
Supplement to “Joint Maximum Likelihood Estimation

for High-dimensional Exploratory Item Factor Analysis”

A Proof of Theorems 1 and 3

Because Theorem 1 is a special case of Theorem 3, it is sufficient to prove Theorem 3. The

proof of Theorem 3 is similar to that of Theorem 1 in Davenport et al. (2014). Thus, we only

state the main steps and omit the repetitive details. Let M = ΘA> and M∗ = Θ∗A∗>, and

M̂ = Θ̂Â>. Note that l depend on (Θ, A) only through M . Thus, we write l(M) = l(Θ, A).

Let

l̄(M) = l(M)− l(0), (A.1)

where 0 is an N × J matrix whose entries are all zero. Then, we have the following lemma

from Davenport et al. (2014).

Lemma A.1 (Lemma A.1 of Davenport et al. (2014)). There exist constant C0 and C1 such

that for all α, r,N, J and n,

P

(
sup

‖M‖∗≤α
√
rNJ

|l̄(M)− El̄(M)| ≥ C0αLα
√
r
√
n(N + J) +NJ log(N + J)

)
≤ C1

N + J
,

(A.2)

where Lγ = sup|x|≤α
f ′(x)

f(x)(1−f(x)) <∞ and ‖ · ‖∗ denotes the nuclear norm of a matrix.
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Let α = C2 and r = K in the above lemma, we have

P

(
sup

‖M‖∗≤C2
√
KNJ

|l̄(M)− El̄(M)| ≥ C0C
2LC2

√
K
√
n(N + J) +NJ log(N + J)

)
≤ C1

N + J
.

(A.3)

Define

H =
{
M = (mij)1≤i≤N,1≤j≤J : mij = a>j θi, ‖θi‖ ≤ C and ‖aj‖ ≤ C, for all i, j

}
. (A.4)

Note that if M ∈ H, then

‖M‖∗ ≤
√
NJ
√

rank(M)‖M‖∞ ≤ C2
√
KNJ. (A.5)

Thus, from (A.3), we further have

P

(
sup
M∈H

|l̄(M)− El̄(M)| ≥ C0C
2LC2

√
K
√
n(N + J) +NJ log(N + J)

)
≤P

(
sup

‖M‖∗≤C2
√
KNJ

|l̄(M)− El̄(M)| ≥ C0C
2LC2

√
K
√
n(N + J) +NJ log(N + J)

)

≤ C1

N + J
.

(A.6)

We use the following result, which is a slight modification of the last equation on p.210

of Davenport et al. (2014).

nD(M∗‖M̂) ≤ 2 sup
M∈H

|l̄(M)− El̄(M)|, (A.7)

where M̂ = Θ̂Â>, D(M1‖M2) denotes the Kullback-Leibler divergence between the joint

distribution of {Yij; 1 ≤ i ≤ N, 1 ≤ j ≤ J} when the model parameters are M1 and M2. In

addition, we have the following inequality, which is a direct application of Lemma A.2 in

Davenport et al. (2014) and the third equation on page 211 of Davenport et al. (2014). For
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any M1,M2 such that ‖M1‖, ‖M2‖∞ ≤ C2,

‖M1 −M2‖2F ≤ 8βCNJD(M1‖M2), (A.8)

with βC = sup|x|≤C2
f(x)(1−f(x))

f ′(x)2
. According to Assumption A2, βC < ∞. Combining (A.6),

(A.7) and (A.8), we can see that with probability 1− C1

N+J
,

‖M̂ −M∗‖2F ≤
16βCNJ

n
× C0C

2LC2

√
K
√
n(N + J) +NJ log(N + J). (A.9)

Rearranging the terms, we have

1

NJ
‖M̂ −M∗‖2F ≤ 16βCC0C

2LC2

√
K(J +N)

n
×

√
1 +

NJ log(N + J)

n(N + J)
. (A.10)

For n ≥ (N + J) log(NJ), we further have

NJ log(N + J)

n(N + J)
≤ NJ

(N + J)2
≤ 1

4
. (A.11)

Combine the above equation with (A.10) and note that K is assumed fixed, we complete the

proof.

