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SUPPLEMENT TO “DETECTING MULTIPLE RANDOM CHANGEPOINTS IN BAYESIAN

PIECEWISE GROWTH MIXTURE MODELS”

Abstract

This supplementary document contains additional simulation results and

illustrations for the BayesianPGMM package for R. Section 1 describes a simulation to

assess changepoint detection and recovery for a single class model with up to five

changepoints. Section 2 describes an illustrative example with up to four latent classes,

and over-specification of the number of latent classes. Section 2 also serves as a brief

tutorial for the BayesianPGMM R package, with commands to reproduce the results and

figures shown. Section 3 describes a simulation study using different Dirichlet priors for

the latent class memberships, and Section 4 describes a simulation study using

alternative priors for the variances of the random effects.
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1. Multiple change-point simulation

Here we describe a simulation study in which longitudinal data are generated with anywhere

from 0 to 5 changepoints, and we assess both accuracy in detecting the number of changepoints

and estimation accuracy for the mean location of the changepoints. All data are simulated

according to the following model, which reflects Equation (3) in the main manuscript:

yij = βi,0 + βi,1xij +
5∑

k=1

βi,k+1(xij − λi,k)+1{k≤K} + εij ,

with

• 30 individuals (i = 1, . . . , 30)

• 20 time points (xij = 0, . . . , 19)

• Intercepts βi,0 ∼ N(0, 0.05)

• Potential changepoints

λi,1 ∼ N(3, σ2λ), λi,2 ∼ N(6, σ2λ), λi,3 ∼ N(9, σ2λ), λi,4 ∼ N(12, σ2λ), λi,5 ∼ N(15, σ2λ)

• Potential slope changes βi,k+1 ∼ N
(
(−1)k, 0.05

)
for k = 0, . . . , 5

• Error εij ∼ N(0, 0.5).

The manipulated conditions are the number of changepoints present, K = {0, 1, 2, 3, 4, 5}, and

the standard deviation of the individual changepoints, σλ = {0.2, 0.5}.

We generate 30 replicated datasets for each combination of the initial conditions, yielding

30× 6× 2 = 360 simulated datasets. For each simulation, we estimate the model as described in

the main manuscript with a maximum of 5 possible changepoints (K = 5). The prior for the
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number of changepoints is specified as K ∼ Binomial(5, 0.5), where 5 is the number of potential

changepoints and 0.5 is the probability of including each changepoint.

Table 1.

True number of changepoints (K) and mean posterior probability K̂.

σλ = 0.2 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

K̂ = 0 1.000 0.00 0.000 0.000 0.000 0.000

K̂ = 1 0.000 0.977 0.000 0.000 0.000 0.000

K̂ = 2 0.000 0.022 0.996 0.000 0.000 0.000

K̂ = 3 0.000 0.000 0.004 0.987 0.000 0.000

K̂ = 4 0.000 0.000 0.000 0.0134 0.999 0.011

K̂ = 5 0.000 0.000 0.00 0.000 0.001 0.989

σλ = 0.5 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5

K̂ = 0 1.000 0.00 0.000 0.000 0.000 0.000

K̂ = 1 0.000 0.933 0.000 0.000 0.000 0.000

K̂ = 2 0.000 0.067 0.998 0.000 0.054 0.022

K̂ = 3 0.000 0.000 0.002 0.997 0.080 0.343

K̂ = 4 0.000 0.000 0.000 0.003 0.867 0.113

K̂ = 5 0.000 0.000 0.00 0.000 0.000 0.522

The resulting posterior distributions for K are shown in Table 1, averaged over the 30

replications for each cell. When σλ = 0.2 the correct number of changepoints, is generally

recovered correctly with high posterior probability; the true number of changepoints always has
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average posterior probability > 0.95. When σλ = 0.5 the true number of changepoints has the

highest average posterior probability for all cases, but is frequently underestimated when there

are 4 or 5 changepoints.

Figure 1.

Spaghetti plot of individual trajectories (gray) and posterior estimates (black) for select simulations.
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The lack of precision in detecting several changepoints when σλ = 0.5, evident in Table 1, is

because the higher variance of the changepoints makes them more difficult to distinguish. This is

apparent in Figure 1, which illustrates the data and resulting mean model fit for different

situations. The bottom two panels show two different models for the same dataset with 5

changepoints and σλ = 0.5. The bottom left panel shows the posterior mean when the number of

changepoints is under specified as K̂ = 3; this under specified model has substantial posterior

probability, illustrating the difficulty in detecting the true number of changepoints. The posterior

mean for the same dataset under the correct number of changepoints (K̂ = 5) is shown in the

bottom right panel.

