
Supplement to “A Note on Exploratory Item Factor

Analysis by Singular Value Decomposition”

A Notations

Let Θ∗ = (θ∗1, ...,θ
∗
N)> = (θik)N×K , A

∗ = (a∗1, ..., a
∗
J)> = (ajk)J×K , and d∗ = (d∗1, ..., d

∗
J)

denote the true person parameters, factor loadings and intercept parameters, respectively.

We also denote θ+
i = (1, (θ∗i )

>)>, a+
j = (d∗j , (a

∗
j)
>)>, for i = 1, ..., N, j = 1, ..., J. We

use 1N ,0N to denote N dimensional vectors with all entries being 1 and 0 respectively,

and B
(K)
a (C) to denote the ball in RK centered at a ∈ RK with radius C. For a matrix

Z = (zij)m×n and a function f : R→ R, let f(Z) := (f(zij))m×n. Let σk(Z) denote the k-th

largest singular value of Z, and ‖Z‖, ‖Z‖∗ denote the spectrum norm and nuclear norm of

Z, which is the largest singular value and the sum of all singular values, respectively. If Z

is a square matrix, let λk(Z) denote the k-th largest eigenvalue of Z.

We denote

X∗ := (x∗ij)N×J = f(Θ∗(A∗)> + 1N(d∗)>)

as the true probability matrix and define X̃ = (x̃ij)N×J by

x̃ij =


0, if xij < 0,

xij, if 0 ≤ xij ≤ 1,

1, if xij > 1,

where xij is defined in step 5 of Algorithm 2.
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Throughout the proof, we use c to denote constant, whose value may change from line

to line or even within a line. We will drop the subscripts in εN,J and write ε for notional

simplicity.

B Proof of Theorems

Proof of Theorem 1. Since Theorem 1 is a special case of Proposition 4 when p = 1 and

W = 1N1
>
J , we refer the readers to the proof of Proposition 4.

Proof of Theorem 2. Let σ∗k denote the kth largest singular value of Θ∗(A∗)>. Then we have

|σ̂k − σ∗k| ≤ ‖M̂ −Θ∗(A∗)>‖2 ≤ ‖M̂ −Θ∗(A∗)>‖F . (B.1)

By (D.12) in the proof of Lemma 1, we can get

1√
NJ
‖M̂ −Θ∗(A∗)>‖F

pr→ 0. (B.2)

Notice that (B.2) holds as long as the input dimension in the algorithm is fixed. Combine

(B.1) and (B.2) to have

|σ̂k − σ∗k|√
NJ

pr→ 0.

Notice that σ∗K+1 = 0 and we get

σ̂K+1√
NJ

pr→ 0.

For k = K, we get

Pr

(
|σ̂K − σ∗K |√

NJ
≤ ε̃

)
→ 1

for any ε̃ > 0 and thus

Pr

(
σ̂K√
NJ
≥ 1√

NJ
σ∗K − ε̃

)
→ 1. (B.3)
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For σ∗K , we have
1√
NJ

σ∗K =
1√
NJ

σK(Θ∗(A∗)>)

≥ 1√
N
σK(Θ∗)

1√
J
σK(A∗)

≥ C1
1√
N
σK(Θ∗).

(B.4)

The last inequality is due to condition A4. Let Σ̂ = 1
N

∑N
i=1 θ

∗
i (θ
∗
i )
> and it is not hard to

verify that

1√
N
σK(Θ∗) =

√
λK(Σ̂).

By law of large number, we know

‖Σ̂− Σ∗‖2
pr→ 0

which leads to

λK(Σ̂)
pr→ λK(Σ∗) > 0

and thus

1√
N
σK(Θ∗) =

√
λK(Σ̂)

pr→
√
λK(Σ∗) > 0. (B.5)

Combining (B.3), (B.4), (B.5) and choosing ε̃ = 1
2

√
λK(Σ∗), we have

Pr

(
σ̂K√
NJ

>
1

4

√
λK(Σ∗)

)
→ 1.