B On Rotational Invariance

We summarize the phenomenon of rotational invariance by the following proposition.

Proposition B.1 (Rotational Invariance). Suppose that A3 is satisfied. For any K × K

orthogonal matrix Q (i.e., Q>Q = IK×K), Θ̃∗ = Θ∗Q and Ã∗ = A∗Q satisfy Θ̃∗(Ã∗)> =

Θ∗(A∗)> and the constraints (7) - (9).

Proof of Proposition B.1. First, because Q is an orthogonal matrix, we can see that

Θ̃∗Ã∗> = Θ∗QQ>A∗> = Θ∗A∗>. (B.1)
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We proceed to verify (7)-(9). We have

1>NΘ̃∗ = 1>NΘ∗Q = 0>KQ = 0K , (B.2)

1

N
Θ̃∗>Θ̃∗ =

1

N
(Θ∗Q)>Θ∗Q =

1

N
Q>Θ∗>Θ∗Q = Q>Q = IK . (B.3)

Thus, (7)-(9) are verified.

C Proof of Theorems 2 and 4

Because Theorem 2 is a special case of Theorem 4, we will only present the proof for the

latter one. In fact, Theorem 4 is implied by the following lemma.

Lemma C.1. Suppose that assumptions A1 - A5 are satisfied. Further assume that n ≥

(N + J) log(JN). Then there exists a constant C4 which does not depend on N and J , such

that

min
Q

{
1

J
‖A∗ − ÃQ‖2F : Q>Q = IK×K

}
≤ C4

√
J +N

n
(C.1)

is satisfied with probability at least 1 − C1/(N + J), where Ã is the standardized version of

Â.

Since n ≥ (N + J) log(JN), when N, J grow to infinity simultaneously, the right hand

side of (C.1) converges to zero and the probability of (C.1) being satisfied converges to one.

It implies that the left hand side of (C.1) converges to zero in probability, which completes

the proof of Theorem 4. In what follows, we prove Lemma C.1.

Proof of Lemma C.1. Let H1 = Θ̃Ã> −Θ∗A∗> and H2 = 1N d̃
> − 1Nd

∗>. Observe that

‖Θ̂Â> + 1N d̂−Θ∗A∗> − 1Nd
∗>‖2F = ‖H1 +H2‖2F = ‖H1‖2F + ‖H2‖2F + 2tr(H>1 H2)

= ‖H1‖2F + ‖H2‖2F .
(C.2)

4



The first equation is due to Proposition B.1. The last equation is due to Θ̃>1N = 0K and

Θ∗>1N = 0K under Assumption A3, where we write 0K for a K dimensional column vector

whose entries are all 0’s. Combine the above equation with (12), we have

‖Θ̃Ã> −Θ∗A∗>‖2F = ‖H1‖2F ≤ C2NJ

√
J +N

n
, (C.3)

probability at least 1− C1/(N + J) according to Theorem 1 and 3. Define the event

E1 = {‖Θ̃Ã> −Θ∗A∗>‖2F ≤ C2NJ

√
J +N

n
}. (C.4)

We will focus our analysis on E1.

For the next step, we show that the column spaces of Θ̃ and Θ∗ are close to each other in

the sine angle sense. For an m× n matrix H, we write σ1(H) ≥ σ2(H) ≥ ... ≥ σmin(m,n)(H)

for the singular values of H in a descending order. Note that Θ̃>Θ̃ = Θ∗Θ∗> = NIK , where

IK denotes the K × K identity matrix. Thus, σ1(Θ̃) = ... = σK(Θ̃) = σ1(Θ
∗) = ... =

σK(Θ∗) =
√
N . Under Assumption A4, we have σK(A∗) ≥

√
JC3. Thus we have,

σK(Θ∗A∗>) ≥ σK(Θ∗)σK(A∗) ≥
√
NJC3. (C.5)

See (Hogben, 2006, Chapter 17-8) for more details of the above inequality. Denote M∗ =

Θ∗(A∗)>. Let M∗ = U∗Σ∗V ∗> be the reduced singular decomposition of M∗, where V ∗ =

