
Supplementary Material to “Hypothesis

Testing of the Q-matrix”

The supplementary material is organized as follows. The proofs of the main results are

included in Section A. Analysis of the Q-matrix specified in de la Torre and Chiu (2016) is

given in Section B, and additional simulation results are given in Section C.

A Theoretical derivations

A.1 Proof of Theorem 1

Write the true attribute profile probabilities as

p0 = (p0,α,α ∈ {0, 1}K)>

with the first element defined as p0,0 and the other part as p∗0 (see the definition of p in

Section 2). Under Q0, the likelihood function taking the form of

LN(θ,p∗) =
N∏
i=1

 ∑
α∈{0,1}K

(
pα

J∏
j=1

θ
Ri,j

j,α (1− θj,α)1−Ri,j

) . (A.1)
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Here recall that θj,α = P (Ri,j = 1 |Q0,α,θ) is a function of θ and Q0 as described in

Section 2. Note that LN is written as a function of p∗ instead of p due to the constraint

that
∑

α pα = 1. If the model parameters are identifiable, as N →∞,

√
N

 θ̂ − θ0

p̂∗ − p∗0

 d−→ N (0, I−10 ),

where I0 is the Fisher information of the likelihood function (A.1) evaluated at (θ0,p
∗
0).

When the true parameters θ0 are unknown, we use the plug-in method and replace θ0

with the MLE θ̂ and the test statistic Sθ̂,p̂,W(Q0) takes the form

Sθ̂,p̂,W(Q0) =
∣∣∣W1/2(T (Q0, θ̂)p̂− γ)

∣∣∣2 .
Then, since (θ̂, p̂) are consistent and

√
N(θ̂ − θ0, p̂

∗ − p∗0) is normally distributed, the

following approximation holds

Sθ̂,p̂,W(Q0) =
∣∣∣W1/2(γ − T (Q0, θ̂)p̂)

∣∣∣2
=

∣∣∣W1/2
{
γ − T (Q0,θ0)p0 +

{
T (Q0,θ0)− T (Q0, θ̂)

}
p0 − T (Q0,θ0)(p̂− p0)

−
{
T (Q0, θ̂)− T (Q0,θ0)

}
(p̂− p0)

}∣∣∣2
= {1 + o(1)}

×
∣∣∣W1/2

{
{γ − T (Q0,θ0)p0}+

{
T (Q0,θ0)− T (Q0, θ̂)

}
p0 − T (Q0,θ0)(p̂− p0)

}∣∣∣2.
(A.2)

It can be seen that the distribution of Sθ̂,p̂,W(Q0) depends on the joint distribution of

(γ, T (Q0, θ̂), p̂), which further depends on the joint distribution of (γ, θ̂, p̂).

In the following, we derive the joint distribution of (γ, θ̂, p̂) for general CDMs. From (5),

2



the vector γ converges weakly to a multivariate normal distribution. Therefore, to derive the

joint distribution of (γ, θ̂, p̂), we only need to specify the asymptotic correlation between γ

and (θ̂, p̂). This is given in the following lemma, which states that the MLE derived from

(A.1) can be expressed as a linear function of the saturated response vector γall.

Before stating the lemma, we introduce some more notation. Let β be a (2J − 1) × 1

vector of true proportions of all the possible response patterns other than zero, defined as

β =
(
P (R = r), r ∈ {0, 1}J\0

)>
,

and let β̂ be the corresponding observed proportions, defined as

β̂ =
1

N

(
N∑
i=1

I(Ri = r); r ∈ {0, 1}J\0

)>
.

By the definition, there exists a one-to-one mapping between vectors γuse and the observed

proportions β̂. We write the n× (2J − 1) mapping matrix as U , which satisfies

γuse = U β̂. (A.3)

Then we have the following result whose proof is given in Section A.2.

Lemma 1 Under the null hypothesis H0 : Q = Q0, suppose that MLE (θ̂, p̂∗) is consistent.

