
Psychometrika Submission May 15, 2018 1

Web Appendices for “Tests of matrix structure for construct
validation”

A. Rate of convergence

Existing results for the large sample behavior of permutation tests focus on the

relationship between the conditional permutation distribution of a statistic and the

unconditional limiting distribution as the number of observations increases (e.g. see

Lehmann and Romano, 2005, Section 15.2.2). In particular, let T (x1, . . . , xn) be a test

statistic of the n observations x1, . . . , xn. Also, let R̂n(t) be the permutation distribution of

T , and let R(t) be the unconditional asymptotic distribution of T . Then most existing

results study the scenario in which R̂n → R(t) as n→∞, with the goal of understanding

the large sample properties of the permutation test, such as power.

In this appendix, we address a related but different question. In our setup, we need to

account for: 1) measurement error and 2) fixed number of inputs to the test statistic. Let

anj = ρj + unj , where ρj is the true population quantity, anj is our estimate of ρj from n

observations, and unj is measurement error, which is a function of the number of

respondents n (throughout this appendix, we use superscript n to denote sample size). In

our proposed method, we use a statistic of the form T (ρ1 + un1 , . . . , ρN + unN), where the

number of correlations N = p(p− 1)/2 is fixed by the questionnaire, which contains p

items. In our setting, instead of letting N →∞, N is constant and we let n→∞.

Assuming anj are consistent estimators of ρj, u
n
j → 0 as n→∞. Our goal is to understand

the rate at which the p-value with the estimated quantities anj converges to the p-value

that would be obtained with the true quantities ρj.

Similar to before, we denote the N × 1 vector of upper triangular elements of A as

an = (an1 , a
n
2 , . . . , a

n
N)T . Let π be a permutation, or bijection, of the columns and rows of A,

let Π be the set of all such permutations π, and let |Π| = p! be the total number of

permutations in Π. Let Aπ be matrix A with the rows and columns permuted according to
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π, and let anπ be the N × 1 vector of upper triangular elements of Aπ. Let Γnorm(anπ) be

Hubert’s Γ computed with anπ, and let an0 be the vector of correlation coefficients under the

hypothesized ordering.

In data analyses, we use Monte Carlo methods to approximate the permutation

p-value obtained with the estimated quantities an. We denote the two-sided permutation

p-value with the estimated quantities as p̂(an) = |Π|−1
∑

π∈Π 1 [|Γnorm(anπ)| ≥ |Γnorm(an0 )|].

However, we would ideally approximate the permutation p-value obtained with the true

population quantities, which we denote as p̂(ρ) = |Π|−1
∑

π∈Π 1 [|Γnorm(ρπ)| ≥ |Γnorm(ρ0)|].

Fortunately, under general conditions specified in Theorem 1, if |anj − ρj| = Op(g(n)) for

j = 1, . . . , N , then we also have |p̂(an)− p̂(ρ)| = Op(g(n)). In other words, the rate of

convergence for the permutation p-value is the same as the rate of convergence of the

underlying elements of an. As shown in Corollary 1, when an are Pearson’s or Spearman’s

correlation coefficients, we have g(n) = O(1/
√
n). As shown in Corollary 2, the same rate

of convergence holds when using the absolute values of Pearson’s or Spearman’s correlation

coefficients.

As shown in Section 4.1, Γnorm(an) = (σ̂δ/σ̂an)(ānin − ānout), where ānin is the mean of the

within-block elements and ānout is the mean of the between-block elements. Because σ̂δ and

σ̂an are constant conditional on the data, this shows that Γnorm(an) is permutationally

equivalent to the difference in means, which we denote by D(an) = ānin − ānout. Similarly, we

denote the difference in means of the true population quantities as D(ρ) = ρ̄in − ρ̄out.

In this appendix, we work with D instead of Γnorm because the former simplifies the

derivations. Since D and Γnorm are permutationally equivalent, they produce identical

permutation p-values. Consequently, the convergence rate of the permutation p-value must

be the same for D as for Γnorm.

Before focusing on our primary interest, |p̂(an)− p̂(ρ)|, we state an inequality in

Lemma 1 that we will use to prove our main result in Theorem 1.
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Lemma 1. Let εj(n, δ) be a decreasing, strictly positive function of n for all δ ∈ (0, 1)

such that: i) εj(n, δ) = O(g(n)), and ii) for all δ, there exist an nδ ∈ N such that

Pr{|anj − ρj| ≤ εj(n, δ)} ≥ 1− δ for n > nδ, j = 1, . . . , N . Then

Pr{|D(an)−D(ρ)| ≤ 2εmax(n, δ)} ≥ h(δ) for n > nδ where εmax(n, δ) = maxj εj(n, δ) and

h(δ) = Pr(∩j{|anj − ρj| ≤ εj(n, δ)}). If we also have (ani − ρi) ⊥ (anj − ρj) for i 6= j, then

h(δ) = (1− δ)N .