(v∗1, ..., v
∗
K) is an orthonormal matrix, ΣK×K = diag(σ∗1, σ

∗
2, ..., σ

∗
K), and U∗N×K be the left

singular matrix. We first show that the column space of Θ∗ is the same as that of U∗. We

know that

Θ∗(A∗)> = U∗Σ∗V ∗>. (C.6)

According to our discussions above, for large enough N and J , σ∗K ≥ C3

√
NJ > 0. Thus,

both Θ∗ and A∗ are of full rank. Therefore, by multiplying A∗(A∗>A∗)−1 on both sides we
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have

Θ∗ = U∗Σ∗V ∗>A∗(A∗>A∗)−1. (C.7)

Note that Σ∗V ∗>A∗(A∗>A∗)−1 is also of full rank (rank K). Thus, Θ∗ and U∗ have the

same column space, for which we denote it as R(U∗). Under the event E1 and by Weyl’s

perturbation theorem (see, e.g. Stewart and Sun, 1990), we have

|σ∗K − σ̂K | ≤ ‖Θ̂Â> −Θ∗(A∗)>‖2 ≤ ‖Θ̂Â> −Θ∗(A∗)>‖F ,

where σ̂K = σK(Θ̂Â>), ‖·‖2 denotes the spectral norm of a matrix and the second inequality

is due to the relationship between matrix spectral norm and matrix Frobenius norm. Thus,

when event E1 happens and for sufficiently large N and J ,

σ̂K ≥ σ∗K − ‖Θ̂Â> −Θ∗(A∗)>‖F

≥
√
NJ

(
C3 − C2

(
J +N

n

) 1
4

)

> 0,

(C.8)

which is because ‖Θ̂Â>−Θ∗(A∗)>‖F is of order o(
√
NJ) when n ≥ (N + J) log(JN) and N

and J grow to infinity. Then following the same proof above, we also have that Θ̃ and Û have

the same column space, where we Û is left singular matrix of Θ̂Â>. That is, Θ̂Â> = ÛΣ̂V̂ >

and Σ̂ is a K × K diagonal matrix. We write the column space of Û as R(Û). Following

the Modified Davis-Kahan-Wedin sine theorem (Theorem 20) in O’Rourke et al. (2018), we

have

sin∠(R(U∗),R(Û)) ≤ 2
‖Θ̂Â> −Θ∗(A∗)>‖2

σ∗K
.

Because of the relationship between the matrix spectral norm and Frobenius norm and (C.5),

we have
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sin∠(R(U∗),R(Û)) ≤ 2
‖Θ̂Â> −Θ∗(A∗)>‖2

σ∗K
≤ 2
‖Θ̂Â> −Θ∗(A∗)>‖F

σ∗K
≤ 2
‖Θ̂Â> −Θ∗(A∗)>‖F

C3

√
NJ

.

(C.9)

On the event E1, we have

sin∠(R(U∗),R(Û)) ≤ 2C
1/2
2 C−13

(
J +N

n

) 1
4

. (C.10)

On the other hand, using theory in canonical angles between column spaces of matrices

(Hogben, 2006, Chapter 15-2), we know that the cosine angles between the column space

of Θ̃ and Θ∗ are the singular values of 1
N

Θ̃>Θ∗. This fact together with (C.10) gives the

following inequality on the event E1,√
1− 4C2C

−2
3

(
J +N

n

) 1
2

≤ 1

N
σK(Θ̃>Θ∗) ≤ 1

N
σ1(Θ̃

>Θ∗) ≤ 1. (C.11)

Now we choose a K×K orthogonal matrix Q that is close to 1
N

Θ̃>Θ∗. According to Theorem

4.1 of Higham (1989), the best choice of the orthogonal matrix Q that approximates 1
N

Θ̃>Θ∗

is

Q = B(B>B)−1/2, (C.12)

where B = 1
N

Θ̃>Θ∗, and

‖Q− 1

N
Θ̃>Θ∗‖F =

√√√√ K∑
i=1

[1− 1

N
σi(Θ̃>Θ∗)]2. (C.13)

