
Supplement to “Rotation to Sparse Loadings using Lp

Losses and Related Inference Problems”

Symbols

Λ˚ : J ˆ K sparse true loading matrix that satisfies Assumption C3.

Φ˚ : K ˆ K true covariance matrix of the common factors.

A˚: J ˆ K matrix such that A˚A˚1
“ Λ˚Φ˚Λ˚1.

Â : Initial estimator of the loading matrix.

T : K ˆ K rotation matrix.

M : The space of oblique rotation matrices, such that

M “ tT P RKˆK : T1T ą 0, pT1Tqii “ 1, i “ 1, . . . , Ku.

Qp : The family of monotone concave CLFs of the form

QppΛq “

J
ÿ

j“1

K
ÿ

k“1

|λjk|
p.

T̂ : The solution to the optimisation problem

T̂ P argmin
TPM

QppÂT1´1
q.

g : A bivariate function for a fixed p such that g : RJˆK ˆ M Ñ R, which maps gpA,Tq Ñ

QppAT1´1q.

D : K ˆ K matrix such that the columns of TD are a permutation of those of T.

D̃ : K ˆ K matrix such that the k:th column of TD̃ is either the same as the k:th column
of T or the k:th column of T multiplied by ´1.

D1 : The set of all K ˆ K permutation matrices.

1



D2 : The set of all K ˆ K sign flip matrices.

T ˚ : The solution to argminTPM gpA˚,Tq. If T˚ “ Φ˚1{2, then T˚ is the minimiser of
gpA˚,Tq, and by Conditions C2 and C3, T ˚ “ tT˚DD̃ : D P D1, D̃ P D2u.

Bϵ : BϵpT0q “ tT P M : ||T0 ´ T||2 ă ϵu denotes the ϵ ball around T0, and BϵpT ˚q “
Ť

TPT ˚
BϵpTq is the union of the ϵ balls around the elements in T ˚.

A Proof of Proposition 1

Proof. On the interval p0,8q, h1pxq “ pxp´1 ě 0 and h2pxq “ ppp´ 1qxp´2 ď 0 for p P p0, 1s.
The function h is hence monotonically increasing and concave on r0,8q.

B Proof of Proposition 2

Proof. The inequality in Proposition 2 is already implied by Theorem 1 in Jennrich (2006)
combined with Proposition 1. Here, the focus is thus mainly on the equality condition. It
is easy to check that if T1´1

“ DD̃, then Λ˚T1´1 possesses perfect simple structure and
QppΛ˚T1´1

q “ QppΛ˚
q. On the other hand, suppose that A “ Λ˚T1´1 for some T P M and

QppAq “ minTPM QppΛ˚T1´1
q “ QppΛ˚

q. Due to Λ˚
“ AT1 and since pT1Tqkk “ 1, k “

1, . . . , K, implies that ||tk||2 “ 1 for all columns in T, each row in Λ˚ can be expressed as

λ˚
j “ aj1t

1
1 ` aj2t

1
2 ` ... ` ajKt

1
K ,

j “ 1, . . . , J . By evaluating the left and right hand side in terms of their ℓ2 norm, and by
applying the triangle inequality, we get that

||λ˚
i ||2 ď

ÿ

k

|aik|||t1
k||2 “

ÿ

k

|aik|. (B.1)

Now, let λ˚
is be the only non-zero entry in λ˚

i . By raising it to the p-th power (0 ă p ď 1)
and applying Lemma 2 in Jennrich (2006),

|λ˚
is|

p
ď p

ÿ

k

|aik|q
p

ď
ÿ

k

|aik|
p. (B.2)

Therefore, to achieve QppAq “ QppΛ˚
q, (B.2) needs to hold as an equality for all i, which

further implies that (B.1) holds as an equality for all i as well. However, since t1, t2, t3, ..., tK
are linearly independent, (B.1) holds as an equality if and only if exactly one of ai1, ai2, ...aik
is nonzero for a certain i. Suppose aij ‰ 0. Since λ˚

i “ aijt
1
j and tj has unit length,

tj “ p0, 0, . . .
λ˚
is

aij
, . . . , 0q

1
P t`es,´esu,

where es is a column vector of lengthK with 1 on its s:th entry. Since rankpTq “ K, the only
possible form of T is a permutation of r˘e1,˘e2, ...,˘eKs. Therefore, T can be written as

DD̃ for some D P D1 and D̃ P D2. As T
1´1

“ D1´1D̃1
´1
, we can easily verify that D1´1

P D1

and D̃1
´1

P D2 and arrive at the result.
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C Proof of Proposition 3

Proof. For any γ ą 0, θ̂
piq

γ,p and θ̂ achieve the minimum of LpΣpθqq ` γQppΛq and LpΣpθqq

respectively. It follows that

LpΣpθ̂qq ` γQppÂq ě LpΣpθ̂
piq

γ,pqq ` γQppΛ̂
piq

γ,pq ě LpΣpθ̂
piq

γ,pqq ě LpΣpθ̂qq.

Therefore, when γ Ñ 0`, we have that LpΣpθ̂qq ` γQppÂq Ñ LpΣpθ̂qq. By the Squeeze

theorem (page 104, Sohrab, 2003), LpΣpθ̂
piq

γ,pqq Ñ LpΣpθ̂qq when γ Ñ 0`. Since LpΣp¨qq is a
continuous function,

LpΣpθ̂
piq

0,pqq “ lim
γÑ0`

LpΣpθ̂
piq

γ,pqq “ LpΣpθ̂qq “ min
θ

LpΣpθqq.

If θ̂
piq

0,p does not solve the optimisation problem in (5) in the main article, there exists a

θ1
“ pΛ1,Φ1,Ω1

q s.t. QppΛ1
q ă QppΛ̂

piq

0,pq, and LpΣpθ1
qq “ min

θ
LpΣpθqq.