We complete the proof by choosing δ = 1
4

√
λK(Σ∗).

C Proof of Propositions

Proof of Proposition 1. According to the choice of ε, we have h(2ε) ≥ C
√
C2

0 + 1. Then,

Pr (‖θ∗1‖ ≥ h(2ε)/C) = 0, and
(h(2εN,J))

K+1
K+3

(εN,Jg(εN,J))2
= O(1).
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We complete the proof by Theorem 1.

Proof of Proposition 2. For the logistic link function, we have

h(y) = log
1− y
y

and g(y) = y(1− y), for y ∈ (0, 0.5). (C.1)

Since θ∗1 is a sub-Gaussian random vector, then ‖θ∗1‖2
2 is an sub-exponential random variable,

which means there exist constant c1, c2 > 0, such that for any t > 0, we have

Pr(‖θ∗1‖2 ≥ t) ≤ c1 exp(−c2t).

Then,

Pr

(
‖θ∗1‖ ≥

h(2ε)

C

)
= Pr

(
‖θ∗1‖2 ≥ (h(2ε))2

C2

)
= Pr

(
‖θ∗1‖2 ≥

log2
(

1−2ε
2ε

)
C2

)

≤ c1 exp

(
−c2

log2
(

1−2ε
2ε

)
C2

) (C.2)

Recall we choose ε = γ0J
−γ1 in (9). Consequently,

log2

(
1− 2ε

2ε

)
= γ2

1(log J)2 +O(log J). (C.3)

Therefore,

c1 exp

(
−c2

log2
(

1−2ε
2ε

)
4C2

)
=c1 exp

(
−c2

γ2
1(log J)2

C2
+O(log J)

)
≤c1 exp

(
−c2

γ2
1(logN)2

C2β2
+O(logN)

)
=o

(
1

N

) (C.4)

where the second inequality is due to the assumption that Jβ ≥ N . The above display
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together with (C.2) verifies (3). We proceed to verify (4). According to (C.1), we have

(h(2ε))
K+1
K+3

(εg(ε))2
=

(
log
(

1−2ε
2ε

))K+1
K+3

ε4(1− ε)2
.

Plugging in ε = γ0J
−γ1 , the above equation becomes

(
log
(

1−2ε
2ε

))K+1
K+3

ε4(1− ε)2
= (1 + o(1)) γ−4

0 J4γ1 (γ1 log J +O(1))
K+1
K+3 = J4γ1+o(1).

Thus, for γ1 ∈ (0, 1
4(K+3)

), (
log
(

1−2ε
2ε

))K+1
K+3

ε4(1− ε)2
= o(J

1
K+3 ) (C.5)

This verifies (4) and completes the proof by applying Theorem 1.

Proof of Proposition 3. The proof of Proposition 3 is similar to proof of Lemma 1. We will

only state the main steps and omit the repeating details. According to Lemma 3 in Appendix

D, we have

1

NJ
E
(
‖X̃ −X∗‖2

F | X∗
)
≤ cmin

{
‖X∗‖∗
J
√
N
,
‖X∗‖2

∗
NJ

, 1

}
+ ce−cN , (C.6)

Recall that we assume ‖θ∗i ‖ ≤ C0. Following the similar arguments as in the proof of Lemma

1, we have

1

NJ
E
(
‖X̃ −X∗‖2

F | X∗
)
≤ c

1√
J

(
C0

δ

)K
2

+ Lδ

(√
C2

0 + 1 + C

)
+ c exp(−cN).

There is a difference from the proof of Lemma 1 that the rank of matrix f(Mδ) is upper

bounded by

rank(f(Mδ)) ≤ min{|G1|, |G2|} ≤ |G1| ≤ c

(
C0

δ

)K
.
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Choose δ =

(
cCK0

JL2
(√

C2
0+1+C

)2

) 1
K+2

, then

1

NJ
E
(
‖X̃ −X∗‖2

F

∣∣∣X∗) ≤ cJ−
1

K+2 + c exp (−cN) .