Combine the above equation with (C.11), we have

‖Q− 1

N
Θ̃>Θ∗‖F ≤

√
K4C2C

−2
3

(
J +N

n

)1/4

. (C.14)
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Let ∆ = Q− 1
N

Θ̃>Θ∗. Now we show that A∗ and ÃQ are close to each other. We have

‖A∗ − ÃQ‖F = ‖A∗ − Ã(
1

N
Θ̃>Θ∗ + ∆)‖F (C.15)

= ‖A∗ − 1

N
ÂΘ̂>Θ∗ + Ã∆‖F (C.16)

≤ ‖A∗ − 1

N
A∗Θ∗>Θ∗‖F + ‖ 1

N
(A∗Θ∗> − 1

N
ÂΘ̂>)Θ∗‖F + ‖Ã∆‖F(C.17)

≤ ‖A∗ − A∗‖F + ‖ 1

N
(A∗Θ∗> − 1

N
ÂΘ̂>)‖F‖Θ∗‖F + ‖Ã∆‖F (C.18)

≤ C2

(
N + J

n

)1/4
√
J

N
‖Θ∗‖F + ‖Ã∆‖F (C.19)

≤ C2

(
N + J

n

)1/4√
J
√
C2 − 1 +

√
K4C2C

−2
3

(
J +N

n

)1/4

‖Ã‖F .(C.20)

On the other hand, we have

ÃΘ̃> = ÂΘ̂>. (C.21)

Multiplying Θ̃(Θ̃>Θ̃)−1 on both side gives,

Ã = ÂΘ̂>Θ̃(Θ̃>Θ̃)−1 =
1

N
ÂΘ̂>Θ̃. (C.22)

Thus,

‖Ã‖F ≤
1

N
‖Â‖F‖Θ̂‖F‖Θ̃‖F ≤

1

N

√
JC
√
N
√
C2 − 1

√
N
√
K =

√
JC
√
C2 − 1. (C.23)

Combining the above equation with (C.20) completes the proof.
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D Proof of Corollary 1

Corollary 1 is implied by Theorem 1 through the facts that

∑N
i=1

∑J
j=1

(
f(d̂j + â>j θ̂i)− f(d∗j + (a∗j)

>θ∗i )
)2

NJ

≤

(
sup
|x|≤C2

|f ′(x)|

)2

× 1

NJ
‖Θ̂Â> + 1N d̂

> −Θ∗(A∗)> − 1Nd
∗>‖2F

(D.1)

and that
(
sup|x|≤C2 |f ′(x)|

)2
is finite according to condition A2.

E Standardization of CJMLE Solution

We provide the procedure for standardizing a set of parameters (Θ, A,d) to (Θ̃, Ã, d̃), so

that

1. Θ̃Ã> + 1N d̃
> = ΘA> + 1Nd

>,

2. 1>NΘ̃[k] = 0,

3. 1
N

(Θ̃[k])
>Θ̃[k] = 1,

4. (Θ̃[k])
>Θ̃[k′] = 0, k, k′ = 1, ..., K, k 6= k′.

This is achieved by the following steps.

1. Set d̃ = d + 1
N
AΘ>1N .

2. Apply singular value decomposition to matrix Θ− 1
N
1N1

>
NΘ and obtain

Θ− 1

N
1N1

>
NΘ = UDV >,

where U is a N × K matrix containing all the left singular vectors, D is a K × K

diagonal matrix with the diagonal entries being the singular values, and V is a K ×K

matrix, containing all the right singular vectors.
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3. Set Θ̃ =
√
NU and Ã = 1√

N
AVD.

F A SVD-based Algorithm

In what follows, we propose a fast algorithm for obtaining a good starting point for Al-

gorithm 1. This algorithm is based on a method proposed in Chatterjee (2015). In the

description of the algorithm below, we assume N ≥ J . Modifications are needed when

J > N .

Algorithm F.1 (SVD Algorithm for Starting Point).

1. (Initialization) Input responses yij, nonmissing response indicator ωij, dimension K of

latent space, and tolerance ε.

2. Compute p̂ = (
∑N

i=1

∑J
j=1 ωij)/(NJ) as the proportion of observed responses.

3. Let X = (xij)N×J , where

xij =


2yij − 1, if ωij = 1,

0, otherwise.

