SUPPLEMENTARY MATERIAL TO “HYPOTHESIS

TESTING OF THE ()-MATRIX”

The supplementary material is organized as follows. The proofs of the main results are
included in Section A. Analysis of the @-matrix specified in de la Torre and Chiu (2016) is

given in Section B, and additional simulation results are given in Section C.

A Theoretical derivations

A.1 Proof of Theorem 1

Write the true attribute profile probabilities as

Po = (Poa; @ € {0,1}%)"

with the first element defined as pyo and the other part as p{ (see the definition of p in

Section 2). Under @y, the likelihood function taking the form of

N

Ly0.p) =15 . (paﬂﬁféj(l—Qj,a)lR”> : (A1)

i=1 | ac{o,1}%



Here recall that 6,4, = P(R;; = 1|Qo, ,8) is a function of 8 and () as described in
Section 2. Note that Ly is written as a function of p* instead of p due to the constraint

that > pa = 1. If the model parameters are identifiable, as N — oo,

0-0
VN "I 4 Ao LY,

P —pP;

where I is the Fisher information of the likelihood function (A.1) evaluated at (6o, pg).
When the true parameters 6y are unknown, we use the plug-in method and replace 8,

with the MLE 6 and the test statistic Sp.pw(Qo) takes the form

So.50(Q0) = [WV2(T(Qo, 00 — )|

Then, since (é,f)) are consistent and v N (é — 60y, p* — pg) is normally distributed, the

following approximation holds

2

Sapn(Q0) = W'y = T(Q0,0)p)
= W5 = 7(Qu. 60)po + {T(Qo. 00) ~ T(20.0) | po — T(Q0: 80)(p — o)
~{1(Qu.8) - T(Qu.00)} (6 - b0} |
= {1+0(1)

< [W2{{y = T(Qo, 80)po} + { T, 80) = T(Q0,8) } o — T(Qo, 05) (b — Po) |

It can be seen that the distribution of S@pW(Qo) depends on the joint distribution of

(v, T(Qo, 9), p), which further depends on the joint distribution of (-, 0, p).

In the following, we derive the joint distribution of (v, 0, p) for general CDMs. From (5),

(A.2)



the vector v converges weakly to a multivariate normal distribution. Therefore, to derive the
joint distribution of (=, é, p), we only need to specify the asymptotic correlation between =
and (@, p). This is given in the following lemma, which states that the MLE derived from
(A.1) can be expressed as a linear function of the saturated response vector ;.

Before stating the lemma, we introduce some more notation. Let 3 be a (27 —1) x 1

vector of true proportions of all the possible response patterns other than zero, defined as
B=(PR=r),re{0,1}\0),

and let B be the corresponding observed proportions, defined as

1 (X ; T
BZN(ZI(Ri:r);rE{O,l} \0) .

By the definition, there exists a one-to-one mapping between vectors -, and the observed

proportions [3 We write the n x (27 — 1) mapping matrix as U, which satisfies

Vuse = UB- (A.3)

Then we have the following result whose proof is given in Section A.2.

Lemma 1 Under the null hypothesis Hy : QQ = Qo, suppose that MLE (é, p*) is consistent.

Then as N — o0,

06 .
VN S| = (eIt x VN (B 8),
P*—Po



where m is a 27 x (dim(0) + 2K — 1) matriz defined as

n= (77917 e ’nedim(g)vnpalﬂ e 7np°‘2K_1> .

The column vectors of i are defined as:

No: = (aP(R‘QO’ 9 p>/89i|0:907p:p0

T
. J
P(R‘Qo,eojpo) - Re0. ) 7

= (P(R|0f = ay, Qo, 00, Po) — P(R|a = 0,Q0, 00, Po)
Pay, -

]
. J
P(RIGo, 80, po) ' RE{O’”) '

We now prove Theorem 1. Thanks to Lemma 1, we can replace the last two terms
in equation (A.2) with a linear transformation of 3. Note that N - 3, follows multinomial
distribution with mean vector N-(P(R; = R); R € {0,1}’)". We consider the three terms in
(A.2) one by one. Note that generally, for any parameters (01, -, f,) and their consistent
estimators (Bl, e ,Bh) such that \/N{(B}, e ,Bh) — (By,-++,Pn)} follows a multivariate

normal distribution, we have the approximation

h
Brioes By =B By = {1+ 0} Y Bi-- Brorfrer - BulBi — )
=1

This implies that there exists an n x 2J matrix Wy, ,, such that

{T(Q0.6) = T(Q0.00) } o = {1+ 0(1)}Way.p,(0 — 60). (A.4)