Then as N →∞,

√
N

 θ̂ − θ0

p̂∗ − p∗0

 = {1 + o(1)} I−10 η> ×
√
N
(
β̂ − β

)
,
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where η is a 2J × (dim(θ) + 2K − 1) matrix defined as

η =
(
ηθ1 , · · · , ηθdim(θ)

, ηpα1
, · · · , ηpα

2K−1

)
.

The column vectors of η are defined as:

ηθi =

(
∂P (R|Q0,θ,p)/∂θi|θ=θ0,p=p0

P (R|Q0,θ0,p0)
: R ∈ {0, 1}J

)>
,

ηpαh
=

(
P (R|α = αh, Q0,θ0,p0)− P (R|α = 0, Q0,θ0,p0)

P (R|Q0,θ0,p0)
: R ∈ {0, 1}J

)>
.

We now prove Theorem 1. Thanks to Lemma 1, we can replace the last two terms

in equation (A.2) with a linear transformation of β. Note that N · βall follows multinomial

distribution with mean vector N ·(P (Ri = R); R ∈ {0, 1}J)>. We consider the three terms in

(A.2) one by one. Note that generally, for any parameters (β1, · · · , βh) and their consistent

estimators (β̂1, · · · , β̂h) such that
√
N{(β̂1, · · · , β̂h) − (β1, · · · , βh)} follows a multivariate

normal distribution, we have the approximation

β̂1 · · · β̂h − β1 · · · βh = {1 + o(1)}
h∑
l=1

β1 · · · βl−1βl+1 · · · βh(β̂l − βl).

This implies that there exists an n× 2J matrix Wθ0,p0 such that

{
T (Q0, θ̂)− T (Q0,θ0)

}
p0 = {1 + o(1)}Wθ0,p0(θ̂ − θ0). (A.4)

In addition, we have that

T (Q0,θ0)(p̂− p0) = T (Q0,θ0)

 −1>

I2K−1

 (p̂∗ − p∗0) .
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The above results imply that Equation (A.2) equals

√
N
{
γ − T (Q0,θ0)p0 +

(
T (Q0,θ0)− T (Q0, θ̂)

)
p0 − T (Q0,θ0)(p̂− p0)

}
=
√
N

γ − T (Q0,θ0)p0 −

Wθ0,p0 , T (Q0,θ0)

 −1>

I2K−1



 θ̂ − θ0

p̂∗ − p∗0




= (1 + o(1))
√
N
{
A
(
β̂ − β

)}
,

where A is an n× (2J − 1) matrix defined by

A = U −

Wθ0,p0 , T (Q0,θ0)

 −1>

I2K−1


 I−10 η>. (A.5)

Then by the central limit theorem, we have

√
N
{
A
(
β̂ − β

)}
d−→ N (0,Ξ), as N →∞.

where

Ξ = A Cov(β) A> (A.6)

Therefore, we have that as N →∞,

NSθ̂,p̂,W(Q0)
d−→

n∑
l=1

λlZ
2
l ,

where Z1, ..., Zn are i.i.d. standard normal random variables, and λ1 ≥ · · · ≥ λn are the

eigenvalues of ΞW =W1/2ΞW1/2. This concludes the proof.
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A.2 Proof of Lemma 1

Under a general diagnostic model, the likelihood takes the form of

LN(θ,p∗) =
N∏
i=1

{∑
α

(
pα

J∏
j=1

P (Ri,j | Q0,α,θ)

)}
.

The log-likelihood function is

lN(θ,p∗) =
N∑
i=1

log

{∑
α

(
pα

J∏
j=1

P (Ri,j |Q0,α,θ)

)}
.

We start with the derivative of lN with respect to θi, i = 1, . . . , dim(θ), which takes the

following form

∂lN(θ,p∗)

∂θi

∣∣∣∣
θ̂,p̂∗

=
N∑
i=1

∑
α

(
∂
(
pα
∏J

j=1 P (Ri,j|Q0,α,θ)
)
/∂θi

)
∑

α

(
pα
∏J

j=1 P (Ri,j|Q0,α,θ)
)

∣∣∣∣∣∣
θ̂,p̂∗

=
∑

R∈{0,1}J

(
N∑
i=1

I(Ri = R)

){
∂P (R|Q0,θ,p)/∂θi|θ=θ̂,p=p̂

P (R|Q0,θ0,p0)

}
.