4. Apply singular value decomposition to matrix X and obtain X =
∑J

j=1 σjujv
>
j , where

σ1 ≥ · · · ≥ σJ are the singular values and ujs and vjs are the left and right singular

vectors.

5. Let

X̃ = (x̃ij)N×J =
∑

j:σj≥2
√
Np̂

σjujv
>
j .
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6. Let M = (mij)N×J =, where

mij =


f−1(ε) if x̃ij < −1 + ε,

f−1(0.5(xij + 1)) if − 1 + ε ≤ x̃ij ≤ 1− ε,

f−1(1− ε) if x̃ij > 1− ε

7. Set d(0) = (d
(0)
1 , ..., d

(0)
J ), where d

(0)
j = (

∑N
i=1mij)/N .

8. Apply singular value decomposition to matrix M̃ = (mij − d(0)j )N×J and obtain M̃ =∑J
j=1 σ̃jũjṽ

>
j , where σ̃1 ≥ · · · ≥ σ̃J are the singular values and ũjs and ṽjs are the left

and right singular vectors.

9. Set Θ
(0)
[k] =

√
N ũk and A

(0)
[k] = σ̃kṽk/

√
N , k = 1, ..., K.

10. (Output) Output Θ(0), A(0), and d(0) as the starting point for Algorithm 1.

The tolerance ε is a positive constant that is close to 0. A default value ε = 0.01 is used

in the analysis of the paper.

G Additional Results for Real Data Analysis

In what follows, we provide the estimated loading parameters from the real data analysis

in Section 5. Specifically, the estimated factor loadings under the Geomin rotation are

presented in Table 1. In addition, in Table 2, the standardized factor loadings are presented,

which are obtained by scaling the estimated factor loadings in Table 1 by 1.7. Thanks to the

connection between the probit and logistic link functions, the standardized factor loadings

should be close to the estimated factor loadings from a probit IFA model.
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Item# F1 F2 F3

1 0.19 2.12 0.41

2 0.27 1.39 −0.10
3 0.49 1.24 0.58

4 0.19 1.45 0.78

5 0.82 1.29 0.07

6 0.38 1.12 0.23

7 −0.35 1.90 0.01

8 0.31 0.85 −0.23
9 −0.67 1.15 0.49

10 −0.11 1.56 0.71

11 0.18 0.85 −0.10
12 −0.11 1.81 0.33

13 0.01 0.46 0.48

14 0.89 0.97 0.29

15 −0.21 1.09 −0.98
16 0.48 1.16 −0.52
17 0.04 0.64 −0.01
18 −0.11 1.20 −0.56
19 0.11 0.58 −0.30
20 −0.01 1.67 −0.20
21 −0.54 2.11 −0.59
22 −0.53 1.91 −0.58
23 −0.63 1.55 0.02

24 0.18 1.15 −0.48
25 0.15 0.76 −0.06
26 −0.46 1.18 0.06

27 0.35 1.80 0.14

28 0.95 1.04 0.42

29 −0.18 0.48 0.44

30 0.11 1.30 −0.24
31 −0.17 1.23 −0.06
32 −0.21 0.58 −0.26
33 0.34 −0.15 −0.24
34 2.80 −0.09 0.51

