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SUPPLEMENTARY TO “ON THE IDENTIFIABILITY OF

DIAGNOSTIC CLASSIFICATION MODELS”

In this supplementary, we provide the technical proofs for six theorems which are

stated in the main paper. We also give the computation scheme for the proposed

non-parametric Bayes method.

Technical Proofs

Lemma 1. (Kruskal (1977)) Suppose A,B,C, Ā, B̄, C̄ are six matrices with L

columns. There exist integers I0, J0, and K0 such that I0 + J0 + K0 ≥ 2L + 2. In

addition, every I0 columns of A are linearly independent, every J0 columns of B are

linearly independent, and every K0 columns of C are linearly independent. Define a

triple product to be a three-way array [A,B,C] = (dijk) where dijk =
∑L

r=1 airbirckr.

Suppose that the following two triple products are equal [A,B,C] = [Ā, B̄, C̄]. Then,

there exists a column permutation matrix P , we have Ā = APΛ, B̄ = BPM, C̄ =

CPN , where Λ,M,N are diagonal matrices such that ΛMN = identity. Column

permutation matrix is a matrix acts on the righthand side of another matrix and

permutes the columns of that matrix.
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In the following notation, we use n to denote the number of respondents instead

of R to make proof easier to read.

Proof of Theorem 1. For each item i, let πiα = P (X i = 1|α). that takes two

possible values. Let pi− or pi+ be these two values. According to Lemma 1, it is

sufficient to show that the T -matrices corresponding to the three subsets of items

TI1 , TI2 , and TI3 are all of full column rank.

Suppose that there are nl items in Il(l = 1, 2, 3). For each item l ∈ Il, define

Pi =

 pi− pi+

1− pi− 1− pi+

 .

We further define

Pl =
⊗
i∈Il

Pi

which is a 2nl by 2nl matrix. Because pi− 6= pi+, each Pi is a full-rank matrix and is

of rank 2. Thus, Pl is rank 2ni matrix and is a full-rank matrix. Each column of TIl

is precisely one of the column vector in Pl. In addition, there is no identical columns

in TIl , thus its columns vectors are linearly independent. Thus, TIl is of full column

rank.

We construct three groups of items Ĩ1 = I1, Ĩ2 = I2 and Ĩ3 = {1, . . . , I}\(I1

⋃
I2).

These three groups are non-overlapping and I3 ⊂ Ĩ3. Notice that TĨ1 = TI1 , TĨ2 = TI2

and TI3 is a submatrix of TĨ3 . Therefore, TĨ1 , TĨ2 and TĨ3 are all full column rank.

We define

W = [TĨ1Λ, TĨ2 , TĨ3 ],

where Λ is a C by C diagonal matrix with vα being its α-th element. It is not hard
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to see that every entry of array W corresponds to a probability P (X1 = x1, . . . , XI =

xI).

Suppose that there is another decomposition of W say W = [T
′

Ĩ1
Λ
′
, T
′

Ĩ2
, T
′

Ĩ3
].

Notice that each TĨi has rank C and C +C +C ≥ 2C + 2 provided C ≥ 2. Then we

apply Lemma 1 and obtain that TĨ1Λ = T
′

Ĩ1
Λ
′
PF , TĨ2 = T

′

Ĩ2
PG, and TĨ3 = T

′

Ĩ3
PH.

Here, F,G, and H are all diagonal matrix with FGH = I and I is an identity and

P is a column permutation matrix. Each column of TĨi and T
′

Ĩi
corresponds to a

probability distribution and thus sums up to one. It means F,G and H must be

identity matrix. Hence, we conclude that TĨ1Λ = T
′

Ĩ1
Λ
′
P which implies Λ = P

′
Λ
′
P .

Then, we have TĨ1 = T
′

Ĩ1
P , TĨ2 = T

′

Ĩ2
P and TĨ3 = T

′

Ĩ3
P . This is equivalent that

the item parameters πjα and the latent class population vα are identifiable up to a

permutation of the class label.