Let

βall =
(
P (R = 0) , β>

)>
.

β̂all =

(
1

N

N∑
i=1

I(Ri = 0) , β̂
>
)>

.

That is, the first the element of β̂all is the proportion of subjects whose response vectors are

zero. Then N · β̂all follows multinomial distribution with parameters {N, (P (Ri = r), r ∈

{0, 1}J)>}.

Then by the definition of ηθi , we have
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1√
N

∂lN(θ,p∗)

∂θi

∣∣∣∣
θ̂,p̂∗

=
√
Nη>θiβ̂all.

Some basic calculation implies that
√
Nη>θiβall = 0. Therefore, we have

1√
N

∂lN(θ,p∗)

∂θi

∣∣∣∣
θ̂,p̂∗

=
√
Nη>θi(β̂all − βall).

Similarly, for derivatives of lN with respect to parameters {pαh
, αh ∈ {0, 1}K\0},

1√
N

∂lN(θ,p∗)

∂pαh

∣∣∣∣
θ̂,p̂∗

=
√
Nη>pαh

(β̂all − βall),

where ηpαh
is defined as in the statement of Lemma 1.

By Taylor’s expansion, we have

√
N

 θ̂ − θ0

p̂∗ − p∗0


= {1 + o(1)} I−10

1√
N

∂lN(θ,p)

∂(θ>,p>)>

∣∣∣∣
θ̂,p̂∗

= {1 + o(1)} I−10 η> ·
√
N
(
β̂all − βall

)
,

where Fisher information matrix I0 = −η>Σβη is the negative Hessian matrix of lN with

resect to (θ,p∗) evaluated at (θ0,p
∗
0), where Σβ is the covariance matrix of β. This completes

the proof.

7



A.3 Proof of Proposition 1

We first introduce some useful notations. For two vectors a = (a1, . . . , aK) and b =

(b1, . . . , bK) of same length K, denote a � b if ak ≥ bk for all k = 1, . . . , K. For any attribute

profile α ∈ {0, 1}K , denote its J-dimensional ideal response vector under the DINA model by

ξ·,α(Q) = (1(α � q1), . . . ,1(α � qJ))>. Note that for any item j, 1(α � qj) = ξDINAj,α (Q)

by definition.

Recall the definition of Q-equivalent, then it actually says Q induces an equivalence

relation in the sense that α and α′ are Q-equivalent, if ξ·,α(Q) = ξ·,α′(Q). We define a set

of attribute profiles RQ following Gu and Xu (2018),

RQ = {0} ∪ {α = ∨h∈S qh : S ⊆ {1, . . . , J}} . (A.7)

Then RQ is a subset of the attribute profile space {0, 1}K and it has the following two impor-

tant properties. First, for any α1,α2 ∈ RQ and α1 6= α2, we must have ξ·,α1
(Q) 6= ξ·,α2

(Q).

Second, for any α ∈ {0, 1}K , there exists α′ ∈ RQ such that ξ·,α′(Q) = ξ·,α(Q). These two

properties indicate that R gives a complete set of representatives under the equivalence re-

lation induced by Q. Given an incomplete Q-matrix under DINA, the cardinality of RQ is

less than #{0, 1}K = 2K , because lacking any single attribute item with q-vector ek would

result in attribute profile α = ek not included in RQ. Without loss of generality, denote

#RQ = C and denote the elements in RQ by α1, . . . ,αC with αi ∈ Ai for all i.