Table 2 shows the estimated mean changepoint locations, when the number of changepoints

are correctly specified, for each of the 10 simulation scenarios that involve at least one

changepoint (K = 1, 2, 3, 4, 5; σλ = 0.2, 0.5). For each scenario the recovery of the changepoints

are generally accurate. The accuracy in estimating each changepoint does not suffer greatly as the

number of changepoints increase.

To assess the effect of prior specification on the posterior number of changepoints, we repeat

the entire simulation above with alternative priors K ∼ Binomial(5, 0.25) or

K ∼ Binomial(5, 0.75). The results are summarized in Table 3, which shows the average posterior

probability across simulation scenarios under-estimating the true number of changepoints K

(K̂ < K), correctly estimating K (K̂ = K), and over-estimating K (K̂ > K), for the different prior

specifications. The correct number of changepoints has the highest posterior probability in all

scenarios, but as expected smaller values of the prior binomial probability p tend to bias the

results toward under-estimation, and larger values bias the result toward over-estimation. Thus,
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for a more conservative prior that will avoid over-detecting changepoints, one can use a binomial

prior with a small probability hyper-parameter.

Table 2.

Mean changepoint locations (and standard deviation of replications) for the K = 1, 2, 3, 4, and 5 changepoint scenarios,

for posterior draws where the number of changepoints are correctly detected.

σλ = 0.2 K = 1 K = 2 K = 3 K = 4 K = 5

λ1 = 3 2.96 (0.14) 2.99 (0.16) 3.01 (0.14) 3.03 (0.18) 2.98 (0.18)

λ2 = 6 5.94 (0.12) 5.97 (0.17) 6.01 (0.16) 5.99 (0.17)

λ3 = 9 8.98 (0.15) 8.99 (0.17) 8.99 (0.20)

λ4 = 12 11.99 (0.18) 12.00 (0.20)

λ5 = 15 15.00 (0.16)

σλ = 0.5 K = 1 K = 2 K = 3 K = 4 K = 5

λ1 = 3 3.01 (0.11) 2.99 (0.20) 2.97 (0.20) 3.02 (0.18) 2.92 (0.22)

λ2 = 6 6.03 (0.16) 5.92 (0.21) 6.02 (0.23) 5.99 (0.21)

λ3 = 9 9.07 (0.21) 8.95 (0.21) 8.98 (0.22)

λ4 = 12 12.03 (0.18) 12.03 (0.21)

λ5 = 15 14.96 (0.27)
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Table 3.

Average posterior probability across simulation scenarios under-estimating the true number of changepoints K (K̂ <

K), correctly estimating K (K̂ = K), and over-estimating K (K̂ > K), for different prior specifications.

σλ = 0.2 Under-estimation Correct estimation Over-estimation

K ∼ Binom(5,0.25) 0.367 0.633 0.001

K ∼ Binom(5,0.5) 0.002 0.991 0.007

K ∼ Binom(5,0.75) 0.006 0.883 0.111

σλ = 0.5 Under-estimation Correct estimation Over-estimation

K ∼ Binom(5,0.25) 0.441 0.559 0.000

K ∼ Binom(5,0.5) 0.10 0.886 0.012

K ∼ Binom(5,0.75) 0.027 0.877 0.095

2. Multi-class illustration

Here we describe a simple example to illustrate the clustering properties and simultaneous

changepoint detection of the BayesianPGMM package. This section also serves as a brief tutorial,

with commands to reproduce the results below after the package is installed and loaded to the R

workspace.

We generate the data shown in Figure 2. These data can be loaded in R via the command

data(SimData4classes) after the package is installed, and can be visualized as shown using the

command plotPGMM(X,Y). These data consist of four latent classes, each with ten individuals

with measurements for the same 10 time points. Each latent class has a different number of

changepoints 0, 1, 2, or 3.
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Figure 2.

Spaghetti plot of generated data without showing classes (left) and colored by latent classes (right). The blue class

has 0 changepoints, the red has 1 changepoint, the green has 2 changepoints, and the gold has 3 changepoints.