Proof of Lemma 1. Let Jin and Jout be the sets of indices of within-block and

between-block elements, respectively, of an. Also, let Nin = |Jin| and Nout = |Jout| be the

number of within-block and between-block elements. Then for n > nδ and using w.p. as

shorthand for “with probability,”

|D(an)−D(ρ)|︸ ︷︷ ︸
E1

= |ānin − ānout − (ρ̄in − ρ̄out)|

= |ānin − ρ̄in + ρ̄out − ānout|

≤ |ānin − ρ̄in|+ |ρ̄out − ānout|

=
1

Nin

∣∣∣∣∣∑
j∈Jin

(anj − ρj)

∣∣∣∣∣+
1

Nout

∣∣∣∣∣ ∑
j∈Jout

(anj − ρj)

∣∣∣∣∣
≤ 1

Nin

∑
j∈Jin

∣∣anj − ρj∣∣+
1

Nout

∑
j∈Jout

∣∣anj − ρj∣∣︸ ︷︷ ︸
E2

≤ 1

Nin

∑
j∈Jin

εj(n, δ) +
1

Nout

∑
j∈Jout

εj(n, δ)︸ ︷︷ ︸
E3

(w.p. at least h(δ)) (1)

≤ 1

Nin

Ninεmax(n, δ) +
1

Nout

Noutεmax(n, δ)︸ ︷︷ ︸
E4

= 2εmax(n, δ).

To see why the inequality in (1) holds with probability at least h(δ) (as opposed to an

exact equality), note that E2 ≤ E3 if |anj − ρj| ≤ εj(n) for all j. However, this is a subset of
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the conditions under which E2 ≤ E3 (e.g. we could have |anj − ρj| > εj(n) for some j, which

are offset by |anj − ρj| < εj(n) for other j). Consequently the inequality holds with

probability at least h(δ).

Now, we can write Pr(E1 ≤ E4) = Pr(E1 ≤ E2, E2 ≤ E3, E3 ≤ E4). Furthermore, the

events {E1 ≤ E2} and {E3 ≤ E4} are deterministic. Consequently, Pr(E1 ≤ E2) = 1,

Pr(E3 ≤ E4) = 1, and {E1 ≤ E2}, {E2 ≤ E3}, and {E3 ≤ E4} are mutually independent. It

follows that

Pr(E1 ≤ E4) = Pr(E1 ≤ E2, E2 ≤ E3, E3 ≤ E4)

= Pr(E1 ≤ E2) Pr(E2 ≤ E3) Pr(E3 ≤ E4)

= Pr(E2 ≤ E3)

≥ h(δ).

This shows that

Pr{|D(an)−D(ρ)| ≤ 2εmax(n, δ)} ≥ h(δ). (2)

Furthermore, we have εmax(n, δ) = O(g(n)). Therefore, (2) implies that

|D(an)−D(ρ)| = Op(g(n)). Finally, we note that if the errors are independent, then we

have

h(δ) = Pr
(
∩Nj=1{|anj − ρj| ≤ εj(n)}

)
=

N∏
j=1

Pr
(
|anj − ρj| ≤ εj(n)

)
= (1− δ)N .

This proves the lemma.

We now turn to our primary interest, |p̂(an)− p̂(ρ)|. To that end, for fixed ε > 0, let
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Bε = (|D(ρ0)| − ε, |D(ρ0)|+ ε) be the ε-ball centered around |D(ρ0)|. Also, let

ΠB(ε) = {π ∈ Π : |D(ρπ)| ∈ Bε}

ΠB̄(ε) = {π ∈ Π : |D(ρπ)| 6∈ Bε}.

Note that for each ε, ΠB(ε) and ΠB̄(ε) partition Π, i.e. Π = ΠB(ε) ∪ ΠB̄(ε) and

ΠB(ε) ∩ ΠB̄(ε) = ∅.

For fixed ε we have

|Π| |p̂(an)− p̂(ρ)| =

∣∣∣∣∣∑
π∈Π

1 (|D(anπ)| ≥ |D(an0 )|)−
∑
π∈Π

1 (|D(ρπ)| ≥ |D(ρ0)|)

∣∣∣∣∣
=

∣∣∣∣∣∑
π∈Π

{1 (|D(anπ)| ≥ |D(an0 )|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

π∈ΠB(2ε)

{1 (|D(anπ)| ≥ |D(an0 )|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣∣︸ ︷︷ ︸
CB

(3)

+

∣∣∣∣∣∣
∑

π∈ΠB̄(2ε)

{1 (|D(anπ)| ≥ |D(an0 )|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣∣︸ ︷︷ ︸
CB̄

. (4)

We proceed by bounding CB (3) in Lemma 2 and CB̄ (4) in Lemma 3. We then

combine these bounds with the ε given by Lemma 1 to prove our main result in Theorem 1.

In the rest of this appendix, we use the notation CB = CB(n) and CB̄ = CB̄(n) to explicitly

write these quantities as functions of the sample size n.