35 4.02 −0.23 −0.02
36 2.09 0.16 −0.06
37 2.17 −0.25 −0.40
38 1.64 0.08 0.07

39 2.08 −0.68 −0.40
40 1.00 0.27 −0.57

Item# F1 F2 F3

41 1.87 −0.14 −0.07
42 2.91 0.51 −0.05
43 0.93 −0.04 −0.04
44 3.12 −1.02 0.21

45 1.18 1.00 0.67

46 0.49 0.01 −0.09
47 0.79 0.41 −0.32
48 0.93 0.63 0.20

49 0.43 −0.01 0.12

50 2.55 0.12 −0.09
51 1.98 −0.06 0.03

52 3.67 0.17 0.13

53 3.91 0.73 −0.10
54 1.88 −0.13 0.03

55 2.74 0.20 −0.04
56 0.31 0.60 2.28

57 0.11 0.32 1.58

58 0.46 −1.20 2.12

59 −0.03 0.58 1.64

60 −0.01 −0.29 1.78

61 −0.03 0.33 2.11

62 0.41 −0.10 1.67

63 −0.50 0.00 2.04

64 −0.33 −0.71 2.76

65 −0.09 −0.26 1.37

66 −0.28 0.40 1.88

67 0.13 −0.11 0.86

68 0.02 0.30 0.58

69 0.14 0.36 1.25

70 0.01 0.53 1.35

71 0.72 −0.21 1.18

72 −0.15 0.68 0.77

73 −0.28 −0.70 2.22

74 −0.26 0.19 1.97

75 −0.22 0.62 1.55

76 −0.25 −0.53 1.81

77 0.84 0.32 1.50

78 0.32 0.01 1.32

79 0.45 0.49 1.01

· · · ·

Table 1: Results of fitting a three-factor model to the EPQ-R data: The original estimated
factor loadings (after Geomin rotation).
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Item# F1 F2 F3

1 0.11 1.24 0.24

2 0.16 0.81 −0.06
3 0.29 0.73 0.34

4 0.11 0.85 0.46

5 0.48 0.76 0.04

6 0.22 0.66 0.13

7 −0.21 1.11 0.01

8 0.18 0.50 −0.14
9 −0.39 0.67 0.29

10 −0.07 0.92 0.42

11 0.10 0.50 −0.06
12 −0.06 1.06 0.19

13 0.00 0.27 0.28

14 0.53 0.57 0.17

15 −0.12 0.64 −0.57
16 0.28 0.68 −0.30
17 0.02 0.37 0.00

18 −0.06 0.71 −0.33
19 0.06 0.34 −0.18
20 0.00 0.98 −0.12
21 −0.32 1.24 −0.35
22 −0.31 1.12 −0.34
23 −0.37 0.91 0.01

24 0.11 0.68 −0.28
25 0.09 0.45 −0.03
26 −0.27 0.69 0.03

27 0.20 1.06 0.08

28 0.56 0.61 0.25

29 −0.11 0.28 0.26

30 0.06 0.76 −0.14
31 −0.10 0.72 −0.03
32 −0.12 0.34 −0.15
33 0.20 −0.09 −0.14
34 1.64 −0.05 0.30

35 2.36 −0.13 −0.01
36 1.23 0.09 −0.04
37 1.28 −0.15 −0.23
38 0.96 0.04 0.04

39 1.22 −0.40 −0.24
40 0.59 0.16 −0.34

Item# F1 F2 F3

41 1.10 −0.08 −0.04
42 1.71 0.30 −0.03
43 0.55 −0.02 −0.02
44 1.83 −0.60 0.12

45 0.69 0.59 0.40

46 0.29 0.01 −0.05
47 0.47 0.24 −0.19
48 0.55 0.37 0.12

49 0.25 −0.01 0.07

50 1.50 0.07 −0.06
51 1.16 −0.04 0.02

52 2.15 0.10 0.07

53 2.30 0.43 −0.06
54 1.11 −0.08 0.02

55 1.61 0.12 −0.03
56 0.18 0.35 1.34

57 0.07 0.19 0.93

58 0.27 −0.70 1.25

59 −0.01 0.34 0.96

60 0.00 −0.17 1.04

61 −0.02 0.19 1.24

62 0.24 −0.06 0.98

63 −0.29 0.00 1.20

64 −0.19 −0.41 1.62

65 −0.06 −0.16 0.81

66 −0.17 0.23 1.11

67 0.07 −0.07 0.51

68 0.01 0.18 0.34

69 0.08 0.21 0.74

70 0.00 0.31 0.79

71 0.42 −0.12 0.69

72 −0.09 0.40 0.45

73 −0.17 −0.41 1.31

74 −0.15 0.11 1.16

75 −0.13 0.36 0.91

76 −0.15 −0.31 1.06

77 0.50 0.19 0.88

78 0.19 0.01 0.78

79 0.27 0.29 0.59

· · · ·

Table 2: Results of fitting a three-factor model to the EPQ-R data: The standardized
estimated factor loadings (after Geomin rotation).
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