Since Qp is a continuous function, there exists a γ0, s.t. QppΛ1q ă QppΛ̂
piq

γ0,p
q and LpΣpθ1

qq ď

LpΣpθ̂
piq

γ0,p
qq, where the latter is because θ1 minimises LpΣpθqq. Therefore,

LpΣpθ1
qq ` γ0QppΛ1

q ă LpΣpθ̂
piq

γ0,p
qq ` γ0QppΛ̂

piq

γ0,p
q,

which contradicts that θ̂
piq

γ0,p
achieves the minimum of LpΣpθqq ` γ0QppΛq.

D Proof of Theorem 1

We fix p throughout the proof and suppress it as a subscript for all estimators and some
of the functions for ease of notation. We will add subscript N when we are considering an
estimator applied to a sample of size N . Let DpAq be the set of all column permutations
and sign flips of the matrix A, i.e, DpAq “ tADD̃ : D P D1, D̃ P D2u. Let || ¨ ||max denote
the maximum entry in the matrix, ||A||max “ maxi,j |Aij|. Let || ¨ ||2 denote the matrix norm
induced by the vector 2-norm, ||A||2 “ max||x||2“1 ||Ax||2 “

a

max eigpA1Aq “ d1pAq, where
we use dkpAq to represent the k:th largest singular value of A.

Proof. By Lemma 4, we can find a δ for any ϵdist ą 0, so that as long as ||A ´ A˚||2 ď δ,
T̂ P BϵdistpT ˚q. By Lemma 5, there exists a sequence of orthogonal matrices tONu, such that

ÂNON
pr
Ñ A˚ (D.1)

Therefore, for any ϵprob ą 0, there exists an N0 so that when N ą N0, Pp||ÂNON ´ A˚||2 ď

δq ě 1 ´ ϵprob. Consequently, PpT̂N P BϵdistpT ˚qq ě 1 ´ ϵprob, where

T̂N “ argminTPMgpÂNON ,Tq.
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Thus, by Condition C3, there exists DN P D1 and D̃N P D2 so that T̂NDND̃N
pr
Ñ Φ˚1{2.

By the continuous mapping theorem, T̂
1´1
N D

1´1
N D̃

1´1
N

pr
Ñ Φ˚1´1{2. Combined with (D.1) and

Slutsky’s theorem, we have that

ÂNpONT̂Nq
1´1D

1´1
N D̃

1´1
N

pr
Ñ Λ˚,

since ONT̂N “ argminTPMgpÂN ,Tq and Λ̂N “ ÂNpONT̂Nq
1´1. Lastly,

Φ̂N “ T̂1
NT̂N “ D̃

1´1
N D

1´1
N Φ˚D´1

N D̃´1
N

where D
1´1
N P D1, D̃

1´1
N P D2, which concludes the proof.

D.1 Proof of Lemmata 1 to 5

To prove Lemma 4, we will use the property of a continuous function on a compact set.
Firstly, let M1 “ tT P RKˆK : pT1Tqkk “ 1, k “ 1, . . . , Ku. Note that the space of oblique
rotation matrices M can be written as

M “ M1
X
␣

T P RKˆK : rankpTq “ K
(

.

It follows that M is not a compact set since T is invertible, as dKpTq ą 0. In Corollary 1,
we therefore first show that if the initial matrix Â is in a neighborhood of A˚, i.e, in

sB “

"

A : ||A ´ A˚
||2 ď

dKpA˚q

2

*

,

then T̂ lies in a compact subset ĎM of M, where

ĎM “ M1
X

"

T P RKˆK : dKpTq ě minp
dKpA˚q

4
?
JKg

1{p
max

, 1q

*

.

The maximum gmax “ maxAP sB gpA, Iq is attainable since g is continuous and sB is compact.
Note that ĎM is not empty since I P ĎM, and dKpIq “ 1.
To prove Corollary 1, we need to prove that if T is nearly invertible, i.e, its smallest singular
value is very small, then it can not be the minimizer of gpA,Tq if A P sB. To make this
argument, we will use the matrix inequality in Lemma 1, and Weyl’s bound in Lemma 2.

Lemma 1. ||AT
1´1||max ě

dKpAq
?
JK

||T´1||2

Proof. By the norm equivalence of a matrix (chapter 10.4.4, page 62, Petersen & Pedersen,
2012),

||AT1´1
||max ě

1
?
JK

||AT1´1
||2 (D.2)

Denote the thin singular value decomposition of A as UDV1, where U is a J ˆ K matrix
with orthogonal columns, D is a KˆK diagonal matrix whose diagonal entries Dkk “ dipAq,
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where dkpAq is the k:th largest singular value of A, and V is a K ˆ K orthogonal matrix.
When dKpAq “ 0, the statement is trivial, and when dKpAq ą 0, D is invertible. Therefore

||AT1´1
||2 “ sup

||x||2“1

|x1T´1VDU1UDV1T1´1
x|

1{2

“ ||DV1T1´1
||2

“ sup
||x||2“1

||x1D||2||
x1D

||x1D||2
V1T1´1

||2

ě inf
||x||2“1

||x1D||2 ¨ sup
||x||2“1

||
x1D

||x1D||2
V1T1´1

||2

“ dK sup
||y||2“1

||y1V1T1´1
||2

“ dK ||V1T1´1
||2

“ dK ||T´1
||2

Plug ||AT1´1
||2 “ dK ||T´1||2 into (D.2) and we get the result.

Lemma 2 (Weyl’s bound, (Weyl, 1912)). For a J ˆK matrix A, suppose Â “ A`E, where
E represents a perturbation matrix, then we have

max
1ďkďmintJ,Ku

|dkpAq ´ dkpÂq| ď ||A ´ Â||2.

We refer interested readers to Theorem 7 in O’Rourke et al. (2018)

Corollary 1. Under condition C2, A˚ is full rank, so dKpA˚q ą 0. Then, when A P sB,

argmin
TPM

gpA,Tq Ď ĎM

Proof. If T P Mz ĎM, then ||T´1||2 “ 1
dKpTq

ą
4

?
JKg

1{p
max

dKpA˚q
. Thus, by Lemma 1,

gpA,Tq ě p||AT1´1
||maxq

p
ě p

dKpAq
?
JK

||T1´1
||2q

p
ą p

4dKpAqg
1{p
max

dKpA˚q
q
p.