Lemma 2. Let R̂N(t) be the permutation distribution of |D(ρ)|. Suppose

R̂N(t) ≈ R(t) for N sufficiently large, where R(t) has density f(t) such that

M = supt f(t) <∞. Also, in (3) and (4) let ε = ε(n) be a function of n and suppose

ε(n) = O(g(n)) for some strictly decreasing function g such that g(n)→ 0 as n→∞. Then

for N sufficiently large, CB(n) = Op(g(n)).
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Proof of Lemma 2. In the following, we use the convention that f(t) = 0 for

t 6∈ supp(f), where supp(f) is the support of f . For fixed n, we have

CB(n)

|Π|
≤ |ΠB (2ε(n))|

|Π|
(5)

= R̂N (|D(ρ0)|+ 2ε(n))− R̂N (|D(ρ0)| − 2ε(n)) (6)

≈ R (|D(ρ0)|+ 2ε(n))−R (|D(ρ0)| − 2ε(n)) (for large N)

=

∫ |D(ρ0)|+2ε(n)

|D(ρ0)|−2ε(n)

f(s)ds

≤ 4Mε(n). (7)

Line (5) follows because each term in the sum of CB(n) inside the absolute values is equal

to −1, 0, or 1, and there are |ΠB(ε(n))| terms in the sum; the inequality in (5) would be an

equality if and only if all terms in the sum were equal to 1 or if all terms in the sum were

equal to −1. Line (6) follows because line (5) is just the proportion of the permutation

distribution between |D(ρ0)| − 2ε(n) and |D(ρ0)|+ 2ε(n).

By assumption, ε(n) = O(g(n)). Furthermore, |Π| is constant so

4M |Π|ε(n) = O(g(n)). Now, CB(n) is a random variable and the preceding argument

shows that CB(n) ≤ 4M |Π|ε(n) with probability one (as noted above, we must have

CB(n) ≤ |ΠB (2ε(n))|). It follows that for any λ ∈ (0, 1), there exists an nλ ∈ N and

αλ ∈ (0, 1) such that Pr{CB(n) ≤ αλ4M |Π|ε(n)} ≥ 1− λ for all n > nλ. This shows that

CB(n) = Op(g(n)), which proves the lemma.

We note that the constraint on the limiting distribution R in Lemma 2 precludes

distributions that concentrate on sets of measure zero, such as the dirac delta function. In

other words, the limiting distribution cannot be degenerate. We also note that in Lemma

2, we could set ε(n) = 2εmax(n, δ) for fixed δ ∈ (0, 1), where εmax(n, δ) is given in Lemma 1.

In this case, (7) becomes 8Mεmax(n, δ).

The proof of Lemma 2 assumes that N = p(p− 1)/2 is sufficiently large for the
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approximation R̂N(t) ≈ R(t) to hold, i.e. that the matrix A has many elements. In

practice, N is determined by the number of items p on the questionnaire. Furthermore,

since the total number of permutations N ! grows very quickly, we anticipate that p > 10

(N > 45) is sufficient in most applications for the permutation distribution to be

approximated well by a limiting distribution for which the density exists and is bounded

above. The bound on CB(n) is then a function of the number of subjects n who reply to

the questionnaire.

We now turn to the CB̄(n) term (4).

Lemma 3. Suppose that |D(anπ)−D(ρπ)| = Op(g(n)) for all permutations π ∈ Π for

some strictly decreasing, positive function g(n). In particular, suppose that for all

δ ∈ (0, 1), there exists an nδ ∈ N and ε(n, δ) > 0 such that

Pr{|D(anπ)−D(ρπ)| ≤ ε(n, δ)} ≥ h(δ) for all n > nδ where

h(δ) = Pr(∩j{|anj − ρj| ≤ εj(n, δ)}) and ε(n, δ) = O(g(n)). Then CB̄(n) = Op(1).

Proof of Lemma 3. We note that

CB̄(n) =

∣∣∣∣∣∣
∑

π∈ΠB̄(2ε(n,δ))

{1 (|D(anπ)| ≥ |D(an0 )|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣∣
≤

∑
π∈ΠB̄(2ε(n,δ))

|{1 (|D(anπ)| ≥ |D(an0 )|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}|

=
∑

π∈ΠB̄(2ε(n,δ))

1[sgn(|D(anπ)| − |D(an0 )|) 6= sgn(|D(ρπ)| − |D(ρ0)|)]︸ ︷︷ ︸
S(n,π)

(8)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise. On a conceptual level, CB̄(n) is

bounded above by the sum of sign differences S(n, π) in (8), where the sum is taken over

all π ∈ ΠB̄(2ε(n, δ)). Furthermore, ΠB̄(2ε(n, δ)) is defined so that with high probability

S(n, π) = 0 for each n ∈ ΠB̄(2ε(n, δ)). This causes CB̄(n) to be stochastically bounded

with a constant rate of convergence, which is formalized below.
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For fixed δ ∈ (0, 1) and n, consider a permutation π ∈ ΠB̄(2ε(n, δ)) and let

qπ =
∣∣|D(ρπ)| − |D(ρ0)|

∣∣ ≥ 2ε(n, δ) be the distance between the observed and permuted

test statistic computed with the true population values. Then for the term S(n, π) in (8)

we have

Pr{S(n, π) = 0}

= Pr{sgn(|D(anπ)| − |D(an0 )|) = sgn(|D(ρπ)| − |D(ρ0)|)}

≥ Pr
{∣∣|D(an0 )| − |D(ρ0)|

∣∣ ≤ qπ/2,
∣∣|D(anπ)| − |D(ρπ)|

∣∣ ≤ qπ/2
}

(9)