Let g(N, J) := cJ−
1

K+2 + c exp (−cN). By taking expectation, we have

1

NJ
E
(
‖X̃ −X∗‖2

F

)
≤ g(N, J).

For any ∆N,J > 0, by Chebyshev’s inequality, we have

Pr

(
1

NJ
‖X̃ −X∗‖2

F ≥
g(N, J)

∆N,J

)
≤ ∆N,J .

Thus, for any sequence ∆N,J satisfying ∆N,J = o(1), we have

lim
N,J→∞

Pr

(
1

NJ
‖X̃ −X∗‖2

F ≤
g(N, J)

∆N,J

)
= 1.

In what follows, we restrict our analysis to the event
{

1
NJ
‖X̃ −X∗‖2

F ≤
g(N,J)
∆N,J

}
. By (7), we

have x∗ij = f((θ∗i )
>a∗j + d∗j) ∈ [2ε, 1− 2ε], which leads to

1

NJ

∑
i,j

1{x̃ij /∈[ε,1−ε]} ≤
g(N, J)

∆N,Jε2
=

1

∆N,Jε2

(
cJ−

1
K+2 + c exp (−cN)

)
.

Following the similar procedure as in proof of Lemma 1, we can further bound ‖X̂ −X∗‖2
F

by

1

NJ
‖X̂ −X∗‖2

F ≤
1

ε2∆N,J

(
cJ−

1
K+2 + c exp(−cN)

)
=

1

∆N,J

(
cJ−

1
K+2 + c exp(−cN)

)
. (C.7)
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To summarize, we have

Pr

(
1

NJ
‖X̂ −X∗‖2

F ≤
1

∆N,J

(
cJ−

1
K+2 + c exp(−cN)

))
→ 1, as N, J →∞,

for any ∆N,J = o(1). This implies 1
NJ
‖X̂ −X∗‖2

F = Op

(
J−

1
K+2 + exp(−cN)

)
= Op(J

− 1
K+2 ),

where the second equation is due to N ≥ J .

Proof of Proposition 4. We have

LN,J(A∗, Â) =
1

JK
min

O∈RK×K

{
‖A∗ − ÂO‖2

F

}
=

1

JK
min

O∈RK×K

{
‖(A∗Σ

1
2 )Σ−

1
2 − ÂO‖2

F

}
≤ 1

JK
min

O∈RK×K

{
(‖A∗Σ

1
2 − ÂOΣ

1
2‖2

F

}
‖Σ−

1
2‖2

F

=
1

JK
min

Q∈RK×K

{
(‖A∗Σ

1
2 − ÂQ‖2

F

}
‖Σ−

1
2‖2

F

=
1

JK
min

Q∈RK×K

{
(‖Ã− ÂQ‖2

F

}
‖Σ−

1
2‖2

F

= LN,J(Ã, Â)‖Σ−
1
2‖2

F ,

where Ã = A∗Σ
1
2 . Let Θ̃ = (θ̃1, ..., θ̃N)> = Θ∗Σ−

1
2 . Then Θ∗(A∗)> = Θ̃Ã>, and θ̃is are

independent and identically distributed from a distribution F̃ which has mean 0 and covari-

ance matrix IK . Therefore, it suffices to show LN,J(A∗, Â)
pr→ 0 when Σ = IK . We prove it

through the following two lemmas whose proofs are given in Appendix D.

Lemma 1. Assume conditions A1, A2, A3, A5 and A6 are satisfied and further assume that

(3) and (4) are satisfied. Then,

1

NJ

∥∥∥Θ̂Â> −Θ∗(A∗)>
∥∥∥2

F

pr→ 0.,

where Θ̂ and Â are given in Algorithm 2.
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Lemma 2. Suppose conditions A1, A2 and A4 are satisfied and further suppose that

1

NJ

∥∥∥Θ̂Â> −Θ∗(A∗)>
∥∥∥2

F

pr→ 0.

Then, LN,J(A∗, Â)
pr→ 0.

We complete the proof.

D Proof of Lemmas

Proof of Lemma 1. We first give a lemma regarding the error bound for recovering the prob-

ability matrix X∗.