In addition, we have that

1T
T(Qo,00)(P —Po) = T(Qo,00) (P" —po) -
IQK,I



The above results imply that Equation (A.2) equals

VN {’Y —T(Qo, 60)po + (T(Qm 6o) — T(Qo, é)) Po — T(Qo, 00)(P — Po)}

-17 6—0,
= \/N Y- T(QOa eﬂ)po - W@Q,poa T(QO; 00) R
Lok _4 P" — Py
- 1+ 0(1))¢N{A (B _ 6)} ,
where A is an n x (27 — 1) matrix defined by
-1T7
A=U— | Waypo » T(Qo,00) I,'n". (A.5)
Lok _4

Then by the central limit theorem, we have

where
ZE=ACow(B) AT (A.6)
Therefore, we have that as N — oo,

NSy 5 w(Qo) it Z NZE,
=1

where 71, ..., Z, are i.i.d. standard normal random variables, and Ay > --- > )\, are the

eigenvalues of =), = W'/22WV2. This concludes the proof.



A.2 Proof of Lemma 1

Under a general diagnostic model, the likelihood takes the form of

Ly(0,p%) =[] {Z (zaa [[ PR | Qo e, 0)) } :

=1 [e

The log-likelihood function is

N J
In(6,p") =) log {Z (pa [1P(R:;1Qo. . 0)) } :
i=1 o j=1
We start with the derivative of [y with respect to 6;, i = 1,...,dim(0), which takes the

following form

o (0 (Pa T/ P(R:51Qu. . 0)) /06

On(B.p)| g
802 0,p* i=1 Za (pa H;'Izl P(RZ’J |QO’ o 0)> 0.p*
N OP(R ,0, 891 —0 et
_ (Z I(R, = R)) { ( gichp)g |6)_67p_p}’
Ri \S 0, %0, Po
Let

That is, the first the element of Ball is the proportion of subjects whose response vectors are

zero. Then N - 3,; follows multinomial distribution with parameters {N, (P(R; = r),r €

{0,137}

Then by the definition of 7y,, we have



1 alN(eap*)
VN 00

= \/Nnef. Ball'

6.p*
Some basic calculation implies that v/ N, B,; = 0. Therefore, we have

1 6ZN(0, p*)
VN 06;

N = \/NU;)E(Bau - @;u)-

é?p
Similarly, for derivatives of Iy with respect to parameters {pq,, o, € {0,1}5\0},

1 0ZN(0, p*)
VN Opa,

= \/NUJ% (Ball — Ban)

0.p*

where 7,,, is defined as in the statement of Lemma 1.

By Taylor’s expansion, we have

JN 60— 0,
P* —pg

1 0ly(6,p)

\/Na<977pT)T .

0.p*

= {I+o()}Iy'n" VN <Ball - 3azz> ;

= {1+o(1)} T

where Fisher information matrix Iy = —n' X0 is the negative Hessian matrix of Iy with
resect to (0, p*) evaluated at (6o, pg), where X is the covariance matrix of 3. This completes

the proof.



A.3 Proof of Proposition 1

We first introduce some useful notations. For two vectors a = (ay,...,ax) and b =
(b1,...,bk) of same length K, denote a = bif ay > by for all k = 1,..., K. For any attribute
profile a € {0, 1}, denote its J-dimensional ideal response vector under the DINA model by
£.4@Q) = (1(a=q),...,1(a = q,))". Note that for any item j, 1(a = q;) = £LANQ)
by definition.

Recall the definition of -equivalent, then it actually says () induces an equivalence

relation in the sense that o and o' are Q-equivalent, if £. ,(Q) = . o(Q). We define a set

of attribute profiles R? following Gu and Xu (2018),

Then R is a subset of the attribute profile space {0, 1} and it has the following two impor-
tant properties. First, for any o, ay € R? and a; # aip, we must have §e 0y (Q) # & 0, (Q).
Second, for any a € {0, 1}, there exists &’ € R such that £. 4, (Q) = &. o(Q). These two
properties indicate that R gives a complete set of representatives under the equivalence re-
lation induced by Q. Given an incomplete Q-matrix under DINA, the cardinality of R? is
less than #{0, 1}% = 2K because lacking any single attribute item with g-vector e; would
result in attribute profile @ = e, not included in R?. Without loss of generality, denote
#RY? = C and denote the elements in R? by ay, ..., ac with oy € A; for all i.