RQ provides a basis for constructing the submatrix T eq(Q,θ) of size 2J × C. First

note that under DINA, any two Q-equivalent attribute profiles α
Q∼ α′ have identical item

parameter vectors, i.e. θj,α = θj,α′(= 1 − sj or gj) for all item j. This further implies

T·,α(Q,θ) = T·,α′(Q,θ) by the definition of the T -matrix. Then T eq(Q,θ) is a submatrix of

T (Q,θ) by just extracting C columns, out of 2K columns of T (Q,θ), indexed by α1, . . . ,αC ∈

RQ.
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With the introduced notations and relations, we next prove T (Q,θ)p = T eq(Q,θ)νQ as

follows.

T (Q,θ)p =
∑

α∈{0,1}K
T·,α(Q,θ)pα

=
C∑
i=1

∑
α∈Ai

T·,α(Q,θ)pα

=
C∑
i=1

T·,αi
(Q,θ)

∑
α∈Ai

pα

=
C∑
i=1

T·,αi
(Q,θ)νAi

= T eq(Q,θ)νQ.

This also proves the claim that T (Q0,θ)p and Sθ,p(Q0) depend on p only through νQ.

A.4 Theory of p-Partial Identifiability of Two-Parameter CDMs

Before stating the theoretical result in Gu and Xu (2018), we introduce two new definitions.

First, given a Q-matrix, define the non-basis item set Snon and the basis item set Sbasis as

follows.

Snon = {j : ∃h ∈ {1, . . . , J} \ {j} s.t. qh � qj} and Sbasis = {1, . . . , J} \ Snon. (A.8)

In other words, an item j is a non-basis item if there is some other item h whose required

attributes are all required by j. Second, for an item j and a set of items S ⊆ {1, . . . , J}, j

is said to be S-differentiable if there exist S+, S− ⊆ S such that

0 � ∨h∈S+qh − ∨h∈S−qh � qj. (A.9)

Theorem 1 (Gu and Xu (2018)) If a Q-matrix satisfies the following conditions (C1)

and (C2), then the Two-Parameter CDM is p-partially identifiable.
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(C1) For each item j, there exist two disjoint sets of items S1
j , S2

j ⊆ {1, . . . , J} \ {j} such

that

qj � ∨h∈S1
j
qh and qj � ∨h∈S2

j
qh.

(C2) Each basis item j ∈ Sbasis is Snon-differentiable.

A.5 Computation of the G-DINA model

For notational convenience, let the first K∗j attributes be the required attributes for item j,

and α∗j be the reduced attribute vector for item j. The formulation of the G-DINA model

(de la Torre, 2011) can be written into the sum of the effects due to the presence of specific

attributes and their interactions. Specifically,

P (Rj = 1 | α, Q) = δj0 +

K∗j∑
k=1

δjkαk +

K∗j∑
k′=k+1

K∗j−1∑
k=1

δjkk′αkαk′ + · · ·+ δj12···K∗j

K∗j∏
k=1

αk.

Under the G-DINA model, the item parameters are

θGDINA = (δj,0, δj,1, · · · ; j = 1, · · · , J)>.

Under the null hypothesis H0 : Q = Q0, let (θGDINA,0,p0) be the true model param-

eters. For a response vector R, denote the corresponding probability mass function by

P0(R) = P (R|Q0,p0,θGDINA,0). Moreover, let R−j = (R1, · · · , Rj−1, Rj+1, · · · , RJ)> and

write P0(R−j) = P (R−j|Q0,p0,θGDINA,0).

The following result specifies the form of the η matrix under the GDINA model.

Corollary 1 Under the GDINA model and the conditions of Lemma 1, the η matrix is

defined as

ηGDINA =
(
{ηδj,0 , · · · , j = 1, · · · , J}; ηpα1

, · · · , ηpα
2K−1

)
. (A.10)
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Assume R arranged in the same order as in the response vector β. For notational conve-

nience, let the first K∗j attributes be the required attributes for item j, then for any 1 ≤ l ≤ K∗j

and any 1 ≤ k1 < · · · < kl ≤ K∗j

ηθj,0 =

(
{I(Rj = 1)− I(Rj = 0)} ·

∑
{α:αk=0,∀k=1,...,K∗j }

p0,αP0(R−j|α)

P0(R)
; R ∈ {0, 1}J

)>
,

(A.11)

ηθj,k1,··· ,kl =

(
{I(Rj = 1)− I(Rj = 0)} ·

∑
{α:{k≤K∗j :αk=1}={k1,...,kl}} p0,αP0(R−j|α)

P0(R)
; R ∈ {0, 1}J

)>
.