≈ Pr
{∣∣|D(an0 )| − |D(ρ0)|

∣∣ ≤ qπ/2
}

Pr
{∣∣|D(anπ)| − |D(ρπ)|

∣∣ ≤ qπ/2
}

(10)

≥ Pr{|D(an0 )−D(ρ0)| ≤ qπ/2}Pr{|D(ρπ)−D(anπ)| < qπ/2} (11)

≥ Pr{|D(an0 )−D(ρ0)| ≤ ε(n, δ)}Pr{|D(ρπ)−D(anπ)| < ε(n, δ)} (12)

≥ h(δ)2. (13)

Line (9) holds because the signs must be the same if
∣∣|D(an0 )| − |D(ρ0)|

∣∣ ≤ qπ/2 and∣∣|D(anπ)| − |D(ρπ)|
∣∣ ≤ qπ/2, which can be verified by diagramming the quantities on a real

number line. However, this is a subset of the conditions under which the signs must be the

same, which gives the inequality. Line (10) follows from assuming the errors in the

permuted test statistics are independent. Line (11) holds because: i) for x, y ∈ R,∣∣|x| − |y|∣∣ ≤ |x− y|, and ii) for random variable X, constant c, and function f(·), if

f(X) ≥ X then Pr(X ≤ c) ≥ Pr(f(X) ≤ c). Line (12) holds because: i) qπ ≥ 2ε(n, δ), and

ii) for random variable X and constants c1 ≥ c2, Pr(X ≤ c1) ≥ Pr(X ≤ c2).

This shows that for all π ∈ ΠB̄(2ε(n, δ)),

Pr{S(n, π) < 1} ≥ h(δ)2 ∀n. (14)

Here, δ does not appear on the left-hand side of (14), though it does affect the rate at

which the set ΠB̄(2ε(n, δ)) grows. It follows that for all π ∈ ΠB̄(2ε(n, δ)), S(n, π) = Op(1).

Because CB̄(n) ≤
∑

π∈ΠB̄(2ε(n,δ)) S(n, π) and the sum of Op(1) terms is also Op(1), it follows



Psychometrika Submission May 15, 2018 9

that CB̄(n) is bounded above by an Op(1) term. Consequently, we must also have that

CB̄(n) = Op(1), which proves the lemma.

We note that in Lemma 3, the rate of convergence is constant, i.e. CB̄(n) = Op(1).

However, the number of permuted test statistics included in the sum of CB̄(n) in (4) is

controlled by the size of the ΠB̄(ε(n, δ)), which we can grow at rate ε(n, δ) = O(g(n)). In

particular, for each n ∈ N, we can set ε(n, δ) = 2εmax(n, δ), where εmax(n, δ) is given in

Lemma 1.

We now state our main result in Theorem 1 followed by Corollaries 1 and 2, which

focus on the special case of Pearson’s and Spearman’s correlations.

Theorem 1. Let anj be the sample estimates of ρj, j = 1, . . . , N , and suppose that for

all j, |anj − ρj| = Op(g(n)) for some strictly decreasing function g such that g(n)→ 0 as

n→∞. Also suppose that the permutation distribution R̂N(t) has limiting distribution

R(t) such that the density of R(t), denoted as f(t), exists and supt f(t) <∞. Then for N

sufficiently large, |p̂(an)− p̂(ρ)| = Op(g(n)).

Proof of Theorem 1. From (3) and (4), we have

|p̂(an)− p̂(ρ)| ≤ |Π|−1 (CB(n) + CB̄(n)). By assumption, for all δ ∈ (0, 1) there exists an

nδ ∈ N such that Pr{|anj − ρj| ≤ εj(n, δ)} ≥ 1− δ for all n > nδ, where εj(n, δ) = O(g(n)),

j = 1, . . . , N . Then by Lemma 1, |D(an)−D(ρ)| = Op(g(n)). In particular, Lemma 1

gives that Pr{|D(an)−D(ρ)| ≤ 2εmax(n, δ)} ≥ h(δ) where

h(δ) = Pr(∩j{|anj − ρj| ≤ εj(n)}) and εmax(n, δ) = maxj εj(n, δ). By setting ε = 2εmax(n, δ)

in (3) and (4), we have CB(n) = Op(g(n)) by Lemma 2 and CB̄(n) = Op(1) by Lemma 3. It

follows that |p̂(an)− p̂(ρ)| = Op(g(n)) +Op(1) = Op(g(n)), which proves the theorem.

Corollary 1. Let an be Pearson’s or Spearman’s correlation coefficients estimated from

n independent and identically distributed (i.i.d.) observations. Let τ 2
j = Var(anj ) and
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assume τ 2
j <∞ for j = 1, . . . , N . Also suppose that the permutation distribution R̂N(t)

has limiting distribution R(t) such that the density of R(t), denoted as f(t), exists and

supt f(t) <∞. Then for N sufficiently large, |p̂(an)− p̂(ρ)| = Op(1/
√
n).