When A P sB, by Lemma 2, |dKpAq ´ dKpA˚q| ď ||A ´ A˚||2 ď
dKpA˚q

2
, so dKpAq ě

dKpA˚q

2
.

Thus,
gpA,Tq ą 2pgmax ě gpA, Iq ě min

TPM
gpA,Tq

which contradicts that T is a minimizer.

Next, we will prove that if T is not in a neighborhood of T ˚, then there will be a gap
between gpA˚,Tq and the minimum.

Lemma 3. Define ϵ0 “ suptϵ ą 0 : ĎM X BϵpT ˚qC ‰ Hu, which is achievable since ĎM is
compact. Then, for all positive ϵ ă ϵ0, there exists a δ ą 0, such that if T P ĎM X BϵpT ˚qC,

gpA˚,Tq ´ c˚
min ě δ (D.3)

where c˚
min – minTPM gpA˚,Tq.
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Proof. If the statement does not hold, there exists an ϵ1 ă ϵ0 for all δm “ 1
m
,m P N, such

that Tm P ĎM X Bϵ1pT ˚qC. However, 0 ă gpA˚,Tmq ´ c˚
min ă 1

m
. Since ĎM X Bϵ1pT ˚qC is

a closed subset of a compact set, it is compact. Therefore, by the Bolzano–Weierstrass
theorem (Fitzpatrick, 2009, p.52), there exists a sub-sequence tTmk

u Ď tTmu and a point
T0 P ĎM X Bϵ1pT ˚qC, which satisfies Tmk

Ñ T0 when k Ñ 8. However, since gpA˚,Tq is
a continuous function of T when A˚ is fixed, gpA˚,T0q “ limkÑ8 gpA˚,Tmk

q “ c˚
min, so

T0 P T ˚ Ď Bϵ1pT ˚q, which makes a contradiction.

We can now prove that T must be close to T ˚ if A is close enough to A˚. We present
this result in Lemma 4.

Lemma 4. Under condition C2, for any ϵ ă ϵ0, there exists a δ ą 0, s.t. if ||A ´ A˚||2 ď δ,
then T P BϵpT ˚q.

Proof. For any ϵ ă ϵ0, let δ1 be the lower bound of gpA˚,Tq ´ c˚
min for T P ĎMXBϵpT ˚qC in

Lemma 3. Because Ω “ sBˆ ĎM is a compact set in the domain of pA,Tq and g is continuous
on Ω, g is uniformly continuous on Ω. Therefore, for δ1

3
, there exists a δ2 ą 0 s.t. whenever

||A ´ A˚||2 ď δ2, |gpA,Tq ´ gpA˚,Tq| ă δ1
3
, for all T P ĎM. Let δ “ minp

dKpA˚q

2
, δ2q. When

||A ´ A˚||2 ď δ and T P ĎM X BϵpT ˚qC,

gpA,Tq ´ gpA,T˚
q ě pgpA,Tq ´ gpA˚,Tqq ` pgpA˚,Tq ´ gpA˚,T˚

qq `

pgpA˚,T˚
q ´ gpA,T˚

qq

ě ´
δ1
3

` δ1 ´
δ1
3

“
δ1
3

which means that T can not be the minimiser.

In Lemma 5, we prove that after an orthogonal transformation, ÂN lies in a small neigh-
borhood of A˚ asymptotically with probability 1.

Lemma 5. Under conditions C1 and C2, there exists a sequence of orthogonal matrices
tONu such that ÂNON

pr
Ñ A˚.

Proof. By condition C1, ÂNÂ
1
N

pr
Ñ A˚A˚1. After multiplying both sides with A˚ and rear-

ranging, we get that
ÂNÂ

1
NA

˚
´ A˚A˚1A˚ pr

Ñ 0.

By condition C2, rankpA˚1

A˚q “ rankpA˚A˚1

q “ K, so pA˚1

A˚q´1 exists. Thus,

ÂNÂ
1
NA

˚
pA˚1

A˚
q

´1
´ A˚ pr

Ñ 0. (D.4)

Define BN “ Â1
NA

˚pA˚1

A˚q´1, and ON “ BNpB1
NBNq´1{2. Then ON is an orthogonal

matrix. Therefore, we only need to prove that ON forms the desired sequence of matrices.
Let ∆N “ ON ´ BN . Then

||ÂNON ´ A˚
||F “||ÂNpBN ` ∆Nq ´ A˚

||F

ď||ÂNBN ´ A˚
||F ` ||ÂN∆N ||F ,

(D.5)
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where || ¨ ||F denotes the Frobenius norm and the first term on the right-hand side of the
inequality converges to 0 in probability according to (D.4). For the second term, we have that
||ÂN∆N ||F ď ||ÂN ||F ||∆N ||F by the sub-multiplicativity of the Frobenius norm. To control

||ÂN ||F , we can show that under condition C1, ||ÂN ||F “

b

trpÂ1
NÂNq “

b

trpÂNÂ1
Nq

pr
Ñ

a

trpA˚A˚1
q “ ||A˚||F . It is thus bounded. To control ∆N , we use Theorem 4.1 in Higham

(1988), which states that

||∆N ||F “

g

f

f

e

K
ÿ

k“1

p1 ´ dipBNqq2 (D.6)

where dkpBNq is the k:th largest singular value of BN . Define A` “ A˚pA˚1

A˚q´1 and
EN “ ÂNÂ

1
N ´ A˚A˚1

. Then

B1
NBN “pA˚1

A˚
q

´1A˚1

pA˚A˚1

` ENqA˚
pA˚1

A˚
q

´1
“ I ` pA`1

qENA
`, (D.7)

and
max
1ďiďK

|dipBNq
2

´ 1| “ max
1ďiďK

|dipB
1
NBNq ´ dipIq|

ď ||pA`
q

1ENA
`

||2

ď ||EN ||||A`
||
2
2

pr
Ñ 0

(D.8)

where the first inequality is due to Lemma 2, the second inequality is due to the sub-
multiplicativity of the matrix norm, and the convergence is due to EN

pr
Ñ 0. Therefore,

dkpBNq2
pr
Ñ 1 for k “ 1, 2, .., K. By the continuous mapping theorem, dipBNq

pr
Ñ 1 for

i “ 1, 2, .., K. Combined with (D.6), we therefore have that ||∆N ||F
pr
Ñ 0 and ||ÂNON ´

A˚||F
pr
Ñ 0.