(A.12)

and

ηpαh
=

(
P0(R|αh)− P0(R|α = 0)

P0(R)
; R ∈ {0, 1}J

)>
. (A.13)

The proof follows directly from Lemma 1. With the η matrix specified in (A.16)–(A.17), we

can further calculate the matrices A and Ξall using (A.5) and (A.6), and get the asymptotic

distribution of test statistic Sθ̂,p̂(Q0) from Theorem 1.

Proof of Corollary 1. Following the form of ηθi in Lemma 1, for ηθj,k1,··· ,kl , we have the

numerator term equal to

∂P (R|Q0,θGDINA,p)

∂ηθj,k1,··· ,kl

∣∣∣
θGDINA=θGDINA,0,p=p0

=
∑
α

(
pα
∂P (Rj|Q0,α,θGDINA)

∂ηθj,k1,··· ,kl

∏
h6=j; h=1,··· ,J

P (Rh|Q0,α,θGDINA)

)∣∣∣∣
θGDINA=θDINA,0,p=p0

= {I(Rj = 0)− I(Rj = 1)}
∑

{α:{k≤K∗j :αk=1}={k1,...,kl}}

(
p0,α ·

∏
h6=j; h=1,··· ,J

P0(Rh|α)

)

= {I(Rj = 0)− I(Rj = 1)}
∑

{α:{k≤K∗j :αk=1}={k1,...,kl}}

(p0,αP0(R−j|α)),
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where R−j := (R1, · · · , Rj−1, Rj+1, · · · , RJ)>. A similar argument gives the form of ηθj ,0.

A.6 Computation of the DINA model

Under the DINA model as introduced in Example 1, the item parameters are

θDINA = (s1, · · · , sJ , g1, · · · , gJ)>,

where sj and gj are the slipping and guessing parameters.

Under the null hypothesis H0 : Q = Q0, let (θDINA,0,p0) be the true model parameters.

For a response vector R, denote the corresponding probability mass function by

P0(R) = P (R|Q0,p0,θDINA,0).

Moreover, let R−j = (R1, · · · , Rj−1, Rj+1, · · · , RJ)> and write

P0(R−j) = P (R−j|Q0,p0,θDINA,0).

Following Lemma 1 we have the following result, which specifies the form of the η matrix

under the DINA model. With the η matrix specified in (A.15)–(A.17), we can easily calculate

the matrices A and further Ξall using (A.5) and (A.6). From Theorem 1, we can get the

asymptotic distribution of test statistic Sθ̂,p̂(Q0).

Corollary 2 Under the DINA model and the conditions of Lemma 1, the η matrix is a

2J × (2J + 2K − 1) matrix defined as

ηDINA =
(
ηs1 , · · · , ηsJ , ηg1 , · · · , ηgJ , ηpα1

, · · · , ηpα
2K−1

)
. (A.14)

Here with R arranged in the same order as in the response vector β and ξDINAj,α (Q0) as
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defined in (2), we have

ηsj =

(
{I(Rj = 0)− I(Rj = 1)} ·

∑
ξDINA
j,α (Q0)=1 p0,αP0(R−j|α)

P0(R)
; R ∈ {0, 1}J

)>
, (A.15)

ηgj =

(
{I(Rj = 1)− I(Rj = 0)} ·

∑
ξDINA
j,α (Q0)=0 p0,αP0(R−j|α)

P0(R)
; R ∈ {0, 1}J

)>
, (A.16)

and

ηpαh
=

(
P0(R|αh)− P0(R|α = 0)