Proof of Corollary 1. Suppose that an are Pearson’s correlation coefficients. Then

under these assumptions and by the central limit theorem and delta method,
√
n(anj − ρj)

is asymptotically normal for j = 1, . . . , N (Lehmann and Romano, 2005, p. 438). Then for

n sufficiently large and finite ε > 0,

Pr
(
|anj − ρj| > ε

)
= Pr

(√
n|anj − ρj|

τj
>

√
nε

τj

)
≈ Pr

(
|Z| >

√
nε/τj

)
(Z ∼ N(0, 1))

= 2

[
1− Φ

(√
nε

τj

)]
,

where Φ is the standard normal CDF. Setting δ = 2 (1− Φ(
√
nε/τj)) and solving for

δ ∈ (0, 1), we get that with probability 1− δ,

|anj − ρj| ≤ τjΦ
−1 (1− δ/2) /

√
n. (15)

This shows that anj = Op(1/
√

(n)), j = 1, . . . , N . Then by Theorem 1, we have

|p̂(an)− p̂(ρ)| = Op(1/
√
n). Because Spearman’s correlation is Pearson’s correlation of the

ranks, the above argument carries over to Spearman’s correlation.

Corollary 2. Under the same conditions as Corollary 1, but with an and ρ replaced

with absolute values of Pearson’s or Spearman’s correlations, we also have that

|p̂(an)− p̂(ρ)| = Op(1/
√
n).

Proof of Corollary 2. Let anabs and ρabs be N × 1 vectors of the absolute values of the

estimated correlation coefficients and the true correlations, respectively. We have that with

probability at least 1− δ, |anabs,j − ρabs,j| =
∣∣|anj | − |ρj|∣∣ ≤ |anj − ρj| ≤ τjΦ

−1(1− δ/2)/
√
n,
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where the last inequality follows from (15) in the proof of Corollary 1. Hence,

|anabs,j − ρabs,j| = Op(1/
√
n), j = 1, . . . , N . Then by Theorem 1,

|p̂(anabs)− p̂(ρabs)| = Op(1/
√
n).

We believe that the regularity conditions in these proofs are sufficiently general to be

applicable to most data encountered in practice. However, in future work, we plan to

investigate alternative proofs that relax the constraint that R̂N(t) has a limiting

distribution R(t). We also plan to extend these results to the block-specific tests, and

provide corollaries for other common correlations.

The derivations in this appendix apply to the true permutation p-value p̂(an).

However, in practice p̂(an) is typically approximated with Monte Carlo methods, denoted

as p̃(an). With simple Monte Carlo, p̃(an) converges to p̂(an) at the rate O(1/
√
B) where

B is the number of Monte Carlo resamples. Therefore, by selecting B sufficiently large, the

error between p̃(an) and p̂(an) is small relative to the error between p̂(an) and p̂(ρ), and so

the results in this appendix would also apply to the Monte Carlo approximation. For

example, for Pearson’s or Spearman’s correlation, by setting B ≥ n, the Monte Carlo

approximation p̃(an) also converges to p̂(ρ) at rate Op(1/
√
n).

B. Additional simulations

In this appendix, we simulated data under four additional scenarios: 1) constant

off-diagonal values, 2) block diagonal structure on a subset of the matrix and white noise

on the rest of the matrix (partial block diagonal structure), 3) a true CFA data generating

process, and 4) a true CFA generating process with subsequently discretized outcomes. As

before, for each scenario we generated 1,000 datasets for each sample size. For simulations

under the permutation null hypothesis, we used sample sizes of n = 10, 100, and 1,000 with

B = 1, 000 resamples. For simulations under the permutation alternative hypothesis, we

used samples sizes of n = 10, 50, 100, and 1,000 with B = 10, 000 resamples to better
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approximate small p-values and statistical power. For all simulations, we used K = 4

blocks of sizes p1 = 5, p2 = 7, p3 = 9, p4 = 11, so that the total number of variables was

p =
∑

k pk = 32. In all figures, the block numbers begin in the upper left and end in the

lower right, i.e., block k = 1 is in the top left corner, and block k = 4 is in the bottom right

corner.

In the matrix structure testing framework, Appendix B.1 is under the null hypothesis

(H0 is true), and Appendices B.2, B.3, ad B.4 are under the alternative hypothesis (H1 is

true). In the GOF framework, the model is misspecified in Appendices B.1 and B.2 (H1 is

true), correctly specified in Appendix B.3, and correctly specified in Appendix B.4 apart

from the discretized outcomes. This allows Appendix B.4 to serve as a check on the

robustness of CFI, TLI, and RMSEA to continuous versus discrete outcomes.

B.1. Constant off-diagonal correlation

For the scenario of constant off-diagonal correlation, we set Σt,ij = 0.5 if i 6= j and 1 if

i = j. We used B = 1, 000 MC resamples for each test. The rest of the simulation is as

described in Section 5.1.