E Proof of Theorem 2

Proof. For a certain threshold c P p0, c0q, defineΛ
˚pNq

“ Λ˚D̃´1
N D´1

N “ tλ
˚pNq

ij uJˆK and EN “

t||Λ̂N,p´Λ˚pNq
||max ă minpc, c0´cqu. By Theorem 1, under conditions C1-C3, Λ̂N,pDND̃N

pr
Ñ

Λ˚. Therefore, for any ϵ ą 0, there exists a N0 such that when N ą N0, P pENq ą 1 ´ ϵ.

Denote the entries of Γ̂N,p “

´

sgnpλ̂
pN,pq

ij q ˆ 1
t|λ̂

pN,pq

ij |ącu

¯

JˆK
on EN as γ̂

pN,pq

ij :

γ̂
pN,pq

ij “

#

0, if λ
˚pNq

ij “ 0, since |λ̂N,p
ij | ´ 0 ă c

sgnpλ̂
pN,pq

ij q “ sgnpλ
˚pNq

ij q, if λ
˚pNq

ij ‰ 0, since |λ̂N,p
ij | ą |λ

˚pNq

ij | ´ pc0 ´ cq ě c

(E.1)

Therefore, when N ą N0, Γ̂N,p “ psgnpλ
˚pNq

ij qqJˆK “ Γ˚D̃´1
N D´1

N with probability at least
1 ´ ϵ.

F Proof of Theorem 3

Proof. For a fixed s and k, let AN “ tλ
˚pNq

sk P pl
pNq

sk , u
pNq

sk qu be the event of interest, where λ
˚pNq

sk

are the entries of Λ˚pNq
“ Λ˚D̃´1

N D´1
N . Let BN “ tλ˚

sk P pl
˚pNq

sk , u
˚pNq

sk qu be the event of the
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confidence interval coverage based on the true sign pattern Γ˚. Let CN “ tΓ̂N,pDND̃N “ Γ˚
u

be the event that the selected sign pattern is consistent. Since AN X CN “ BN X CN ,

PpAN X CNq “ PpBN X CNq “ PpBNq ´ PpBN X CC
Nq

pr
Ñ 1 ´ α,

where the limit is due to P pBNq
pr
Ñ 1´α by condition C6 and 0 ď PpBN XCC

Nq ď PpCC
Nq

pr
Ñ 0

by condition C5. Therefore, combined with PpAN X CC
Nq

pr
Ñ 0 by condition C5,

PpANq “ PpAN X CNq ` PpAN X CC
Nq

pr
Ñ 1 ´ α.

G Computational Complexity

For the computational complexity, we remind that we have a loading matrix Λ of dimension
JˆK, a rotation matrix T of dimensionKˆK, a weight matrixW “ twjkuJˆK of dimension
J ˆ K, and the diagonal of the residual covariance matrix, denoted v, which is a vector of
dimensionKˆ1. In order to calculate the computational complexity, we count the number of
floating point operations, which includes addition, subtraction, multiplication and division.
The following results are simplified by ignoring all terms except the highest order term. We
use Opnq to denote a computational complexity of order n, meaning there exists a constant
C ą 0, such that the total number of floating point operations can be controlled by Cn. For
example, an mˆn matrix A, nˆ q matrix B and nˆn matrix C, the matrix multiplication
operation AB is of computational complexity Opmnqq. By Gauss-Jordan elimination we can
also conclude that the inversion of C is of computational complexity Opn3q.

At iteration t of the proposed IRGP algorithm in Algorithm 3 in the main text, the
computations and their complexity are as follows,here we define the approximation function
of the objective function of W and Λ, by QW pW ,Λq “

ř

j,k wjkλ
2
jk

Λt “ÂpT1
tq

´1, OpJK2
` K3

q

w
ptq
jk “

1

ppΛtq
2
jk ` ϵ2q1´p{2

, OpJKq

dQW pW,Λtq

dΛt

“2W d Λt, where d means element-wise product, OpJKq

∇GtpTqq “ ´ pΛ1
t

dQW pW,Λtq

dΛt

T´1
t q

1, OpJK2
` K3

q

Tt`1 “ProjpTt ´ α∇GtpTqq, OpK2
q

Therefore, the per-iteration complexity for Algorithm 3 is OpJK2 ` K3q

At iteration t of the proximal gradient descent algorithm in Algorithm 4 in the main text,
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the computations and their complexity is in the following chart

Σpθq “ΛtT
1
tTtΛ

1
` diagpexppvtqq, OpJ2K ` JK2

` K3
q

Q “Σ´1
´ Σ´1SΣ´1, OpJ3

q

∇Lt,Λ “2 ¨ QΛtT
1
tTt, OpJ2K ` JK2

` K3
q

Proxα,γpΛt ´ α∇Lt,Λq, OpJKq

∇Lt,Tij
“p2 ¨ TtΛ

1
tQΛtqij1tiďju, OpJ2K ` JK2

q

ProjpTt ´ α∇Lt,Tq, OpK2
q

∇Lt,vt,i “Qii ¨ exppvt,iq, i “ 1, ..., J, OpJq

Therefore, the per-iteration complexity for Algorithm 4 is OpJ3 ` J2K ` JK2 ` K3q.