Proof of Corollary 1. Without loss of generality, we assume that the first, sec-

ond, and third A rows of Q each form an identity matrix. The attributes are bi-

nary and each of the first 3A items only depends on one attribute. Thus, their

item response function πiα can only take two possible values. Furthermore, we di-

vide these 3A items into 3 groups I1 = {1, . . . , A}, I2 = {A + 1, · · · , 2A}, and

I3 = {2A + 1, · · · , 3A}. It is straightforward to check that these three subsets of

items satisfy condition A1 in Theorem 1. The corollary is an application of Theorem

1.
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Proof of Theorem 2. Under condition B1, we define

Pi =


p1
i− p1

i+

p2
i− p2

i+

...
...

pkii− pkii+

 ,

whose column vectors are the two positive Piα. For each Il, we define

Pl =
⊗
i∈Il

Pi

which is a
∏
i∈Il

ki by 2nl matrix. nl is the number of items in Il. Each Pi is a full

column rank matrix of rank 2. Thus, Pl is rank of 2nl matrix and is a full column

rank matrix.

Each column vector of TIl is a column vector of Pl. We can show that for two

classes α1 6= α2, α1-th and α2-th columns of TIl are not identical. We prove this

by contradiction. Suppose that they are the same. It is easy to see that the αl-th

column in TIl has the form

⊗
i∈Il


π1
iαj

π2
iαj
...

πkiiαj

 ,
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j = 1, 2. So

⊗
i∈Il


π1
iα1

π2
iα1

...

πkiiα1

 =
⊗
i∈Il


π1
iα2

π2
iα2

...

πkiiα2

 . (A1)

However, we can find item i∗ ∈ Il such that

π1
i∗α1

+ ...+ πki∗α1
6= π1

iα2
+ ...+ πki∗α2

for some k = 1, ..., ki
∗ − 1 which means

π1
i∗α1

π2
i∗α1

...

πki∗i∗α1

 6=


π1
i∗α2

π2
i∗α2

...

πki∗i∗α2

 .

It contradicts with equation (A1) due to the fact that two different marginal distri-

butions of item i∗ leads to the two different joint distributions. Hence, each column

of TIl is precisely one column of Pl. TIl is of full column rank with rank M as a

result. Then C +C +C ≥ 2C + 2 whenever C ≥ 2. We apply Lemma 1 and use the

same argument as in the proof of Theorem 1.

Proof of Theorem 3. There exist three non-overlapp subsets of items I1, I2,

and I3 such that I1

⋃
I2

⋃
I3 = {1, . . . , I}. We write the three-way array W =

[TI1Λ, TI2 , TI3 ], where TI1 , TI2 , and TI3 are the T -matrices of subsets I1, I2, and I3 re-

spectively and Λ is a
∏I

i=1 ki by
∏I

i=1 ki diagonal matrix with α-th diagonal element
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being vα. Thus W is a
∏

i∈I1 ki by
∏

i∈I2 ki by
∏

i∈I3 ki array. It is not hard to see

that W (x1,x2,x3) =
∑
α

t1x1α
t2x2α

t3x3α
, where tlxlα is the (xl,α)-th element of matrix

TIl . In other words, W (x1,x2,x3) = P (X = (x1,x2,x3)).

Suppose that there exists another set of parameters of the model giving the same

distribution; that is, another decomposition of W = [T
′
I1

Λ
′
, T
′
I2
, T
′
I3

]. Because TIl are

all full column rank. By applying the Lemma 1, we have that TI1Λ = T
′
I1

Λ
′
PF ,

TI2 = T
′
I2
PG, and TI3 = T

′
I3
PH. Here, F,G, and H are all diagonal matrix with

FGH = I and I is an identity and P is a column permutation matrix.

The sum of each column of TI2 , TI3 , T
′
I2
, and T

′
I3

equals 1. Then, G and H must

be both identity matrices. As a result, F is an identity too. Due to the same reason

that the sum of each column of TI1 and T
′
I1

is 1, we have Λ = P
′
Λ
′
P and TI1 = T

′
I1
P .

Besides, TI2 = T
′
I2
P and TI3 = T

′
I3
P . We conclude that all parameters are identifiable

up to a permutation of the columns.