Figure S1 shows the estimated Spearman’s absolute correlation matrices A from a

single simulation at sample sizes of n = 10, 100, and 1,000.
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(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure S1: Constant off-diagonal: Estimated Spearman’s correlation coefficient (absolute

values) from a single simulation at sample sizes of n = 10, 100, and 1,000.

Figure S2 shows the distribution of p-values from a permutation test with Γnorm and

B = 1, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. Figure S3 shows the distribution of RMSEA values. As seen in Figures

S2 and S3, the distribution of p-values from Γnorm is uniform, which is as expected under

the null hypothesis. The p-values from the X2 statistic move from close to one to close to

zero as the sample size increases, though not as quickly as in the block diagonal scenario,

and the CFI values cluster close to 1 for all sample sizes. The RMSEA values tend to be

near zero for n = 10 and are exactly zero for n = 100 and n = 1, 000. In this scenario, the

CFA model is misspecified, so large CFI values and small RMSEA values, indicating good

model fit, represent a GOF false alarm.
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Figure S2: Overall test for constant off-diagonal scenario: permutation p-values with Γnorm

and B = 1, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. For each sample size we did 1,000 simulations. Results with TLI are

similar to those for CFI and are not shown.

Figure S3: Overall test for constant off-diagonal scenario: RMSEA. For each sample size we

did 1,000 simulations.

Table S1 shows the type I error rates for Γnorm and the permutation test for statistical
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significance levels of α = 0.01 and 0.05. As seen in Table S1, the error rates are near their

nominal level for all sample sizes.

Table S1: Type I error rates in constant off-diagonal scenario using Γnorm in a permutation

test for significance levels of α = 0.01 and 0.05. 1,000 simulations were run for each sample

size.

n Overall Block-specific FWER

α = 0.01

10 0.010 0.0010

100 0.016 0.013

1,000 0.008 0.010

α = 0.05

10 0.055 0.052

100 0.050 0.059

1,000 0.041 0.053

Table S2 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as the more liberal cutoff values

noted by Hooper et al. (2008) (0.9 and 0.8). As seen in Table S2, The GOF false alarm

rates are high for CFI and TLI in this simulation, and increase with sample size.
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Table S2: GOF false alarm rate for constant off-diagonal scenario: Percent of simulation

results above the cutoff value (CFI and TLI above the cutoff indicate good model fit)

Cutoff

Fit index n 0.95 0.9 0.8

CFI

10 0.89 0.92 0.98

100 1.0 1.0 1.0

1,000 1.0 1.0 1.0

TLI

10 0.88 0.92 0.97

100 1.0 1.0 1.0

1,000 1.0 1.0 1.0

Table S3 shows the percent of simulations with RMSEA below the cutoff values

recommended by Steiger (2007) (0.07), as well as the alternative cutoff values recommended

by Browne and Cudeck (1992) (0.05, 0.1). As can be seen in Table S3, the GOF false alarm

rate is high for all cutoffs, and is equal to one for samples sizes of n = 100 and n = 1, 000.

Table S3: GOF false alarm rate for constant off-diagonal scenario: Percent of simulation

results below the cutoff value (RMSEA below the cutoff indicates good model fit)

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA

10 0.38 0.39 0.41

100 1.0 1.0 1.0

1,000 1.0 1.0 1.0
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B.2. Partial block diagonal structure

For this scenario, we followed the simulation described in Section 5.1, but set r4 = 0,

i.e., the last hypothesized block is not a true block.

Figure S4 shows the estimated Spearman’s absolute correlation matrices A from a

single simulation at sample sizes of n = 10, 100, and 1,000.

(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure S4: Partial block diagonal: Estimated Spearman’s correlation coefficient (absolute

values) from a single simulation at sample sizes of n = 10, 100, and 1,000.

Figure S5 shows the distribution of p-values from a permutation test with Γnorm and

B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure S5, the distribution of p-values from Γnorm is

left-skewed, which is as expected under the alternative hypothesis. The p-values from the

X2 statistic move from close to one to close to zero as the sample size increases, and the

CFI values cluster around 0.75 to 0.9 for all sample sizes.
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Figure S5: Overall test in partial block diagonal scenario: permutation p-values using Γnorm

and B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI

values from a CFA model. For each sample size we did 1,000 simulations. Results with TLI

are similar to those for CFI and are not shown.

Table S4 shows the power (overall and blocks 1, 2, 3) and type I error rate (block 4)

using Γnorm in a permutation test for statistical significance levels of α = 0.01 and 0.05. As

seen in Table S4, the statistical power is high for blocks 1, 2, and 3, and the type I error

rate is low for block k = 4.
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Table S4: Partial block diagonal scenario: Power (overall and blocks 1, 2, 3) and type I error

rate (block 4) using Γnorm in a permutation test for significance levels of α = 0.01 and 0.05.

1,000 simulations were run for each sample size.

