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SUPPLEMENT TO “ROBUST MEASUREMENT VIA A

FUSED LATENT AND GRAPHICAL ITEM RESPONSE

THEORY MODEL”

A. Computation via an Alternating Minimization

A.1. Proximal Gradient Descent Update

The proximal gradient descent update is designed for solving nonsmooth convex

optimization problems (Parikh and Boyd, 2014). Consider optimization problem

min
x
f(x) + g(x), (A.1)

where x ∈ Rn, f is a smooth convex function, and g is a continuous but nonsmooth

convex function. Due to the nonsmoothness of g, the traditional gradient descen-

t algorithm cannot be directly applied, because the gradient of g does not always

exist. The proximal gradient descent update can be viewed as a variant of the gra-

dient descent update that accounts for the nonsmoothness.

To describe the proximal gradient descent update, we first introduce the proximal

operator Pλ,g: Rn → Rn as

Pλ,g(v) = arg min
x∈Rn
{g(x) +

1

2λ
‖x− v‖2}

and proximal gradient descent update is

xt+1 = Pλ,g(x
t − λ∇f(xt)), (A.2)
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where xt and xt+1 are the current and updated values. It can be shown that for a

sufficiently small λ,

f(xt+1) + g(xt+1) < f(xt) + g(xt),

if xt is not the an optimal solution. Thus, one can always search for a step size λ,

such that the objective function decreases. When function g has a special form, the

proximal gradient descent update (A.2) may have a closed form solution, which is

indeed the case in our algorithm below.

A.2. An Alternating Minimization Algorithm

We use an alternating minimization algorithm for optimizing (3.3). The positive

semidefinite constraint on Σ is not easy to handle in the computation. Therefore,

we reparameterize Σ = BB>, where B = (bij) is a K × K lower triangle matrix.

In addition, instead of constraining Σkk = 1, we require bkk to be 1. There is a one

to one correspondence between the two sets of parametrization and the transforma-

tion will be discussed in Remark 4. We let l(A, S,B) = logL(A, S,BB>) and

Hγ(A, S,B) = − 1

N
l(A, S,B) + γ

∑
i 6=j

|sij|

be the objective function. Then the alternating minimization algorithm alternates

between updating A, S, and B iteratively, so that the values of (A, S,B), denoted

by (At, St, Bt), satisfy

Hγ(A
t, St, Bt) > Hγ(A

t+1, St, Bt) > Hγ(A
t+1, St+1, Bt) > Hγ(A

t+1, St+1, Bt+1),

for all t. Specifically, A and B are updated using a gradient descent method and S

is updated using the proximal gradient descent method. We summarize the algo-

rithm as follows, given the current parameter values (At, St, Bt).

Algorithm 1. An Alternating Minimization Algorithm.
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1. Update

At+1 ← At − αtgA(At, St, Bt),

where gA(At, St, Bt) is the gradient of −l(A, S,B)/N with respect to A

at (At, St, Bt). The step size αt is chosen by line searching, such that

Hγ(A
t+1, St, Bt) < Hγ(A

t, St, Bt).

2. Update

St+1 ← Pλt,hγ (S
t − λtgS(At+1, St)),

where hγ(S) = γ
∑

i 6=j |sij| is the regularization function, gS(At+1, St, Bt)) is

the gradient of −l(A, S,B)/N with respect to S at (At+1, St, Bt). In addition,

λt is the step size for a proximal gradient operator chosen by line searching,

satisfying

Hγ(A
t+1, St+1, Bt) < Hγ(A

t+1, St, Bt). (A.3)

3. Update

Bt+1 ← Bt − βtgB(At+1, St+1, Bt),

where gB(At+1, St+1, Bt) is the gradient of −l(A, S,B)/N with respect to B

evaluated at (At+1, St+1, Bt). The step size βt is chosen by line searching, such

that Hγ(A
t+1, St+1, Bt+1) < Hγ(A

t+1, St+1, Bt).

4. Iterates between the above three steps until convergence.

We make a few remarks.

Remark 1. −l(A, S,B)/N is a smooth function of (A, S,B) and its gradients gA,

gS, and gB have analytic forms.

Remark 2. In Step 2, Hγ(A
t+1, S, Bt), when viewed as a function of S (with At+1

and Bt fixed), is the sum of a smooth convex function −l(At+1, S, Bt)/N and a

nonsmooth convex function hγ(S) = γ
∑

i 6=j |sij|. Therefore, according to the dis-
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cussion in Appendix A.1, there exists a sufficiently small step size λt, such that

(A.3) is satisfied.

