_{3}I_{A_{N}^{\epsilon}} \ge \epsilon/6) \to 0.$$

This completes the proof.

Appendix 3: More simulation results

Random-effect LCM

We first present more simulation results for random-effect LCM.

(a) MSE of item parameters

(b) MSE without EM-random (c) Running time of the algorithms

Figure 1: N = 1000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 2: N = 1000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

Figure 3: N = 1000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 4: N = 1000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

Figure 5: N = 1000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 6: N = 1000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) MSE without EM-random (c) Running time of the algorithms

Figure 7: N = 1000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 8: N = 10000, J = 100, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

Figure 9: N = 10000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 10: N = 10000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) MSE without EM-random

(c) Running time of the algorithms

Figure 11: N = 10000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 12: N = 10000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) MSE without EM-random (c) Running time of the algorithms

Figure 13: N = 10000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

Figure 14: N = 10000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 15: N = 20000, J = 100, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

Figure 16: N = 20000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 17: N = 20000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 18: N = 20000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 19: N = 20000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 20: N = 20000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 21: N = 20000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Fixed-effect LCM

Then the simulation results of fixed-effect LCM are presented.

Figure 23: N = 1000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) MSE without EM-random

(c) Running time of the algorithms

Figure 24: N = 1000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

Figure 25: N = 1000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 26: N = 1000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Figure 27: N = 1000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 28: N = 1000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Figure 29: N = 1000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 30: N = 10000, J = 100, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) MSE without EM-random (c) Running time of the algorithms

Figure 31: N = 10000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) MSE without EM-random

(c) Running time of the algorithms

Figure 32: N = 10000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 33: N = 10000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) MSE without EM-random (c) R

(c) Running time of the algorithms

Figure 34: N = 10000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 35: N = 10000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Figure 36: N = 10000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 37: N = 20000, J = 100, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

Figure 38: N = 20000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 39: N = 20000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) MSE without EM-random (c)

(c) Running time of the algorithms

Figure 40: N = 20000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 41: N = 20000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Figure 42: N = 20000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

(b) Running time of the algorithms

Figure 43: N = 20000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Figure 44: N = 20000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

EM-random and Tensor-EM with same initializations

(a) MSE of item parameters

We then present the simulation results when EM-random and Tensor-EM are implemented with same initializations together with the "smarter" version of EM-random.

Figure 45: N = 1000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 46: N = 1000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 47: N = 1000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters (b) Running

(b) Running time of the algorithms

Figure 48: N = 1000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 49: N = 1000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 50: N = 1000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters (b) Runn

(b) Running time of the algorithms

Figure 51: N = 1000, J = 200, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 52: N = 10000, J = 100, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 53: N = 10000, J = 100, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 54: N = 10000, J = 200, L = 5, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 55: N = 10000, J = 200, L = 10, item parameters $\in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 56: N = 10000, J = 100, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters

(b) Running time of the algorithms

Figure 57: N = 10000, J = 100, L = 10, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters (b) Running time of the algorithms

Figure 58: N = 10000, J = 200, L = 5, item parameters $\in \{0.2, 0.4, 0.6, 0.8\}$

Simulations under local dependence

(a) MSE of item parameters $\rho = 0.3$

(b) MSE of item parameters $\rho = 0.7$

Figure 59: Random-effect LCM, $N = 1000, J = 100, L = 5, \theta_{j,a} \in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters $\rho = 0.3$ (b) MSE of item parameters $\rho = 0.7$

Figure 60: Random-effect LCM, $N = 1000, J = 200, L = 5, \theta_{j,a} \in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters $\rho = 0.3$

(b) MSE of item parameters $\rho = 0.7$

Figure 61: Random-effect LCM, $N = 1000, J = 200, L = 10, \theta_{j,a} \in \{0.1, 0.2, 0.8, 0.9\}$

(a) MSE of item parameters $\rho = 0.3$

(b) MSE of item parameters $\rho = 0.7$

Figure 62: Random-effect LCM, $N = 1000, J = 100, L = 10, \theta_{j,a} \in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters $\rho = 0.3$ (b) MSE of item parameters $\rho = 0.7$

Figure 63: Random-effect LCM, $N = 1000, J = 200, L = 5, \theta_{j,a} \in \{0.2, 0.4, 0.6, 0.8\}$

(a) MSE of item parameters $\rho = 0.3$ (b) MSE of item parameters $\rho = 0.7$

Figure 64: Random-effect LCM, $N = 1000, J = 200, L = 10, \theta_{j,a} \in \{0.2, 0.4, 0.6, 0.8\}$