RY provides a basis for constructing the submatrix 7¢¢(Q, ) of size 27/ x C. First
note that under DINA, any two (Q-equivalent attribute profiles o 2 o have identical item
parameter vectors, i.e. 60,4 = 0o (= 1 — s; or g;) for all item j. This further implies
T. o(Q,0) =T. ,,(Q,0) by the definition of the T-matrix. Then 7°(Q, 8) is a submatrix of
T(Q, 8) by just extracting C' columns, out of 2% columns of T(Q, 8), indexed by oy, ..., ¢ €
RC.



With the introduced notations and relations, we next prove T(Q, 0)p = T°(Q, 6)v? as

follows.

T(Q.0p= > T.4(Q.0)pa

This also proves the claim that T(Qg, 0)p and Sg,(Qo) depend on p only through v<.

A.4 Theory of p-Partial Identifiability of Two-Parameter CDMs

Before stating the theoretical result in Gu and Xu (2018), we introduce two new definitions.
First, given a ()-matrix, define the non-basis item set S, and the basis item set Spqsis as

follows.

Snon =1J 3 e {1,..., J}\{j} st. a5, 2 q;} and Spesis = {1,..., J} \ Spon-  (A.8)

In other words, an item j is a non-basis item if there is some other item h whose required
attributes are all required by j. Second, for an item j and a set of items S C {1,...,J}, j

is said to be S-differentiable if there exist S*, S~ C S such that

0 é Vhes+dp — Vhes-dp = q;- (A-9)

Theorem 1 (Gu and Xu (2018)) If a Q-matrixz satisfies the following conditions (C1)

and (C2), then the Two-Parameter CDM is p-partially identifiable.



(C1) For each item j, there exist two disjoint sets of items Sj, S7 C {1,...,J}\ {j} such
that

qj 2 Viest q and g 2 Vieg? g,

(C2) Each basis item j € Spasis 1S Snon-differentiable.

A.5 Computation of the G-DINA model

For notational convenience, let the first K attributes be the required attributes for item j,
and o be the reduced attribute vector for item j. The formulation of the G-DINA model
(de la Torre, 2011) can be written into the sum of the effects due to the presence of specific

attributes and their interactions. Specifically,

K*
J

P(R; =1, Q) = ]o+259kak+ Z Z@wm ot Gz [ Lo
=k+1 k=1 k=1

Under the G-DINA model, the item parameters are
Ocpina = (53',0,53',17"' ;=1 7J>T'

Under the null hypothesis Hy : @ = Qo, let (Bgpivao, Po) be the true model param-
eters. For a response vector R, denote the corresponding probability mass function by
Py(R) = P(R|Qo, Po,Ocprnao). Moreover, let R_; = (Ry, -+ ,R;j_1,Rjy1, -+ ,R;)" and

write Fy(R_;) = P(R—_;|Qo, Po, OcpInap)-

The following result specifies the form of the 7 matrix under the GDINA model.

Corollary 1 Under the GDINA model and the conditions of Lemma 1, the n matriz is

defined as

Nepina = <{n5j,07 o >j = 17 ) J}7 Upala o 77lpa2K71) : <A10>
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Assume R arranged in the same order as in the response vector 3. For motational conve-
nience, let the first K3 attributes be the required attributes for item j, then for any 1 <1 < K7

and any 1 < k; <--- <k < Kj

16,0 = (U(Rj =1) - I(R; = 0)} };(R) ; Re {0, 1}"> 7

(A.11)
Z{a:{k<K’f:ak=1}:{k1 ,,,,, kY po.alo(R-j|a) '
nejvkl"”:kl = ({[(R] = 1) - [(R] = O)} : — P(](R) ; R G {07 1}J .
(A.12)
and
. P()(R|ah) — P()(R|a = 0) . J T
Mpey, = < Po(R) ; Re {0,1} : (A.13)

The proof follows directly from Lemma 1. With the n matrix specified in (A.16)—(A.17), we
can further calculate the matrices A and =, using (A.5) and (A.6), and get the asymptotic

distribution of test statistic Sy ;(CQo) from Theorem 1.