Proof of Theorem 4. According to Theorem 3, it is sufficient to find three non-

overlap subsets of items I1, I2, and I3 such that I1

⋃
I2

⋃
I3 = {1, . . . , I} and their

corresponding T -matrices TI1 , TI2 , TI3 are all full column rank.

We construct the three subsets as follows: I1 =
⋃A
a=1 I1,a, I2 =

⋃A
a=1 I2,a, I3 =

{1, . . . , I}\(I1

⋃
I2). Then we need to show that I1, I2, I3 are non-overlap and their

T -matrix TI1 , TI2 , TI3 are of full column rank.

We know that Il,a
⋂
Ij,b = ∅ for all l 6= j, a 6= b, a, b ∈ {1, . . . , A} and therefore

(
⋃A
a=1 Il,a)

⋂
(
⋃A
b=1 Ij,b) = ∅. This also implies that

⋃A
a=1 I3,a ⊂ I3 and I1

⋂
I2 = ∅ =

I3

⋂
I1 = I3

⋂
I2 = ∅. Hence, I1, I2 and I3 are non-overlap.
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Next, we need to prove TIl , l = 1, 2, 3 are of full column rank. Notice that⋃A
a=1 Il,a ⊂ Il. Thus the rank of T⋃A

a=1 Il,a
is less than or equals the rank of TI3 . Thus

if we can prove T⋃A
a=1 Il,a

is of full column rank then TI3 is also of full column rank.

As a result, we only need to show T⋃A
a=1 Il,a

are of full column rank.

Recall that the class label α = (α1, . . . , αA) and αa ∈ {1, . . . , da}. It is s-

traightforward to see that T⋃A
a=1 Il,a

=
⊗A

a=1 Tl,a since each column of
⊗A

a=1 Tl,a is

indexed by (α1, . . . , αA) and each row in
⊗A

a=1 Tl,a is indexed by all the possible

values (x1, . . . , xI). By the property of tensor product, the rank of
⊗A

a=1 Tl,a equals

the product of the rank of Tl,a. That is rank(
⊗A

a=1 Tl,a) =
∏A

a=1 da. The number of

columns in
⊗A

a=1 Tl,a is also
∏A

a=1 da. Thus T⋃A
a=1 Il,a

is of full column rank.

Proof of Theorem 5. It is sufficient to construct a consistent estimator of the

partial information. Notice that the estimator does not have to be practically imple-

mentable. The strategy is to first consider the maximum likelihood estimator and

merge the estimated item response probabilities based on their asymptotic proper-

ties.

Recall that πxiα = P (X i = x|α) is the response probability to item i for latent

class α. Let

L(x;π, v) =
∑
α∈A

vα

{ I∏
i=1

πx
i

iα

}
. (A2)

be the likelihood of a single observation, where

π = (πx
i

iα : 1 ≤ i ≤ I,α ∈M, xi ∈ {1, ..., ki})
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and v = (vα : α ∈M). Then, the maximum likelihood estimator is defined as

(π̂, v̂) = arg max
π,v

R∏
r=1

L(xr;π, v).

According to the identifiability results in theorems and the asymptotic property of

the M -estimator (Chapter 5.1 of Van der Vaart (1998)), (π̂, v̂) converges weakly to

the true parameter. Furthermore, according to chapter 5.3 Van der Vaart (1998),

the MLE is asymptotically normally distributed. Thus, for each i, α, and x, we have

π̂xiα − πxiα = Op(R
−1/2). (A3)

In the following, we use n to denote R for convenience. We say a random sequence

an = Op(n
−1/2) if

√
nan is tight. Notice that the identifiability is subject to a

permutation of the latent class labels. To simplify notation, we assume that the

class labels of π̂xiα have been arranged in an appropriate order. Otherwise, we need

to write π̂xiα − πxiα = Op(n
−1/2). Thus, we proceed assuming that the permutation λ

is identity.