H Comparison with Other Rotation Criteria

In the following, we demonstrate scenarios where some of the most popular traditional rota-
tion criteria fail to recover the true sparse structure, unlike the proposed criterion. Consider
first the Geomin criterion (Yates, 1987), defined as

Qgeo “

J
ÿ

j“1

´

K
ź

k“1

λjk

¯
2
K
. (H.1)

The Geomin criterion thus measures the row-wise complexity and equals zero if at least one
entry λjk in the loading matrix Λ, for all j “ 1, . . . , J , equals zero. To refrain from inde-
terminacy of the minimizer, the criterion is commonly modified by adding a small positive
constant ϵ, such that

Qϵ
geo “

J
ÿ

j“1

´

K
ź

k“1

λ2
ij ` ϵ

¯
1
K
. (H.2)

In theGPArotation R package (Bernaards & Jennrich, 2005), (H.2) is the rotation criterion
being minimized when the Geomin function is called, with default value ϵ “ 0.01.

Consider an initial loading matrix A of dimension 21ˆ3, given in the first three columns
of in Table H.1. Notice that the first 15 rows of A contain only one non-zero entry per row,
and that the remaining rows contain at least two non-zero entries. Also notice that several of
the non-zero entries in the dense part of A are small in magnitude. A majority of the matrix
is thus sparse, but with a dense component. One possible solution for the original Geomin
criterion in H.1 is given by A1, since QgeopA

1
q “ 0. This solution is displayed in columns

four to six in Table H.1. We verify that A1 contains 26 zero entries, whereas A contain 32
zero entries. The dense part of A thus dominates the sparse structure in A, making the
Geomin criterion unable to recover the true sparse structure. In columns seven to nine in
Table H.1, the solution to the adjusted Geomin criterion in (H.2) is presented, with ϵ “ 0.01.
As displayed, the adjusted Geomin is not either able to recover the true structure of A.

We apply the proposed family of rotation criteria, with both p “ 0.5 and p “ 1, to
the matrix A. We verify that the solution is given by A using grid search over the whole
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Table H.1: The initial loading matrix A, the transpose of A which is the Geomin solution,
and the solution to the adjusted Geomin criterion in (H.2) for a counterexample when the
Geomin criterion fails to recover the true sparse structure.

A A1 argminQϵ“0.01
geo pAq

F1 F2 F3 F1 F2 F3 F1 F2 F3
1 0.633 0.000 0.000 1.096 0.000 0.895 0.633 0.005 0.014
2 0.000 0.686 0.000 0.000 0.686 0.000 -0.022 0.741 0.317
3 0.000 0.000 0.786 0.000 0.786 1.112 0.014 -0.043 0.769
4 0.954 0.000 0.000 1.653 0.000 1.349 0.954 0.007 0.021
5 0.000 0.601 0.000 0.000 0.601 0.000 -0.019 0.649 0.277
6 0.000 0.000 0.949 0.000 0.949 1.342 0.017 -0.052 0.929
7 0.972 0.000 0.000 1.684 0.000 1.375 0.973 0.008 0.022
8 0.000 0.830 0.000 0.000 0.830 0.000 -0.027 0.897 0.383
9 0.000 0.000 0.815 0.000 0.815 1.152 0.015 -0.045 0.797
10 0.531 0.000 0.000 0.920 0.000 0.751 0.531 0.004 0.012
11 0.000 0.603 0.000 0.000 0.603 0.000 -0.019 0.652 0.278
12 0.000 0.000 0.588 0.000 0.588 0.832 0.011 -0.032 0.575
13 0.844 0.000 0.000 1.461 0.000 1.193 0.844 0.007 0.019
14 0.000 0.692 0.000 0.000 0.692 0.000 -0.022 0.748 0.320
15 0.000 0.000 0.885 0.000 0.885 1.251 0.016 -0.049 0.866
16 0.000 0.117 0.489 0.000 0.606 0.691 0.005 0.100 0.532
17 0.496 -0.165 0.165 0.859 0.000 0.935 0.504 -0.184 0.096
18 0.575 1.138 -0.575 0.996 0.563 0.000 0.528 1.266 -0.024
19 0.000 0.110 0.524 0.000 0.634 0.741 0.006 0.090 0.563
20 0.513 -0.052 0.052 0.889 0.000 0.800 0.516 -0.056 0.039
21 0.559 1.065 -0.559 0.967 0.507 0.000 0.515 1.186 -0.042

oblique rotation matrix space M. When A is used as a starting point for the proposed
IRGP algorithm, all of the minimizers of L0.5 and L1 differ at most by a sign flip or column
permutation of T “ I3, where I3 is an identity matrix of dimension 3 ˆ 3. The true loading
matrix A is thus recovered, up to a sign flip and column permutation.

We compare the results with the Quartimin criterion in the Oblimin family and the
Promax algorithm as well. The former is defined as

Qobl “

K
ÿ

k“1

K
ÿ

k1‰k

J
ÿ

j“1

λ2
jkλ

2
jk1 . (H.3)

The oblimin criterion (Harman & Harman, 1976) could thus be understood as a weighted sum
related to the complexity of each row of the factor loading matrix. The Promax algorithm
(Hendrickson & White, 1964) takes the rotation matrix from Varimax rotation and raises
it to powers of 4 in the stats R package (Finch, 2006) This has the effect of pushing small
values down to zero while larger values are not reduced as much.

In Table H.2, the results of the proposed method for both p “ 0.5 and p “ 1, the Geomin
and Oblimin criteria, and the Promax algorithm are presented in terms of their MSE. The
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starting point for all of the rotation criteria is A. The first column displays the entrywise
MSE, calculated as

ÿ

ij

pAij ´ rotpAqijq
2

JK
,

where rotpAq represents the rotated solution for each respective method. The second column
presents the value of the objective function atA, the third column shows the value of rotation
criteria at the rotated loading matrix, and the last column the contains the number of zeros
produced by the rotated matrix with a cut-off at 0.01. Since Promax is an algorithm that
does not involve an objective function, we do not report the objective value for it.