Lemma 3. Given X∗, we have

1

NJ
E
(
‖X̃ −X∗‖2

F

∣∣∣X∗) ≤ cmin

{
‖X∗‖∗
J
√
N
,
‖X∗‖2

∗
NJ

, 1

}
+ ce−cN . (D.1)

Let

pε := Pr(‖θ∗1‖ > Cε),

where Cε = h(2ε)/C is a quantity depending on ε. Let

AN,J := {‖θ∗i ‖ ≤ Cε, for i = 1, ..., N} .

Then, according to the condition (3)

lim
N,J→∞

Pr(AN,J) = lim
N,J→∞

(1− pε)N = 1.

In what follows, we restrict the analysis to the event AN,J . Let G1,G2 be two δ-nets for
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B
(K)
0 (Cε) and B

(K+1)
0 (C), respectively. This means G1 ⊂ B

(K)
0 (Cε),G2 ⊂ B

(K+1)
0 (C) and

B
(K)
0 (Cε) ⊂

⋃
x∈G1

B(K)
x (δ), B

(K+1)
0 (C) ⊂

⋃
x∈G2

B(K+1)
x (δ).

For any θ∗i , let p(θ∗i ) be a point in G1 such that

‖θ∗i − p(θ∗i )‖ ≤ δ,

which implies

‖θ+
i − (1, p(θ∗i )

>)>‖ = ‖θ∗i − p(θ∗i )‖ ≤ δ.

With a little abuse of notation, we use p(θ+
i ) to denote (1, p(θ∗i )

>)>. For any a+
j , let p(a+

j )

be a point in G2 such that

‖a+
j − p(a+

j )‖ ≤ δ.

It is not hard to see that we can find such G1,G2 such that

|G1| ≤ c

(
Cε
δ

)K
, |G2| ≤ c

(
C

δ

)K+1

,

This is due to definition of AN,J and condition A1. Let Mδ = (δmij)N×J , where δmij =

f
(
p(θ+

i )>p(a+
j )
)
, then we have

rank(Mδ) ≤ min{|G1|, |G2|} ≤ |G2| ≤ c

(
C

δ

)K+1

.

Now we provide an upper bound for ‖X∗‖∗ on the right-hand side of (D.1). We have

‖X∗‖∗ = ‖f(M∗)‖∗ ≤
(I)︷ ︸︸ ︷

‖f(M∗)− f(Mδ)‖∗+

(II)︷ ︸︸ ︷
‖f(Mδ)‖∗ . (D.2)

9



The second term on the right-hand side of the above display is bounded above by

(II) ≤
√

rank(f(Mδ)) · ‖f(Mδ)‖F ≤ c

(
C

δ

)K+1
2 √

NJ. (D.3)

Now we consider the first term. We have

∣∣(θ+
i )>a+

j − (p(θ+
i ))>p(a+

j )
∣∣ ≤ ∣∣(θ+

i )>(a+
j − p(a+

j ))
∣∣+
∣∣(θ+

i − p(θ+
i ))>p(a+

j )
∣∣

≤
√
C2
ε + 1 · δ + δC.

So

|f(m∗ij)− f(δmij)| = |f
(
(θ+

i )>a+
j

)
− f((p(θ+

i ))>p(a+
j ))|

≤ Lδ
(√

C2
ε + 1 + C

)
.

We have used the Lipschitz continuity in condition A3 here. Then the first term in (D.2) is

bounded from above as

(I) ≤
√
J‖f(M∗)− f(Mδ)‖F ≤ Lδ

(√
C2
ε + 1 + C

)√
J
√
NJ. (D.4)

Here we used the fact that the rank of the matrix f(M∗)−f(Mδ) cannot exceed J according

to condition A5. Combined (D.1), (D.2), (D.3) and (D.4), then on the event AN,J ,

1

NJ
E
(
‖X̃ −X∗‖2

F

∣∣∣X∗) ≤ c
1√
J

(
C

δ

)K+1
2

+ Lδ
(√

C2
ε + 1 + C

)
+ c exp(−cN).