α = 0.01

Block

n Overall k = 1 k = 2 k = 3 k = 4

α = 0.01

10 0.86 0.30 0.33 0.73 0.0

50 1.0 0.91 0.95 1.0 0.0

100 1.0 0.98 0.99 1.0 0.0

1,000 1.0 1.0 1.0 1.0 0.0

α = 0.05

10 0.93 0.48 0.49 0.83 0.0061

50 1.0 0.97 0.98 1.0 0.0010

100 1.0 1.0 1.0 1.0 0.0

1,000 1.0 1.0 1.0 1.0 0.0010

Table S5 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as the more liberal cutoff values

noted by Hooper et al. (2008) (0.9 and 0.8). As seen in Table S5, The GOF false alarm rate

decreases as sample size increases. However, these results do not by themselves show that

three of the four block are correctly modeled, and only the fourth is incorrectly modeled.
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Table S5: GOF false alarm rate for the partial block diagonal scenario: Percent of simulation

results above the cutoff value (CFI and TLI above the cutoff indicate good model fit)

Cutoff

Fit index n 0.95 0.9 0.8

CFI

10 0.92 0.94 0.97

50 0.0024 0.14 0.82

100 0.0 0.086 0.89

1,000 0.0 0.020 0.93

TLI

10 0.92 0.93 0.96

50 0.0024 0.095 0.75

100 0.0 0.048 0.81

1,000 0.0 0.0049 0.34

Table S6 shows the percent of simulations with RMSEA below the cutoff values

recommended by Steiger (2007) (0.07), as well as the alternative cutoff values

recommended by Browne and Cudeck (1992) (0.05, 0.1). As can be seen in Table S6, the

GOF false alarm rate is zero for all cutoffs at n = 50, 100, and 1,000. However, as with

CFI and TLI, these results do not by themselves show that three of the four block are

correctly modeled, and only the fourth is incorrectly modeled.
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Table S6: GOF false alarm rate for partial block diagonal scenario: Percent of simulation

results below the cutoff value (RMSEA below the cutoff indicates good model fit)

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA

10 0.56 0.56 0.56

50 0.0 0.0 0.0

100 0.0 0.0 0.0

1,000 0.0 0.0 0.0

B.3. True CFA

For this scenario, we simulated data from a true CFA model using the simulateData

function in the lavaan package (Rosseel, 2012) for R (R Core Team, 2017). In particular,

we simulated data with four latent factors, B1, . . . , B4, with loadings given by

B1 =~ a + 2*b + 1.5*c + 0.5*d + e

B2 =~ f + g + 0.4*h + 0.75*i + 2*j + 0.5*k + l

B3 =~ m + 0.5*n + o + 1.25*p + q + 3*r + s + 0.4*t + u

B4 =~ 1.25*v + w + 0.8*x + y + z + 0.4*z2 + z3 + 0.6*z4 + z5 + z6 + z7

Figure S6 shows the estimated Spearman’s absolute correlation matrices A from a

single simulation for sample sizes of n = 10, 100, and 1,000.
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(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure S6: True CFA model: Estimated Spearman’s correlation coefficient (absolute values)

from a single simulation at sample sizes of n = 10, 100, and 1,000.

Figure S7 shows the distribution of p-values from a permutation test with Γnorm and

B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure S7, the distribution of p-values from Γnorm is

left-skewed, which is as expected under the alternative hypothesis. The p-values from the

X2 statistic move from close to one to close to zero as the sample size increases, and the

CFI values cluster around 0.75 to 1 for all sample sizes. The CFA model did not converge

for n = 10.
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Figure S7: Overall test in true CFA scenario: permutation p-values using Γnorm and B =

10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values from a

CFA model. For each sample size we did 1,000 simulations. Results with TLI are similar to

those for CFI and are not shown. The CFA model did not converge for n = 10.

Table S7 shows the power using Γnorm in a permutation test for statistical significance

levels of α = 0.01 and 0.05. As seen in Table S7, the statistical power is 1 for both the

overall and block-specific tests for sample sizes of n = 50 and larger.
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Table S7: True CFA scenario: Power using Γnorm in a permutation test for significance levels

of α = 0.01 and 0.05. 1,000 simulations were run for each sample size.

α = 0.01

Block

n Overall k = 1 k = 2 k = 3 k = 4

α = 0.01

10 0.97 0.48 0.32 0.54 0.55

50 1.0 1.0 1.0 1.0 1.0

100 1.0 1.0 1.0 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0

α = 0.05

10 0.99 0.66 0.49 0.69 0.69

50 1.0 1.0 1.0 1.0 1.0

100 1.0 1.0 1.0 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0

Table S8 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as the more liberal cutoff values

noted by Hooper et al. (2008) (0.9 and 0.8). As seen in Table S8, The type I power

increases as sample size increases.
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Table S8: Type I power for true CFA scenario with CFI and TLI: Percent of simulation

results above the cutoff value (CFI and TLI above the cutoff indicate good model fit). CFA

models did not converge for n = 10.