P0(R)
; R ∈ {0, 1}J

)>
. (A.17)

Proof of Corollary 2. Following the form of ηθi in Lemma 1, for ηsj , we have the

numerator term equals

∂P (R|Q0,θDINA,p)

∂sj

∣∣∣
θDINA=θDINA,0,p=p0

=
∑
α

(
pα
∂P (Rj

i |Q0,α,θDINA)

∂sj

∏
h6=j; h=1,··· ,J

P (Rh
i |Q0,α,θDINA)

)∣∣∣∣
θDINA=θDINA,0,p=p0

=
{
I(Rj

i = 0)− I(Rj
i = 1)

} ∑
ξDINA
j,α (Q0)=1

(
p0,α ·

∏
h6=j; h=1,··· ,J

P0(R
h
i |α)

)

= {I(R1 = 0)− I(R1 = 1)}
∑

ξDINA
j,α (Q0)=1

(p0,αP0(R−1|α)),

where R−j := (R1, · · · , Rj−1, Rj+1, · · · , RJ)>. A similar argument gives the form of ηgj .
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B Analysis of the Q-matrix specified in de la Torre and

Chiu (2016)

In addition to the original 20 × 8 Q-matrix, we also test the Q-matrix specified in de la

Torre and Chiu (2016). The authors used responses to a subset of 11 items and specified

4 attributes: (1) performing basic fraction subtraction operation, (2) simplifying/reducing,

(3) separating whole number from fraction, and (4) borrowing one from whole number to

fraction. The Q-matrix they used is shown in Table 1. The p-value corresponding to this

Q-matrix is 0.15 under the DINA model and 0.89 under the G-DINA model. This suggests

the Q-matrix fits the data well under both the DINA and the G-DINA models. To validate

that type I error is well controlled under this Q-matrix, we further conduct simulations with

this 11 × 4 Q-matrix under the G-DINA model to evaluate the performance of the testing

procedure in “Uniform”, |ρ| ≤ 0.25, |ρ| ≤ 0.5, and |ρ| ≤ 0.75 settings. The results of the

Type I errors are presented in Table 2. The Type I error is well controlled, which means the

false rejection of a true Q-matrix is unlikely to happen and the testing procedure is safe to

use.

C Additional Simulation Results

We also present the Q-Q plots of p-values in the correlated attribute case and incomplete

Q-matrix case, for all the settings considered in the section of simulation studies with sample

size N = 500. Figures 1, 3 and 5 correspond to Table 3 in the main text with correlation

ρ = 0.25, 0.5, 0.75 and sample size N = 500, showing p-value distributions when testing

the true Q-matrices. And Figures 2, 4 and 6 correspond to Table 4 in the main text with

correlation ρ = 0.25, 0.5, 0.75 and sample size N = 500, showing p-value distributions when

testing the misspecified Q-matrices. Figure 7 and Figure 8 correspond to the first row of
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Item ID Content α1 α2 α3 α4

4 31
2
− 23

2
1 1 1 1

6 6
7
− 4

7
1 0 0 0

9 37
8
− 2 1 0 1 0

10 4 4
12
− 2 7

12
1 1 1 1

11 41
3
− 24

3
1 1 1 1

12 11
8
− 1

8
1 1 0 0

14 34
5
− 32

5
1 0 1 0

16 45
7
− 14

7
1 0 1 0

17 73
5
− 4

5
1 0 1 1

18 4 1
10
− 2 8

10
1 1 1 1

20 41
3
− 15

3
1 1 1 1

Table 1: The Q-matrix Q11×4 specified in de la Torre and Chiu (2016)

N Uniform |ρ| ≤ 0.25 |ρ| ≤ 0.5 |ρ| ≤ 0.75

DINA

500 0.038 0.040 0.026 0.048

1000 0.020 0.068 0.050 0.060

2000 0.044 0.034 0.036 0.068

GDINA

500 0.044 0.042 0.036 0.042

1000 0.022 0.044 0.046 0.044

2000 0.040 0.042 0.036 0.042

Table 2: Type I Error Studies: Proportions of rejections for testing Q11×4

Table 5 and Table 6 in the main text, respectively, showing p-value distributions when testing

the true and misspecified incomplete Q-matrices.