Choose δ =

(
cCK+1

JL2(
√
C2
ε+1+C)2

) 1
K+3

, then

1

NJ
E
(
‖X̃ −X∗‖2

F

∣∣∣X∗) ≤ cC
K+1
K+3
ε J

−1
K+3 + c exp(−cN),
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which implies

1

NJ
E
(
‖X̃ −X∗‖2

F | AN,J
)
≤ g(N, J),

where we define g(N, J) := cC
K+1
K+3
ε J

−1
K+3 + c exp(−cN). By Chebyshev’s inequality, for any

∆N,J > 0,

Pr

(
1

NJ
‖X̃ −X∗‖2

F ≥
g(N, J)

∆N,J

∣∣∣AN,J) ≤ ∆N,J .

Thus,

Pr

(
1

NJ
‖X̃ −X∗‖2

F ≤
g(N, J)

∆N,J

∣∣∣AN,J) ≥ 1−∆N,J . (D.5)

Let BN,J := AN,J ∩{ 1
NJ
‖X̃−X∗‖2

F ≤
g(N,J)
∆N,J

}, then according to (D.5) for any sequence ∆N,J

satisfying ∆N,J = o(1), we have

lim
N,J→∞

Pr (BN,J) = lim
N,J→∞

Pr (AN,J) · lim
N,J→∞

Pr

(
1

NJ
‖X̃ −X∗‖2

F ≤
g(N, J)

∆N,J

∣∣∣AN,J) = 1.

We will restrict our analysis on BN,J in what follows. Let h(N, J) = g(N,J)
∆N,J

, then on BN,J , we

have 1
NJ
‖X̃ −X∗‖2

F ≤ h(N, J).

Recall Cε = h(2ε)
C

. Then, according to the definition of the function h and Cε, we can see

that f(CCε), f(−CCε) ∈ [2ε, 1− 2ε]. This interval is non-empty because ε ≤ 1
4
. Thus, when

the event BN,J happens, we have x∗ij = f((θ+
i )>a+

j ) ∈ [2ε, 1− 2ε], which leads to

1

NJ

∑
i,j

1{x̃ij /∈[ε,1−ε]} ≤
1

NJ

∑
i,j

1{|x̃ij−x∗ij |≥ε} ≤
1

NJ

∑
i,j

(x̃ij − x∗ij)2

ε2
≤ h(N, J)

ε2
.
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Since X̂ and X̃ are not far away from each other by definition, we can bound ‖X̂−X∗‖2
F by

1

NJ
‖X̂ −X∗‖2

F =
1

NJ

∑
i,j

[
(x̃ij − x∗ij)21{x̃ij∈[ε,1−ε]} + (x̂ij − x∗ij)21{x̃ij /∈[ε,1−ε]}

]
≤ 1

NJ

∑
i,j

(x̃ij − x∗ij)2 +
1

NJ

∑
i,j

(1− 3ε)2 1{x̃ij /∈[ε,1−ε]}

≤

(
1 +

(
1− 3ε

ε

)2
)
h(N, J)

≤ 1

ε2
h(N, J) (D.6)

where the last inequality is because ε ≤ 1
4
. According to condition A3 and the above

inequality, we have

1

NJ
‖M̃ −M∗‖2

F =
1

NJ
‖f−1(X̂)− f−1(X∗)‖2

F (D.7)

≤ 1

(g(ε))2

1

NJ
‖X̂ −X∗‖2

F (D.8)

≤ 1

(εg(ε))2
h(N, J). (D.9)

The first inequality holds because x∗ij, x̂ij ∈ [ε, 1− ε] on the event BN,J .