Table H.2: Comparison of the component-wise loss function for p “ 1 and p “ 0.5, the
Oblimin, the Geomin for ϵ “ 0.01 and ϵ “ 0, and the Promax rotation methods.

MSE Obj Obj. rot Number of zeros
L1 0.000 18.523 18.523 32
L0.5 0.000 22.898 22.898 32
Oblimin 0.021 0.896 0.265 2
Geomin(ϵ “ 0.01) 0.018 1.789 1.354 7
Geomin(ϵ “ 0) 0.251 1.070 0.000 26
Promax 0.013 - - 4

As demonstrated in Table H.2, the MSE equals zero for both choices of p for the proposed
criterion. The Promax algorithm shows the second to best performance and the Oblimin and
Geomin with an ϵ “ 0.01 perform similarly. None of the methods, except for the Geomin
with ϵ “ 0 comes close to the proposed method in terms of identifying the zero elements in
the loading matrix, with the proposed method being able to identify all of them for both
choices of p.

Lastly, we present the results of the average MSE for each respective rotation method
over 500 simulations. The true loading matrix is still A given in Table H.1, and with
generated latent factors that are orthogonal to each other. The unique variances of the
items corresponds to Item 1-21 in Table I.2 under the column of Item Unique Variance.
Three settings are considered, including N “ 400, 800, and 1600. For each setting, 500
independent simulations are conducted. Table H.3 presents the resulting MSEs, averaged
over the number of simulations, and demonstrates the superior performance of the proposed
method for both choices of p over the traditional methods.

I True Parameters for Simulation Study I

In this part, the parameters used in Study I are displayed in Table I.1 to Table I.3, including
the true loading matrices Λ˚, item unique variances Ω˚ and the lower diagonal part of the
true covariance matrices of latent variables Φ˚ (which are symmetric).
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Table H.3: The average MSE for the component-wise loss function for p “ 1 and p “

0.5, the Oblimin, the Geomin for ϵ “ 0.01, and the Promax rotation methods, for N “

t400, 800, 1600u.

N “ 400 N “ 800 N “ 1600
L1 0.007 0.003 0.002
L0.5 0.007 0.003 0.002
Oblimin 0.027 0.024 0.022
Geomin(ϵ “ 0.01) 0.021 0.019 0.018
Promax 0.018 0.015 0.014

J True Parameters for Study II

The loading matrix Λ˚ is shown in Table J.1. The covariance matrix for latent variable is
the same as the 15 ˆ 3 setting in Study I, listed in the last three columns of Table I.3.

K Additional Results for the Big-Five Personality Test

Application

Tables K.1 through K.3 show the estimated loading parameters and the corresponding 95%
confidence intervals obtained from the L1 rotation.
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Table I.1: 15 ˆ 3 factor loading patterns Λ˚ and item unique variances Ω˚ in Simulation
Study I

Loading Matrix Item Unique Variances
Item 1-15 Item 1-15

F1 F2 F3
1 0.71 0 0 1.27
2 0 0.75 0 1.38
3 0 0 0.83 1.57
4 0.96 0 0 1.92
5 0 0.68 0 1.20
6 0 0 0.96 1.90
7 0.98 0 0 1.95
8 0 0.86 0 1.67
9 0 0 0.85 1.63
10 0.62 0.35 0 1.06
11 0 0.68 0.42 1.21
12 0.5 0 0.67 1.17
13 0.87 0 0.31 1.68
14 0.43 0.75 0 1.39
15 0 0.48 0.91 1.77

Table I.2: 30 ˆ 5 factor loading patterns Λ˚ and item unique variances Ω˚ in Simulation
Study I

Loading Matrix Item Unique Variances
Item 1-15 Item 16-30 Item 1-15 Item 16-30

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5
1 0.71 0 0 0 0 16 0.8 0.34 0 0 0 1.27 1.49
2 0 0.75 0 0 0 17 0 0.89 0.38 0 0 1.38 1.72
3 0 0 0.83 0 0 18 0 0 1 0.35 0 1.57 1.99
4 0 0 0 0.96 0 19 0 0 0 0.75 0.26 1.92 1.38
5 0 0 0 0 0.68 20 0.45 0 0 0 0.91 1.20 1.79
6 0.96 0 0 0 0 21 0.97 0 0.4 0 0 1.90 1.93
7 0 0.98 0 0 0 22 0 0.68 0 0.44 0 1.95 1.21
8 0 0 0.86 0 0 23 0 0 0.86 0 0.23 1.67 1.65
9 0 0 0 0.85 0 24 0.42 0 0 0.65 0 1.63 1.13
10 0 0 0 0 0.62 25 0 0.32 0 0 0.71 1.06 1.27
11 0.68 0 0 0 0 26 0.75 0.45 0.39 0 0 1.21 1.39
12 0 0.67 0 0 0 27 0 0.61 0.43 0.37 0 1.17 1.01
13 0 0 0.87 0 0 28 0 0 0.75 0.36 0.44 1.68 1.38
14 0 0 0 0.75 0 29 0.34 0 0 0.95 0.21 1.39 1.88
15 0 0 0 0 0.91 30 0.42 0.41 0 0 0.74 1.77 1.34
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Table I.3: The true covariance matrices for latent variables in Simulation Study I.