Remark 3. The proximal operator Pλt,hγ (·) has a closed form solution. Let S̃ =

St − λtgS(At+1, St, Bt). Then st+1
jj = s̃jj and st+1

ij is obtained by soft-thresholding

st+1
ij =


1
2
(s̃ij + s̃ji)− λtγ if 1

2
(s̃ij + s̃ji) > γλt;

0 if |1
2
(s̃ij + s̃ji)| ≤ γλt;

1
2
(s̃ij + s̃ji) + λtγ if 1

2
(s̃ij + s̃ji) < −γλt.

Remark 4. Given estimates Âγ, Ŝγ, and B̂γ from optimizing Hγ(A, S,B), the esti-

mates under the parametrization in (3.3) can be obtained by

Âγ ← ÂγD, Ŝγ ← Ŝγ, Σ̂γ ← D−1B̂γ(B̂γ)>D−1,

where D = diag(d11, ..., dKK) is a K ×K diagonal matrix with

dkk =

√
(B̂γ(B̂γ)>)kk.

Remark 5. A classical way of updating S, which is a Lasso problem, is via coor-

dinate descent (e.g. Friedman et al., 2010). In the proposed algorithm, we adopt

a proximal gradient update instead of coordinate descent for two reasons. First, a

coordinate-wise decent update (i.e. optimizing with respect to a single parameter

at a time) does not have a closed form, due to the form of the log-likelihood func-

tion. Second, for Lasso type problems, better properties have been found for the

performance of the proximal gradient algorithm comparing to the coordinate de-

scent algorithm (see Parikh and Boyd (2014) and reference therein).
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B. Simulation Study 3

We further provide a simulation study to evaluate the performance of the FLaG-

IRT analysis under model misspecification. Specifically, we consider the same sim-

ulation setting as Study 1, where the generating model is not a FLaG-IRT mod-

el. For ease of presentation, we choose c = 2. Sample sizes N = 500, 1000,

and 3000 are considered. The same evaluation criteria as in Study 2 are adopt-

ed. In addition, Kendall’s tau correlation between the EAP scores from the s-

elected model and the true nuisance factor scores is computed, as a measure of

measurement bias. In particular, the TPR and FPR are calculated by considering

E = {(i, j) : i, j ≤ 5} as the true graph.

Results are shown in Table 1, where the oracle values of the Kendall’s tau corre-

lations are based on the true bi-factor model. According to the results, even when

data are not from a FLaG-IRT model, under all values of ρ = 0, 0.25, 0.5 of the

extended Bayesian information criterion, the selected models from the FLaG-IRT

analysis have high measurement accuracy and low measurement bias, almost as if

the true model is being used. In addition, under this setting, the true positive rate

is close to 1, under all sample sizes and all values of ρ of the EBIC. Similar to the

results of Study 2, the EBIC with a smaller value of ρ yields a higher FPR. In ad-

dition, the FPR decreases as the sample size increases. These results indicate that

even under model misspecification, the FLaG-IRT model approximates the latent

structure well and the proposed FLaG-IRT analysis provides reliable measurement

when the local dependence structure is unknown. In addition, the quality of mea-

surement is robust to the choice of the parameter ρ in the extended Bayesian infor-

mation criterion.
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ρ = 0 ρ = 0.25 ρ = 0.5 Oracle

Kendall’s tau 0.70 (0.001) 0.70 (0.001) 0.70 (0.001) 0.71

(accuracy)

Kendall’s tau 0.09 (0.004) 0.09 (0.004) 0.08 (0.004) 0.08

(bias)

N = 500 TPR 0.98 (0.004) 0.97 (0.005) 0.96 (0.006) 1

FPR 0.07 (0.004) 0.03 (0.002) 0.02 (0.002) 0

Kendall’s tau 0.70 (0.001) 0.70 (0.001) 0.71 (0.001) 0.71

(accuracy)

Kendall’s tau 0.08 (0.003) 0.08 (0.002) 0.08 (0.002) 0.08

(bias)

N = 1000 TPR 1.00 (0.001) 0.99 (0.001) 0.99 (0.002) 1

FPR 0.06 (0.003) 0.03 (0.002) 0.01 (0.001) 0

Kendall’s tau 0.71 (0.000) 0.71 (0.000) 0.71 (0.000) 0.71

(accuracy)

Kendall’s tau 0.08 (0.001) 0.08 (0.001) 0.08 (0.001) 0.08

(bias)

N = 3000 TPR 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1

FPR 0.04 (0.003) 0.02 (0.002) 0.01 (0.001) 0

Table 1.
Study 3: Performance of FLaG-IRT analysis under model misspecification. The average of each
evaluation measure and its standard error over 100 independent replications are reported.
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