The Q-Q plots further illustrate the good approximation of the asymptotic distribution

in Theorem 1 to the “true” distribution with a relatively small sample size N = 500, when

the attributes have low to high correlation levels (ρ = 0.25, 0.5, and 0.75) and when the

Q-matrices are incomplete (lacking single-attribute items).
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(a) DINA: Q11 (b) DINA: Q21 (c) DINA: Q31

(d) ACDM: Q11 (e) ACDM: Q21 (f) ACDM: Q31

(g) GDINA: Q11 (h) GDINA: Q21 (i) GDINA: Q31

Figure 1: QQ-plots of p-values for testing True Q-matrices Q11, Q21 and Q31 with N = 500,
ρ = 0.25.
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(a) DINA: Q12 (b) DINA: Q22 (c) DINA: Q32

(d) ACDM: Q12 (e) ACDM: Q22 (f) ACDM: Q32

(g) GDINA: Q12 (h) GDINA: Q22 (i) GDINA: Q32

Figure 2: QQ-plots of p-values for testing Misspecified Q-matrices Q12, Q22 and Q32 with
N = 500, ρ = 0.25.
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(a) DINA: Q11 (b) DINA: Q21 (c) DINA: Q31

(d) ACDM: Q11 (e) ACDM: Q21 (f) ACDM: Q31

(g) GDINA: Q11 (h) GDINA: Q21 (i) GDINA: Q31

Figure 3: QQ-plots of p-values for testing True Q-matrices Q11, Q21 and Q31 with N = 500,
ρ = 0.50.

18



(a) DINA: Q12 (b) DINA: Q22 (c) DINA: Q32

(d) ACDM: Q12 (e) ACDM: Q22 (f) ACDM: Q32

(g) GDINA: Q12 (h) GDINA: Q22 (i) GDINA: Q32

Figure 4: QQ-plots of p-values for testing Misspecified Q-matrices Q12, Q22 and Q32 with
N = 500, ρ = 0.50.
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(a) DINA: Q11 (b) DINA: Q21 (c) DINA: Q31

(d) ACDM: Q11 (e) ACDM: Q21 (f) ACDM: Q31

(g) GDINA: Q11 (h) GDINA: Q21 (i) GDINA: Q31

Figure 5: QQ-plots of p-values for testing True Q-matrices Q11, Q21 and Q31 with N = 500,
ρ = 0.75.
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(a) DINA: Q12 (b) DINA: Q22 (c) DINA: Q32

(d) ACDM: Q12 (e) ACDM: Q22 (f) ACDM: Q32

(g) GDINA: Q12 (h) GDINA: Q22 (i) GDINA: Q32

Figure 6: QQ-plots of p-values for testing Misspecified Q-matrices Q12, Q22 and Q32 with
N = 500, ρ = 0.75.
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(a) DINA: Qin,1 (b) DINA: Qin,2 (c) DINA: Qin,3

(d) ACDM: Qin,1 (e) ACDM: Qin,2 (f) ACDM: Qin,3

(g) GDINA: Qin,1 (h) GDINA: Qin,2 (i) GDINA: Qin,3

Figure 7: QQ-plots of p-values for testing True Incomplete Q-matrices Qin,1, Qin,2 and Qin,3

with N = 500.
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(a) DINA: Qin,4 (b) DINA: Qin,5 (c) DINA: Qin,6

(d) ACDM: Qin,4 (e) ACDM: Qin,5 (f) ACDM: Qin,6

(g) GDINA: Qin,4 (h) GDINA: Qin,5 (i) GDINA: Qin,6

Figure 8: QQ-plots of p-values for testing Misspecified Incomplete Q-matrices Qin,4, Qin,5

and Qin,6 with N = 500.
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