We estimate the posterior model with four latent classes, and up to 3 changepoints in each

class, using the command

Fit <- BayesPGMM(X,Y,max_cp=3,n_clust=4) .

The resulting class clustering and mean fits can be visualized using the command

plotPGMM(X,Y,Fit), as shown in the top left panel of Figure 3. The resulting clustering matches

the true latent classes, and the correct number of changepoints are detected for each class.

To illustrate robustness to over-specification of the number of classes we also fit the model

with the same specification (four classes, 3 potential changepoints) to a reduced dataset with one

latent class removed. Specifically, we remove the 10 individuals belonging to the fourth class,
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leaving three latent classes with 0, 1 and 2 changepoints. Thus, we use a four class model to

estimate data with three classes:

Fit <- BayesPGMM(X[1:30,],Y[1:30,],max_cp=3,n_clust=4) .

The results can again be visualized using plotPGMM(X[1:30,],Y[1:30,],Fit), as in the top right

panel of Figure 3. The latent classes and number of changepoints in each class are again recovered

correctly. In particular, only three of the possible four latent classes are represented, leaving the

extraneous fourth class empty. We similarly fit the model with four classes and 3 potential

changepoints to data with only two of the classes (with 0 and 1 changepoints), and to data with

only one class (with 0 changepoints). The results, shown in the bottom two panels of Figure 3,

again recover the true clustering and number of changepoints, leaving extraneous classes empty.

For each of the four simulated datasets above, the recovery of the clustering and true number

of changepoints were validated with 10 independent replications.
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Figure 3.

Spaghetti plot of the simulated data with different number of latent classes present, with colors showing the estimated

class clustering. The trajectory defined by the mean parameters for each class are shown in bold.

3. Clustering prior simulation

Here we describe a simulation to illustrate the effect of the concentration parameters for the

Dirichlet clustering prior on the posterior. It is common to set each value of the C-dimensional
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concentration parameter, where C is the number of clusters, to a constant α: Dirichlet(α, ..., α).

Smaller values of α suggest less parity in the class sizes (e.g., one class is much larger than the

other), while larger values of α suggest more parity in the class sizes. To illustrate, we consider a

two-class model, for which the Dirichlet(α, α) distribution is equivalent to a Beta(α, α)

distribution for the proportion of one class. By default we use α = 1, which is equivalent to a

Uniform(0, 1) distribution; more generally, a Dirichlet(1, . . . , 1) distribution is uniform over the

unit simplex.

Herein in addition to the two-class model with α = 1, we consider Dirichlet priors with

α = 0.25, α = 0.5, α = 1, α = 2, α = 4, and α = 8. The resulting prior distributions for a single

class probability ν1 (ν2 = 1− ν1) are shown in Figure 4. Note that α = 0.5 corresponds to a

Jeffrey’s prior (Jeffreys, 1946).

We simulate an additional 100 realizations of the simulation scheme in Section 5 of the main

manuscript, under the application-motivated scenario with N = 60, Mi = 50, ν1 = 0.80, and

K2 = 2. We compute the posterior for each of α = {0.25, 0.5, 2, 4, 8} for 20 realizations, with

otherwise the same settings as those used in the main simulation with α = 1. The average of the

posterior means for the latent proportion of the smaller class ν2 = 0.2 is shown for each value of α

in Table 1. The estimated latent proportion tends to increase above 0.2 for higher values of α;

this is expected, as higher values of α tends to bias estimates toward equal class proportions.

However, this appears to have little affect on the overall accuracy of the posterior: the

misallocation rate of the latent class memberships is not substantially affected (Table 4), and the

posterior accuracy of other model parameters are also not substantially affected (Table 5).
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Figure 4.

Prior density of ν1 for different Dirichlet(α, α) distributions.

Table 4.

Mean class 2 proportion ν2 (ν2 = 0.2), and mean class misallocation rate, for Dirichlet concentration parameter α.

α = 0.25 α = 0.5 α = 1 α = 2 α = 4 α = 8

ν̂2 0.18 0.19 0.21 0.26 0.26 0.31

Misallocation 0.15 0.13 0.12 0.10 0.12 0.12

4. Variance prior simulation

Here we describe a simulation in which we consider alternative priors for the variance (or

standard deviation) of the random effects. By default we have used a uniform prior for the
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Table 5.