We proceed to an upper bound of M̂−Θ∗(A∗)>. Recall thatM∗ = 1N(d∗)>+Θ∗(A∗)>, M̃ =

M̂ + 1N d̂. Let H1 = M̂ −Θ∗(A∗)> and H2 = 1N(d̂)> − 1N(d∗)>. We have

1

NJ
‖H1 +H2‖2

F =
1

NJ

(
‖H1‖2

F + ‖H2‖2
F + 2tr{H>1 H2}

)
. (D.10)
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We first bound the trace term in the above display,

∣∣tr{H>1 H2}
∣∣ =

∣∣∣tr{(A∗(Θ∗)> − M̂>)1N(d̂− d∗)>}
∣∣∣

=
∣∣∣tr{A∗(Θ∗)>1N(d̂− d∗)>}

∣∣∣ , (M̂>1N = 0J)

=
∣∣∣(d̂− d∗)>A∗(Θ∗)>1N

∣∣∣ , (exchangeability for trace operator)

=

∣∣∣∣∣
〈∑

j

(d̂j − d∗j)a∗j ,
∑
i

θ∗i

〉∣∣∣∣∣
≤

∥∥∥∥∥∑
j

(d̂j − d∗j)a∗j

∥∥∥∥∥
∥∥∥∥∥∑

i

θ∗i

∥∥∥∥∥ . (Cauchy-Schwarz inequality)

Through simple algebra, we have d∗j = 1
N

∑N
i=1

(
m∗ij + (θ∗i )

>a∗j
)
. By the definition of d̂j, we

have d̂j = 1
N

∑N
i=1 m̃ij. Then

|d̂j − d∗j | ≤

∣∣∣∣∣ 1

N

∑
i

(m̃ij −m∗ij)

∣∣∣∣∣+

∣∣∣∣∣ 1

N

∑
i

(θ∗i )
>a∗j

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
i

(m̃ij −m∗ij)

∣∣∣∣∣+

∥∥∥∥∥ 1

N

∑
i

θ∗i

∥∥∥∥∥∥∥a∗j∥∥ ,
which leads to

∥∥∥∥∥∑
j

(d̂j − d∗j)a∗j

∥∥∥∥∥ ≤∑
j

|d̂j − d∗j |‖a∗j‖

≤ C
∑
j

|d̂j − d∗j |, (‖a∗j‖ ≤ C)

≤ C
∑
j

{∣∣∣∣∣ 1

N

∑
i

(m̃ij −m∗ij)

∣∣∣∣∣+

∥∥∥∥∥ 1

N

∑
i

θ∗i

∥∥∥∥∥∥∥a∗j∥∥
}

≤ C

N

∑
i,j

|m̃ij −m∗ij|+ C2J

∥∥∥∥∥ 1

N

∑
i

θ∗i

∥∥∥∥∥ , (‖a∗j‖ ≤ C)

≤ CJ

√
1

NJ
‖M̃ −M∗‖2

F + C2J

∥∥∥∥∥ 1

N

∑
i

θ∗i

∥∥∥∥∥ . (Cauchy-Schwarz inequality)
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So we can bound
∣∣tr{H>1 H2}

∣∣ by

∣∣tr{H>1 H2}
∣∣ ≤ (CJ√ 1

NJ
‖M̃ −M∗‖2

F + C2J

∥∥∥∥∥ 1

N

∑
i

θ∗i

∥∥∥∥∥
)∥∥∥∥∥∑

i

θ∗i

∥∥∥∥∥ (D.11)

According to condition A2 and law of large number, we have

Pr

(
1

N

∥∥∥∥∥
N∑
i=1

θ∗i

∥∥∥∥∥ ≤ ξ

)
→ 1, as N, J →∞,

for any ξ > 0. Let

CN,J,ξ :=

{
1

N

∥∥∥∥∥
N∑
i=1

θ∗i

∥∥∥∥∥ ≤ ξ

}
∩ BN,J ,

then we have

Pr(CN,J,ξ)→ 1, as N, J →∞,

for any ξ > 0. On CN,J,ξ, according to (D.7) , (D.10) and (D.11),

1

NJ
‖Θ∗(A∗)> − M̂‖2

F =
1

NJ
‖H1‖2

F ≤
1

NJ
‖M̃ −M∗‖2

F +
2

NJ

∣∣tr{H>1 H2}
∣∣

≤ h(N, J)

(εg(ε))2
+ Cξ

(√
h(N, J)

εg(ε)
+ Cξ

)
. (D.12)
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Recall how we get Θ̂, Â in algorithm 2 and we have

‖M̂ − Θ̂Â>‖2

=σK+1(M̂)

=|σK+1(M̂)− σK+1(Θ∗(A∗)>)|

≤‖M̂ −Θ∗(A∗)>‖2

≤‖Θ∗(A∗)> − M̂‖F .