We now construct an estimator of the partial information for each item. The

basic idea is that if [α1]i = [α2]i, then πxiα1
= πxiα2

for all x. Together with (A3), we

have that

di(α1,α2) =

ki∑
x=1

(π̂xiλ(α1) − π̂xiλ(α2))
2 = Op(n

−1). (A4)

Based on this fact, we define an equivalent class such that

α1
i
= α2 if di(α1,α2) ≤ n−1/2. (A5)
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Based on (A4), we have that

P (α1
i
= α2)→ 1

as n→∞. If [α1]i 6= [α2]i, then there exists an ε and x such that (π̂xiλ(α1)−π̂xiλ(α2))
2 >

ε and thus

P (α1

i

6= α2)→ 1

as n→∞. Let “〈 〉i” be the canonical map of the estimated equivalence class as in

(A5). Based on the above argument, we have that for each j,

P (〈α〉i = [α]i)→ 1

as the sample size n→∞. Hence, the estimation of equivalence classes is the same

as the true one up to a permutation.

Proof of Theorem 6. It suffices to show that for any ε0 > 0 there exists N such

that for any n > N ,

P (θ ∈ Θc \ Nε(θ∗)|X) < ε0 P ∗ − a.s..

Let δ = infθ∈Θc\Nε(θ∗) ‖Pθ − P ∗‖1, where Pθ and P ∗ are response distribution under

parameters θ and θ∗ respectively. According to the definition of Θc and identifiability

results, we know that Pθ 6= Pθ∗ for any θ ∈ Θc \ Nε(θ∗). Since Θc is a compact set

and Nε(θ∗) is an open set, then Θc \Nε(θ∗) is also an compact set. With these facts,

we know that δ > 0.
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Therefore, we have

P (θ ∈ Θc \ Nε(θ∗)|X) ≤ P (‖P − P0‖1 > δ/2|X) < ε0 P ∗ − a.s. (A6)

for sufficiently large n. The last inequality of equation (A6) follows by Theorem 2 in

Dunson and Xing (2009). Hence, we conclude the proof.
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Sliced Gibbs Sampler

We now present the sliced sampler for the simulation from the posterior distri-

bution of model. The likelihood function is

R∏
r=1

{ ∞∑
α=1

vα

I∏
i=1

ki∏
x=1

(πxiα)I(x
i
r=x)

}
.

For each observation, we augment an independent index ui following the uniform

distribution in [0, 1]. Thus, the complete data likelihood is

L(π, v;x1, ...,xn,α1, ...,αR,u) =
R∏
r=1

{
I(ur < vαr)

I∏
i=1

ki∏
x=1

(πxiα)I(x
i
r=x)

}
.

With this augmentation scheme, a Gibbs sampler iterates according the following

conditional distributions.

1. Update ur, for r = 1, ..., R, by sampling from the conditional posterior,

U(0, vαr).

2. For α = 1, ..., C∗, where C∗ = max{α1, ...,αR}, update πiα from the full

conditional posterior distribution

Dirichlet
(

1 +
∑

r:αr=α

I(xir = 1), ..., 1 +
∑

r:αr=α

I(xir = ki)
)

3. For α = 1, ..., C∗, update Vα from the conditional distribution that is Beta(1, β)

truncated to the interval[
max
r:αr=α

{ ur∏
l<α(1− Vl)

}
, 1− max

r:αr>α

{ ur
Vα
∏

l<α,l 6=α(1− Vl)

}]
.
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4. Update each αr from the multinomial conditional distribution

P (αr = α|...) =
I(α ∈ Ar)

∏I
i=1 π

xir
iα∑

l∈Ar
∏I

i=1 π
xir
iα

where Ar = {α : vα > ur}.

5. Assuming a gamma(1, 1) hyperprior for β, update β by its conditional posterior

gamma(1 + C∗, 1−
C∗∑
α=1

log(1− Vα)).

At last, we point out that the computation complexity of the full Bayesian algorithm

is O(JRC∗) for each iteration and class labels practically will not switch after Markov

chain becomes stable. In the simulation study, we order class labels based on their

response possibility (πiα, i = 1, . . . , I) from low to high and then compare the results

with the underlying true parameters.
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