30 ˆ 5 setting 15 ˆ 3 setting
F1 F2 F3 F4 F5 F1 F2 F3

F1 1 1
F2 0.085 1 0.021 1
F3 0.429 0.042 1 0.502 0.274 1
F4 0.148 0.149 0.496 1
F5 0.249 0.309 0.121 0.19 1

Table J.1: 18 ˆ 3 true loading matrix and item unique variances in Simulation Study II

Loading Matrix Item Unique Variances
Item 1-9 Item 10-18 Item 1-9 Item 10-18

F1 F2 F3 F1 F2 F3
1 0.531 0.760 0 10 0.124 0.765 0 1.27 1.06
2 0.744 0 0.216 11 0.412 0 0.047 1.38 1.21
3 0 1.870 1.447 12 0 0.681 0.954 1.57 1.17
4 1.816 0.424 0 13 1.374 0.964 0 1.92 1.68
5 0.403 0 1.642 14 0.768 0 1.385 1.20 1.39
6 0 0.251 1.294 15 0 0.987 0.955 1.90 1.77
7 1.889 0.534 0 16 0.995 0.372 0 1.95 1.49
8 1.322 0 1.106 17 1.435 0 0.876 1.67 1.72
9 0 0.027 1.059 18 0 1.337 0.490 1.63 1.99
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Table K.1: Part I: Point estimates and confidence intervals constructed by L1, big-five
personality test. The loadings that are significantly different from zero according to the 95%
confidence intervals are indicated by asterisks.

E ES A C I
E1(+) 0.878* -0.065 -0.069* -0.005 0.082*

( 0.793, 0.983) (-0.158, 0.011) (-0.180,-0.014) (-0.134, 0.038) ( 0.005, 0.171)
E2(-) -0.852* 0.127* 0.004 0.048 -0.014

(-0.975,-0.770) ( 0.047, 0.232) (-0.056, 0.126) (-0.028, 0.163) (-0.103, 0.082)
E3(+) 0.785* 0.278* 0.202* 0.099 -0.095*

( 0.692, 0.868) ( 0.197, 0.356) ( 0.118, 0.274) (-0.013, 0.148) (-0.173,-0.018)
E4(-) -0.922* -0.063 -0.020 0.022 0.091*

(-1.026,-0.847) (-0.144, 0.011) (-0.072, 0.079) (-0.030, 0.128) ( 0.034, 0.187)
E5(+) 0.889* -0.024 0.153* 0.083 0.080*

( 0.810, 0.988) (-0.117, 0.038) ( 0.061, 0.212) (-0.026, 0.131) ( 0.022, 0.173)
E6(-) -0.736* -0.003 -0.087 -0.043 -0.137*

(-0.854,-0.661) (-0.065, 0.113) (-0.160, 0.012) (-0.132, 0.051) (-0.225,-0.050)
E7(+) 1.125* -0.077* 0.081* 0.081 -0.023

( 1.025, 1.229) (-0.189,-0.014) ( 0.003, 0.174) (-0.032, 0.143) (-0.119, 0.052)
E8(-) -0.710* -0.095* 0.029 0.138* -0.064

(-0.824,-0.628) (-0.184,-0.002) (-0.035, 0.143) ( 0.059, 0.246) (-0.156, 0.025)
E9(+) 0.827* 0.057 -0.002 -0.037 0.243*

( 0.737, 0.945) (-0.045, 0.146) (-0.108, 0.078) (-0.174, 0.022) ( 0.146, 0.334)
E10(-) -0.826* -0.119* -0.047 -0.099 0.006

(-0.930,-0.739) (-0.192,-0.020) (-0.121, 0.049) (-0.169, 0.009) (-0.078, 0.093)
ES1(-) -0.085* -0.988* 0.008 0.110* -0.104*

(-0.187,-0.003) (-1.100,-0.895) (-0.117, 0.079) ( 0.067, 0.260) (-0.195,-0.019)
ES2(+) 0.113* 0.684* -0.000 -0.106* 0.085*

( 0.001, 0.178) ( 0.614, 0.804) (-0.065, 0.112) (-0.259,-0.074) ( 0.020, 0.194)
ES3(-) -0.164* -0.796* 0.233* 0.146* 0.044

(-0.232,-0.056) (-0.919,-0.726) ( 0.131, 0.308) ( 0.109, 0.296) (-0.039, 0.135)
ES4(+) 0.206* 0.571* 0.000 0.046 0.010

( 0.089, 0.286) ( 0.486, 0.688) (-0.075, 0.118) (-0.112, 0.090) (-0.077, 0.116)
ES5(-) 0.056 -0.475* -0.040 -0.096 -0.228*

(-0.046, 0.167) (-0.577,-0.361) (-0.159, 0.049) (-0.187, 0.032) (-0.349,-0.137)
ES6(-) -0.087 -0.817* 0.259* -0.001 -0.133*

(-0.172, 0.007) (-0.930,-0.736) ( 0.154, 0.334) (-0.030, 0.159) (-0.231,-0.056)
ES7(-) 0.052 -0.973* -0.110* -0.020 0.004

(-0.008, 0.157) (-1.077,-0.887) (-0.213,-0.041) (-0.059, 0.112) (-0.090, 0.072)
ES8(-) 0.036 -1.142* -0.133* -0.047 0.001

(-0.021, 0.154) (-1.259,-1.055) (-0.247,-0.066) (-0.076, 0.104) (-0.104, 0.065)
ES9(-) 0.001 -0.879* -0.292* 0.195* -0.016

(-0.086, 0.092) (-0.990,-0.795) (-0.388,-0.207) ( 0.145, 0.329) (-0.110, 0.066)
ES10(-) -0.332* -0.846* 0.071 -0.081 0.100*

(-0.399,-0.220) (-0.957,-0.765) (-0.019, 0.163) (-0.116, 0.068) ( 0.011, 0.184)
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Table K.2: Part II: Point estimates and confidence intervals constructed by L1, big-five
personality test.