So

‖Θ̂Â> −Θ∗(A∗)>‖2 ≤ ‖Θ̂Â> − M̂‖2 + ‖M̂ −Θ∗(A∗)>‖2 ≤ 2‖M̂ −Θ∗(A∗)>‖F , (D.13)

which leads to

1

NJ
‖Θ̂Â> −Θ∗(A∗)>‖2

F ≤
2K

NJ
‖Θ̂Â> −Θ∗(A∗)>‖2

2,

≤ 8K

NJ
‖M̂ −Θ∗(A∗)>‖2

F ,

≤ 8K
h(N, J)

(εg(ε))2
+ 8KCξ

(√
h(N, J)

εg(ε)
+ Cξ

)
, (D.14)

where the first inequality is due to rank
(
Θ̂Â> − Θ∗(A∗)>

)
≤ 2K, the second inequality is

due to (D.13) and the last inequality is due to (D.12). Thus, on the event CN,J,ξ

1

NJ
‖Θ̂Â> −Θ∗(A∗)>‖2

F = O

(
h(N, J)

(εg(ε))2
+ ξ

(√
h(N, J)

εg(ε)
+ ξ

))
.

Recall

h(N, J)

(εg(ε))2
=

c

∆N,J

(
(h(2ε))

K+1
K+3

(εg(ε))2J
1

K+3

+
exp(−cN)

(εg(ε))2

)
,
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where ∆N,J could be any sequence satisfying ∆N,J = o(1). By (3), (4) and condition A5,

there exists ∆N,J = o(1) such that h(N,J)
(εg(ε))2

= o(1). So fix any ξ < 1, for N, J large enough,

we have h(N,J)
(εg(ε))2

≤ ξ. Then there is a constant κ such that for N, J large enough, on CN,J,ξ

with ξ ∈ (0, 1), we have,

1

NJ
‖Θ̂Â> −Θ∗(A∗)>‖2

F ≤ κξ. (D.15)

This combined with Pr(CN,J,ξ)→ 1 for any ξ sufficiently small completes the proof.

Proof of Lemma 2. Let

Q(N,J) =
1√
N

Θ̂>Θ∗
(
(Θ∗)>Θ∗

)− 1
2

and in the following we will show that

1

JK
‖A∗ − ÂQ(N,J)‖2

F

pr→ 0.

For any α > 0, let

DN,J,α :=

{
1− α ≤ σK(Θ∗)√

N
≤ σ1(Θ∗)√

N
≤ 1 + α

}
. (D.16)

Applying Theorem 5.39 of Vershynin (2010) to the matrix Θ∗, we have limN,J→∞ Pr(DN,J,α) =

1 for any α > 0. We restrict our analysis on DN,J,α in what follows and denote

Q(N, J) :=
1

NJ
‖Θ̂Â> −Θ∗(A∗)>‖2

F .

Then,

‖A∗ − ÂQ(N,J)‖F =‖A∗ − Â 1√
N

Θ̂>Θ∗
(
(Θ∗)>Θ∗

)− 1
2 ‖F

≤‖A∗ − A∗ 1√
N

(
(Θ∗)>Θ∗

) 1
2 ‖F︸ ︷︷ ︸

(a)

+ ‖(A∗(Θ∗)> − ÂΘ̂>)
1√
N

Θ∗((Θ∗)>Θ∗)−
1
2‖F︸ ︷︷ ︸

(b)

.