Proof of Corollary 1. Following the form of 7, in Lemma 1, for 7y, , ,» we have the

ok

numerator term equal to

0P(R|Qo,0cpina, P)

87793',1@1,4-4 Ky 0cpINA=0GDINA,0,P=P0
B OP(R;|Qo, @, 0cpina) P(R 0
= P 3 (Rn|Qo, e, 0Gprna)
- 165 1y - kg h#j; h=1,-J 0cDINA=6ODINA0,P=P0

= {I(R;=0)-I(R;=1)} Z (po,a : H Po(Rh|a)>
ki}}

{a{k<K}:op=1}={k1,..., h#j; h=1,-,J

= {I(R;=0)-I(R; =1)} > (Po,aLo(R-j|a)),
{e:{h<K:ap=1}={k1,.... k1 }}

11



where R_; := (Ry, -+ ,Rj_1, Rjy1, -, R;)". A similar argument gives the form of N6,0- M

A.6 Computation of the DINA model

Under the DINA model as introduced in Example 1, the item parameters are

T
HDINA: (317"' y STy g1, >gJ> )

where s; and g; are the slipping and guessing parameters.
Under the null hypothesis Hy : Q = Qo, let (@prnao, Po) be the true model parameters.

For a response vector R, denote the corresponding probability mass function by

Fy(R) = P(R|Qo,Po,Opinap)-

Moreover, let R_j = (Ry,+ , Rj_1, Rj11, -+, R;)" and write

Fy(R_;) = P(R_;|Qo, Po, Opina)-

Following Lemma 1 we have the following result, which specifies the form of the n matrix
under the DINA model. With the 1 matrix specified in (A.15)—(A.17), we can easily calculate
the matrices A and further =Z,; using (A.5) and (A.6). From Theorem 1, we can get the

asymptotic distribution of test statistic Sy ﬁ(QO)'

Corollary 2 Under the DINA model and the conditions of Lemma 1, the m matriz is a

27 x (2J + 2K — 1) matriz defined as

NpINa = (77317"' 2 Msys Mgy 5 Mgy Npay» " 777pa2K_1>' (A14)

Here with R arranged in the same order as in the response vector 3 and féNA(QO) as

12



defined in (2), we have

ZEDINA(Q )=1 po,apo(R_ﬂa) T
Ts; = ({I(Rj =0) - I(R;=1)} —2=—= Po(R) ; Re{0,1}7] , (A.15)
2 epiva(@e)=o Po.aFo(R—jc) !

oy = ({f(Rj = 1) - 1(R, = 0)} - TEET Re{0,1}) | (A16)

and
Py(R|ay) — Py(Rla = 0) A’
= ' R 1 : Al
npah < P()(R) ) S {07 } ( 7)
Proof of Corollary 2.  Following the form of 7y, in Lemma 1, for n,;, we have the

numerator term equals

8P<R|Q07 Opina, P)

aSj ‘GDINA=9D1NA,07P=P’O

= Z <p 0P(R{\Qo,a,90m,4) H P(R”Qo (& GDINA))
a asj h#j; h=1,,J eDINAzoDINA,(LP:pO

= {IRl=0)-I(R =1} Y (po,a- I1 Po(R?|a))
)=1

EPINAQo htj; h=lye,d
= {I(By=0)—I(Ri =1} > (paPo(R|a)),

PN (Qo)=1

where R_; := (Ry, -+ ,Rj_1,Rjy1, -+ ,R;)". A similar argument gives the form of Ng;- ™

13



B Analysis of the ()-matrix specified in de la Torre and
Chiu (2016)

In addition to the original 20 x 8 @-matrix, we also test the ()-matrix specified in de la
Torre and Chiu (2016). The authors used responses to a subset of 11 items and specified
4 attributes: (1) performing basic fraction subtraction operation, (2) simplifying/reducing,
(3) separating whole number from fraction, and (4) borrowing one from whole number to
fraction. The @-matrix they used is shown in Table 1. The p-value corresponding to this
(@Q-matrix is 0.15 under the DINA model and 0.89 under the G-DINA model. This suggests
the @Q-matrix fits the data well under both the DINA and the G-DINA models. To validate
that type I error is well controlled under this ()-matrix, we further conduct simulations with
this 11 x 4 @Q-matrix under the G-DINA model to evaluate the performance of the testing
procedure in “Uniform”, |p| < 0.25, |p| < 0.5, and |p| < 0.75 settings. The results of the
Type I errors are presented in Table 2. The Type I error is well controlled, which means the
false rejection of a true ()-matrix is unlikely to happen and the testing procedure is safe to

use.