E ES A C I
A1(-) 0.002 -0.128* -0.779* 0.035 0.046

(-0.118, 0.085) (-0.209,-0.011) (-0.872,-0.666) (-0.081, 0.123) (-0.059, 0.136)
A2(+) 0.433* -0.004 0.557* -0.054 0.042

( 0.362, 0.528) (-0.092, 0.065) ( 0.465, 0.627) (-0.157, 0.003) (-0.025, 0.129)
A3(-) 0.192* -0.577* -0.566* -0.067 0.140*

( 0.090, 0.299) (-0.679,-0.465) (-0.682,-0.471) (-0.166, 0.048) ( 0.029, 0.232)
A4(+) 0.013 -0.001 0.980* -0.018 -0.002

(-0.008, 0.168) (-0.097, 0.047) ( 0.892, 1.045) (-0.093, 0.039) (-0.062, 0.070)
A5(-) -0.165* -0.038 -0.815* 0.006 0.089*

(-0.258,-0.097) (-0.108, 0.049) (-0.892,-0.723) (-0.074, 0.084) ( 0.012, 0.164)
A6(+) -0.054 -0.186* 0.718* 0.011 0.013

(-0.136, 0.042) (-0.278,-0.104) ( 0.628, 0.810) (-0.082, 0.096) (-0.077, 0.095)
A7(-) -0.366* -0.093* -0.732* 0.070* 0.031

(-0.458,-0.300) (-0.169,-0.020) (-0.798,-0.637) ( 0.006, 0.157) (-0.047, 0.099)
A8(+) 0.110* -0.042 0.692* 0.076* 0.027

( 0.044, 0.190) (-0.130, 0.013) ( 0.618, 0.771) ( 0.001, 0.147) (-0.034, 0.107)
A9(+) 0.113* -0.115* 0.752* 0.062 0.113*

( 0.047, 0.207) (-0.212,-0.056) ( 0.669, 0.837) (-0.010, 0.150) ( 0.041, 0.195)
A10(+) 0.432* 0.069 0.320* 0.112 0.053

( 0.348, 0.513) (-0.007, 0.151) ( 0.245, 0.402) (-0.004, 0.158) (-0.019, 0.138)
C1(+) 0.096 0.089 -0.039 0.682* 0.133*

(-0.004, 0.178) (-0.005, 0.181) (-0.098, 0.089) ( 0.563, 0.754) ( 0.064, 0.246)
C2(-) 0.056 -0.180* 0.110 -0.658* 0.145*

(-0.000, 0.206) (-0.262,-0.050) (-0.022, 0.181) (-0.798,-0.578) ( 0.009, 0.212)
C3(+) -0.007 -0.007 0.112* 0.399* 0.284*

(-0.091, 0.071) (-0.111, 0.052) ( 0.050, 0.210) ( 0.302, 0.473) ( 0.218, 0.382)
C4(-) -0.107* -0.604* 0.051 -0.478* -0.041*

(-0.169,-0.005) (-0.670,-0.496) (-0.048, 0.123) (-0.544,-0.371) (-0.174,-0.008)
C5(+) 0.093 0.030 -0.002 0.779* -0.051

(-0.020, 0.169) (-0.091, 0.113) (-0.048, 0.154) ( 0.679, 0.881) (-0.122, 0.072)
C6(-) 0.003 -0.172* 0.048 -0.704* 0.088

(-0.074, 0.139) (-0.255,-0.035) (-0.081, 0.136) (-0.837,-0.608) (-0.028, 0.187)
C7(+) -0.121* -0.150* 0.109* 0.535* 0.040

(-0.219,-0.041) (-0.267,-0.085) ( 0.038, 0.216) ( 0.464, 0.653) (-0.022, 0.158)
C8(-) -0.000 -0.268* -0.240* -0.518* -0.000

(-0.073, 0.109) (-0.340,-0.155) (-0.355,-0.173) (-0.604,-0.413) (-0.123, 0.058)
C9(+) 0.053 -0.029 0.121* 0.725* -0.076

(-0.062, 0.125) (-0.177, 0.024) ( 0.055, 0.243) ( 0.639, 0.841) (-0.149, 0.040)
C10(+) -0.022 -0.025 0.126* 0.523* 0.238*

(-0.116, 0.050) (-0.146, 0.025) ( 0.068, 0.234) ( 0.431, 0.609) ( 0.172, 0.340)
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Table K.3: Part III: Point estimates and confidence intervals constructed by L1, big-five
personality test.

E ES A C I
I1(+) 0.003 0.002 -0.047 -0.007 0.630*

(-0.037, 0.131) (-0.113, 0.060) (-0.147, 0.015) (-0.106, 0.062) ( 0.539, 0.716)
I2(-) 0.083 -0.226* -0.086* 0.020 -0.588*

(-0.020, 0.157) (-0.297,-0.121) (-0.185,-0.017) (-0.047, 0.128) (-0.683,-0.505)
I3(+) 0.004 -0.152* 0.023 -0.001 0.595*

(-0.038, 0.131) (-0.254,-0.092) (-0.058, 0.099) (-0.085, 0.080) ( 0.501, 0.668)
I4(-) 0.105 -0.209* -0.153* 0.046 -0.578*

(-0.020, 0.153) (-0.273,-0.098) (-0.225,-0.059) (-0.028, 0.146) (-0.660,-0.484)
I5(+) 0.165* 0.065 -0.060 0.164* 0.586*

( 0.109, 0.252) (-0.003, 0.138) (-0.127, 0.006) ( 0.054, 0.194) ( 0.509, 0.657)
I6(-) -0.149* -0.004 -0.046 0.038 -0.515*

(-0.264,-0.090) (-0.065, 0.108) (-0.122, 0.043) (-0.034, 0.140) (-0.608,-0.432)
I7(+) 0.013 0.168* -0.036 0.087 0.455*

(-0.044, 0.099) ( 0.088, 0.229) (-0.099, 0.037) (-0.010, 0.135) ( 0.384, 0.528)
I8(+) -0.095 -0.164* -0.108* -0.001 0.664*

(-0.177, 0.011) (-0.276,-0.091) (-0.194,-0.017) (-0.097, 0.091) ( 0.572, 0.768)
I9(+) -0.081 -0.220* 0.239* 0.111* 0.262*

(-0.149, 0.014) (-0.321,-0.159) ( 0.159, 0.318) ( 0.042, 0.208) ( 0.182, 0.343)
I10(+) 0.158* -0.005 -0.002 0.086* 0.692*

( 0.110, 0.259) (-0.114, 0.038) (-0.068, 0.070) ( 0.006, 0.158) ( 0.613, 0.769)
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