(D.17)
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We consider (b) first:

(b) ≤ ‖A∗(Θ∗)> − ÂΘ̂>‖F
1√
N
‖Θ∗‖2‖((Θ∗)>Θ∗)−

1
2‖2

=
√
NJ
√
Q(N, J)

σ1(Θ∗)√
N

1

σK(Θ∗)

≤
√
JQ(N, J)

1 + α

1− α
, (by (D.16))

(D.18)

For (a), notice that

∥∥∥∥ 1√
N

(
(Θ∗)>Θ∗

) 1
2 − IK

∥∥∥∥
2

= max
1≤k≤K

∣∣∣∣σk(Θ∗)√
N
− 1

∣∣∣∣
≤ α. (by (D.16))

So

(a) ≤ ‖A∗‖F
∥∥∥∥ 1√

N

(
(Θ∗)>Θ∗

) 1
2 − IK

∥∥∥∥
2

≤ C
√
Jα. (D.19)

Combine (D.17), (D.18) and (D.19), we get on DN,J,α

1√
JK
‖A∗ − ÂQ‖F ≤

Cα√
K

+
1 + α√
K(1− α)

√
Q(N, J).

Recall thatQ(N, J) = 1
NJ
‖Θ̂Â>−Θ∗(A∗)>‖2

F

pr→ 0, α can be arbitrarily small and Pr(DN,J,α)→

1, we complete the proof.

Proof of Lemma 3. This lemma is almost the same as Theorem 1.1 of Chatterjee (2015) by

setting, in his notations, η = 0.02 and σ2 = 1/4, except two small differences. The first

is that the probability p can be changed through N, J in the setting of Chatterjee (2015)

while p is a constant in our setting. Therefore we absorb p into constants c in the LHS of

(D.1). The second difference is a modification in step 5 of Algorithm 2 that we require X to

include at least K + 1 singular values of Z. This does not change the result of Theorem 1.1
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of Chatterjee (2015) given the following lemma which is based on Lemma 3.5 of Chatterjee

(2015).

Lemma 4. For fixed 0 < m ≤ n and a m×n matrix A, let A =
∑m

i=1 σixiy
>
i be the singular

value decomposition of A. Fix any δ > 0 and integer T > 0, and define

B̃ :=
l∑

i=1

σixiy
>
i ,

where l = max{T, arg max{i : σi > (1 + δ)‖A−B‖}}. Then

‖B̃ −B‖F ≤ (1 + δ)
√
T‖A−B‖+K(δ) (‖A−B‖‖B‖∗)

1
2 , (D.20)

where K(δ) = (4 + 2δ)
√

2/δ +
√

2 + δ.

Notice that we have another term (1 + δ)
√
T‖A− B‖ in (D.20) compared with Lemma

3.5 in Chatterjee (2015), which is due to the composition of B̃. In the proof of Theorem 1.1

in Chatterjee (2015), by replacing Lemma 3.5 in Chatterjee (2015) by the above lemma with

T = K + 1, we get

1

NJ
E
(
‖X̃ −X∗‖2

F

∣∣∣X∗) ≤ cmin

{
‖X∗‖∗
J
√
N

+
1

J
,
‖X∗‖2

∗
NJ

, 1

}
+ ce−cN . (D.21)

The 1/J term in (D.21) results from the first term in (D.20). Notice that if

‖X∗‖∗
J
√
N

+
1

J
≤ ‖X

∗‖2
∗

NJ
,

then

‖X∗‖∗
J
√
N
≤ ‖X

∗‖2
∗

NJ
,

which leads to

‖X∗‖∗
J
√
N
≥ 1

J
.
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Therefore we can remove the 1/J term in (D.21) to complete the proof.

Proof of Lemma 4. Let

B̂ :=
∑

i:σi>(1+δ)‖A−B‖

σixiy
>
i

and by Lemma 3.5 of Chatterjee (2015), we have

‖B̃ −B‖F ≤ K(δ) (‖A−B‖‖B‖∗)
1
2 .

Note that

‖B̃ − B̂‖F ≤
√
T (1 + δ)‖A−B‖

and we complete the proof by triangular inequality.
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