Cutoff

Fit index n 0.95 0.9 0.8

CFI

10 – – –

50 0.001 0.004 0.25

100 0.44 0.97 1.0

1,000 1.0 1.0 1.0

TLI

10 – – –

50 0.001 0.003 0.15

100 0.38 0.95 1.0

1,000 1.0 1.0 1.0

Table S9 shows the percent of simulations with RMSEA below the cutoff values

recommended by Steiger (2007) (0.07), as well as the alternative cutoff values

recommended by Browne and Cudeck (1992) (0.05, 0.1). As can be seen in Table S9, the

type I power increases with sample size, and is 1 for all cutoffs at n = 1, 000.
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Table S9: Type I power for the true CFA scenario: Percent of simulation results below the

cutoff value (RMSEA below the cutoff indicates good model fit)

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA

10 – – –

50 0.003 0.023 0.78

100 0.86 1.0 1.0

1,000 1.0 1.0 1.0

B.4. True CFA with discretized outcome

For this scenario, we simulated data as in Appendix B.3 and then discretized the

outcome as described in Section 5.1.

Figure S8 shows the estimated Spearman’s absolute correlation matrices A from a

single simulation for sample sizes of n = 10, 100, and 1,000.
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(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure S8: True CFA model with discretized outcome: Estimated Spearman’s correlation

coefficient (absolute values) from a single simulation at sample sizes of n = 10, 100, and

1,000.

Figure S9 shows the distribution of p-values from a permutation test with Γnorm and

B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure S9, the distribution of p-values from Γnorm is

concentrated near 0, which is as expected under the alternative hypothesis. The p-values

from the X2 statistic move from being close to uniform to being close to zero as the sample

size increases, and the CFI values cluster around 0.75 for n = 50 and near 1 for n = 1, 000.

The CFA model did not converge for n = 10.



Psychometrika Submission May 15, 2018 28

Figure S9: Overall test in true CFA scenario: permutation p-values using Γnorm and B =

10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values from a

CFA model. For each sample size we did 1,000 simulations. Results with TLI are similar to

those for CFI and are not shown. The CFA model did not converge for n = 10.

Table S10 shows the power using Γnorm in a permutation test for statistical significance

levels of α = 0.01 and 0.05. As seen in Table S10, the statistical power is 1 for both the

overall and block-specific tests for sample sizes of n = 50 and larger.
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Table S10: True CFA scenario with discretized outcome: Power using Γnorm in a permutation

test for significance levels of α = 0.01 and 0.05. 1,000 simulations were run for each sample

size.

α = 0.01

Block

n Overall k = 1 k = 2 k = 3 k = 4

α = 0.01

10 0.97 0.48 0.34 0.56 0.52

50 1.0 1.0 1.0 1.0 1.0

100 1.0 1.0 1.0 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0

α = 0.05

10 0.99 0.66 0.52 0.71 0.65

50 1.0 1.0 1.0 1.0 1.0

100 1.0 1.0 1.0 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0

Table S11 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as the more liberal cutoff values

noted by Hooper et al. (2008) (0.9 and 0.8). As seen in Table S11, The type I power

increases as sample size increases.
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Table S11: Type I power for the true CFA scenario with discretized outcomes (CFI and

TLI): Percent of simulation results above the cutoff value (CFI and TLI above the cutoff

indicate good model fit). CFA models did not converge for n = 10.

Cutoff

Fit index n 0.95 0.9 0.8

CFI

10 – – –

50 0.001 0.001 0.119

100 0.32 0.92 1.0

1,000 1.0 1.0 1.0

TLI

10 – – –

50 0.0 0.001 0.06

100 0.28 0.87 1.0

1,000 1.0 1.0 1.0

Table S12 shows the percent of simulations with RMSEA below the cutoff values

recommended by Steiger (2007) (0.07), as well as the alternative cutoff values

recommended by Browne and Cudeck (1992) (0.05, 0.1). As can be seen in Table S12, the

type I power increases with sample size, and is 1 for all cutoffs at n = 1, 000.
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Table S12: Type I power for true CFA scenario with discretized outcomes: Percent of

simulation results below the cutoff value (RMSEA below the cutoff indicates good model fit)

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA

10 – – –

50 0.002 0.023 0.77

100 0.87 1.0 1.0

1,000 1.0 1.0 1.0

C. Big five questionnaire items

As described by Smith et al. (2013) selected respondents to the 2010 Health and

Retirement Survey were asked to rate how well 31 items described them on the following

four point scale: 1) A lot, 2) Some, 3) A little, 4) Not at all.

The items were as follows (letters match those shown in Figure 1): a) Outgoing, b)

Helpful, c) Reckless, d) Moody, e) Organized, f) Friendly, g) Warm, h) Worrying, i)

Responsible, j) Lively, k) Caring, l) Nervous, m) Creative, n) Hardworking, o) Imaginative,

p) Softhearted, q) Calm, r) Self-disciplined, s) Intelligent, t) Curious, u) Active, v)

Careless, w) Broad-minded, x) Impulsive, y) Sympathetic, z) Cautious, z2) Talkative, z3)

Sophisticated, z4) Adventurous, z5) Thorough, and z6) Thrifty.

The items were grouped into five sub-dimensions:

1. Neuroticism: d, h, l, q

2. Extroversion: a, f, j, u, z2

3. Agreeableness: b, g, k, p, y

4. Openness to experience: m, o, s, t, w, z3, z4

5. Conscientiousness: c, e, i, n, r, v, x, z, z5, z6
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and all but c, q, v, and x were reverse coded.
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