Summary of mean parameter estimates in Class 1 and 2 for concentration parameter α < 1 (α = 0.25 or α = 0.5),

α = 1, or α > 1 (α = 2 or α = 4 or α = 8).

Class 1 α < 1 α = 1 α > 1 Class 2 α < 1 α = 1 α > 1

σε 3.16 3.17 3.17 3.18 3.16 3.17 3.17 3.18

β1 -0.002 -0.003 -0.003 -0.003 -0.005 -0.0009 -0.0008 -0.0008

β2 0.194 0.185 0.186 0.192 0.060 0.068 0.066 0.062

β3 -0.171 -0.153 -0.154 -0.164 0.081 0.0217 0.0325 0.0434

σβ1 0.010 0.010 0.010 0.010 0.008 0.033 0.025 0.016

σβ2 0.064 0.058 0.057 0.053 0.027 0.062 0.059 0.054

σβ3 0.079 0.089 0.087 0.081 0.068 0.105 0.099 0.090

λ1 362 362 363 363 321 328 327 328

σλ1 93.6 98.7 98.2 95.1 132 136 143 151

λ2 643 650 650 645 726 719 708 708

σλ2 149 147 146 144 128 140 147 161

standard deviation, with a lower bound of 0 and an upper bound that depends on the context of

the parameter (see Section 3.1 of the main manuscript). An alternative prior for the standard

deviation is the half-Cauchy prior (Polson et al., 2012), which is a Cauchy distribution truncated

above 0:

p(x | γ) =
2

πγ (1 + (x/γ)2)
for x > 0,
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where γ is a scale parameter. We implement the half-Cauchy prior for all random-effects

parameters
(
{σ2c,βk}, {σ

2
c,λk
}
)

, and under two different strategies to select γ,

1. Scaled, in which γ depends on the parameter. Here, γ is selected such that the 90th percentile

of the resulting half-Cauchy distribution is given by the upper bound used for the default

uniform distribution. For example, under the default uniform prior σc,λ1
iid∼ Uniform(0, b)

where b = max(X)−min(X)
4 , while under the scaled Cauchy prior P (σc,λ1 < b) = 0.9.

2. Unscaled, in which γ = 25 for all parameters; this is suggested as the default half-Cauchy

prior for a scale parameter in the laplacesDemon R package (Statisticat, 2015).

As another alternative, we consider an IG(0.001, 0.001) distribution for the variances of the

random effects.

We repeat 100 simulations from Section 5 of the main manuscript, under the

application-motivated scenario with N = 60, Mi = 50, ν1 = 0.80, and K2 = 2. For each replication

we consider, in addition to the default uniform prior, a the scaled half-cauchy prior, unscaled

half-cauchy prior, and inverse-gamma prior for the random effects.

The diffuse inverse-gamma prior (here IG(0.001, 0.001)) is generally not recommended for

modeling the variance of hierarchical random effects (Gelman et al., 2006), partly because its

density is unstable as the variance approaches 0. This is especially worrisome when the number of

random effects are small, or in the context of mixture models, where the number of observations

within a class may be small and vary during posterior sampling. Indeed, our implementation of

IG(0.001, 0.001) priors failed during posterior sampling for each replication, because of numerical

errors caused by extreme values.
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The resulting average parameter estimates for the uniform, scaled half-Cauchy, and unscaled

half-Cauchy priors are shown in Table 6. The results for the scaled half-Cauchy priors are mostly

comparable to the results for the default uniform priors, although mean estimates for the

standard deviations for the changepoint locations in Class 2 (the smaller class) are inflated. For

the unscaled half-Cauchy priors the posterior standard deviations for the random coefficients in

Class 2 are highly inflated, and other parameter estimates for Class 2 are generally less accurate.

These results demonstrate that appropriate scaling of the prior for hierarchical random effects is

important, especially for the accurate identification of latent classes that have a small number of

individuals.

In the BayesianPGMM package, we have implemented the scaled half-Cauchy prior as an

option, in addition to the default uniform prior. The half-Cauchy has the advantage of not having

a hard constraint (e.g., as in the uniform upper bound) and facilitating some shrinkage; however,

the half-Cauchy can give non-trivial probability to unreasonably large standard deviations in the

right tail of the distribution, and the uniform prior has the advantage of being simple to interpret.
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