C Additional Simulation Results

We also present the Q-Q plots of p-values in the correlated attribute case and incomplete
(Q-matrix case, for all the settings considered in the section of simulation studies with sample
size N = 500. Figures 1, 3 and 5 correspond to Table 3 in the main text with correlation
p = 0.25,0.5,0.75 and sample size N = 500, showing p-value distributions when testing
the true @Q-matrices. And Figures 2, 4 and 6 correspond to Table 4 in the main text with
correlation p = 0.25,0.5,0.75 and sample size N = 500, showing p-value distributions when

testing the misspecified Q-matrices. Figure 7 and Figure 8 correspond to the first row of

14



Item ID Content a1 Qg Q3 Oy
1 3

4 35 — 23 1 1 1 1

6 4

6 =z 1 0 0 0

9 3L -2 1 0 1 0
4 7

10 45 -25 11 1 1 1
1 4

11 43 — 23 1 1 1 1

11 1

12 T s 1 1 0 0

14 33-32 |1 0 1 0
5 4

16 4z — 13 1 0 1 0
3 4

17 -z 1 0 1 1
1 8

18 455 —24% 11 1 1 1

20 4% — 1% 1 1 1 1

Table 1: The @Q-matrix Q)11x4 specified in de la Torre and Chiu (2016)

N | Uniform | |p| <0.25 | [p| < 0.5 | |p| < 0.75
500 | 0.038 0.040 0.026 0.048
DINA 1000 | 0.020 0.068 0.050 0.060
2000 | 0.044 0.034 0.036 0.068

200 0.044 0.042 0.036 0.042
GDINA 1000 | 0.022 0.044 0.046 0.044
2000 | 0.040 0.042 0.036 0.042

Table 2: Type I Error Studies: Proportions of rejections for testing (Q11x4

Table 5 and Table 6 in the main text, respectively, showing p-value distributions when testing
the true and misspecified incomplete ()-matrices.

The Q-Q plots further illustrate the good approximation of the asymptotic distribution
in Theorem 1 to the “true” distribution with a relatively small sample size N = 500, when
the attributes have low to high correlation levels (p = 0.25,0.5, and 0.75) and when the

(-matrices are incomplete (lacking single-attribute items).

15



Observed

Observed

EEEEEEEEEEEEEEE ted

() GDINA: Q1 (h) GDINA: Qy (i) GDINA: Qs

Figure 1: QQ-plots of p-values for testing True Q-matrices ()11, Q21 and Q31 with N = 500,
p=0.25.
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Figure 2: QQ-plots of p-values for testing Misspecified @-matrices QJ12, Q2o and ()30 with
N =500, p = 0.25.
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Figure 3: QQ-plots of p-values for testing True Q-matrices ()11, Q21 and Q)31 with N = 500,
p = 0.50.
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Figure 4: QQ-plots of p-values for testing Misspecified @-matrices ()12, Q22 and ()30 with

N =500, p = 0.50.
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Figure 5: QQ-plots of p-values for testing True Q-matrices ()11, Q21 and Q31 with N = 500,
p=0.75.
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Figure 6: QQ-plots of p-values for testing Misspecified @-matrices ()12, Q22 and ()30 with
N =500, p=0.75.
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Figure 7: QQ-plots of p-values for testing True Incomplete ()-matrices Qjn 1, Qin2 and Qin 3

with N = 500.

22



_ _J
(a) DINA Qin,4 (b) DINA Qin,S (C) DINA Qin,6
.f/;'
3 s
é s ’ 3 yd
7 rd
/ <
, ‘___‘/v/ __//
(d) ACDM Qin,4 (e) ACDM Qm75 (f) ACDM Qin,ﬁ
i é K é ) 4
£ <7 - pd
."; o - a’/
m__,_..a// | _____/

Figure 8: QQ-plots of p-values for testing Misspecified Incomplete )-matrices Qin4, Qins
and Q;n 6 with N = 500.
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