
Supplement:

Explore Conditional Dependencies in Item Response Tree Data

1 Four Models

Here I provide the specific formulation of the four models utilized for the verbal aggression data. I

assume the three-category item response data have been expanded to two sets of sub-responses based

on a linear tree with two sub-trees (two nodes and two branches).

Denote Yp,i = m as the raw response (m = 0, 1, 2) from person p (p = 1, . . . , N) to item i

(i = 1, . . . , I). m = 0 indicates ‘No’, m = 1 indicates ‘Perhaps’, and m = 2 indicates ‘Yes’ in the

verbal aggression data example. Let Y ∗
p,i,k denote person p’s sub-response to item i in Node k following

the mapping matrix given below:

Yp,i Y ∗
p,i,1 Y ∗

p,i,2

0 0 -

1 1 0

2 1 1

The conditional probabilities of Y ∗
p,i,k = 1 is formulated in the four models (M1, M2, and M3, and

M4) as follows:

• M1: IRTree model with one latent trait (sequential IRT model)

logit
(
Pr

(
Y ∗
p,i,k = 1|θp, αi,k, βi,k

))
= αi,kθp + βi,k, θp ∼ N(0, 1), (1)

where αi,k ∈ R and βi,k ∈ R are the item slope and intercept for item i in node k, and θp ∈ R is

the latent trait for person p.

• M2: IRTree model with two node-specific latent traits

logit
(
Pr

(
Y ∗
p,i,k = 1|θp,k, αi,k, βi,k

))
= αi,kθp,k + βi,k, (θp,1, θp,2)

′ ∼ N(0,Σθ), (2)
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where αi,k ∈ R and βi,k ∈ R are the item slope and intercept for item i in node k, and θp,k ∈ R

is the latent trait for person p in node k. Σθ is a two-by-two covariance matrix.

• M3: LSIRM with one latent trait

logit
(
Pr

(
Y ∗
p,i,k = 1|θp, αi,k, βi,k,ap,bi

))
= αi,kθp + βi,k − γd(ap,bi), θp ∼ N(0, 1), (3)

where where αi,k ∈ R and βi,k ∈ R are the item slope and intercept for item i in node k, and

θp ∈ R is the latent trait for person p. In addition, γ > 0 is the weight of the distance term and

d(ap,bi) = ||ap − bi||2 is a two-dimensional Euclidean distance, and ap ∈ R2 and bi ∈ R2 are

the latent positions of person p and item i in the two-dimensional space.

• M4: LSIRM with two node-specific latent traits

logit
(
Pr

(
Y ∗
p,i,k = 1|θp,k, αi,k, βi,k,ap,bi

))
= αi,kθp,k+βi,k−γd(ap,bi), (θp,1, θp,2)

′ ∼ N(0,Σθ),

(4)

where αi,k ∈ R and βi,k ∈ R are the item slope and intercept for item i in node k, and θp ∈ R

is the latent trait for person p. Σθ is a two-by-two covariance matrix. In addition, γ > 0 is the

weight of the distance term and d(ap,bi) = ||ap − bi||2 is a two-dimensional Euclidean distance,

and ap ∈ R2 and bi ∈ R2 are the latent positions of person p and item i in the two-dimensional

space.

2 Estimation

A fully Bayesian approach is applied to estimate the four models based on the following priors:

αi,k ∼ N(0, 32), k = 1, 2, βi,k ∼ N(0, 32), k = 1, 2, θp,k ∼ N(0, 1), k = 1, 2, cθ ∼ N(0, 32),

γ ∼ Half N(0, 1), ap,d ∼ N(0, 1), d = 1, 2, bi,d ∼ N(0, 1), d = 1, 2. Here cθ is the Cholesky

element, such that Σθ = L · L′, where L =

 1 0

cθ 1

. The diagonal elements of L are set to 1 for the

identifiability of the covariance matrix. In this case, the correlation is ρθ = cθ/
√

1 + c2θ. The estimation

is implemented by using NIMBLE (de Valpine et al., 2017). In all analyses, the number of iterations

and burn-in are set to 15,000 and 5,000, respectively. All analyses show reasonable convergence.
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