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A. Transformation of models with amount transformation functions 

In most cases, utility functions of the form 𝑈𝑈 = 𝑓𝑓(𝐴𝐴) ∙ 𝑔𝑔(𝑋𝑋) can be simplified to a discounting 
form. This is particularly desirable given that two simultaneous variable transformations are 
unidentifiable in most choice datasets. In the case of prospect theory U = f(A) · g(p), if one’s f(A) is 
generally high, one can lower the g(p) to compensate to achieve the same utility. Fox and Poldrack (2009) 
noted this difficulty and suggested that researchers take caution. Bruhin et al. (2009) have noted in their 
paper that “fitting a (prospect theory) model for each individual is … frequently impossible and often not 
desirable in the first place.” 

A relationship between two options’ utilities 𝑓𝑓(𝐴𝐴1) ∙ 𝑔𝑔(𝑋𝑋1) ⋛ 𝑓𝑓(𝐴𝐴2) ∙ 𝑔𝑔(𝑋𝑋2) can be analytically 
converted to a discounting form if the inverse function of the amount transformation 𝑓𝑓 has a 
monotonically increasing and distributive property : 𝐴𝐴1 ∙ 𝑓𝑓−1�𝑔𝑔(𝑋𝑋1)� ⋛ 𝐴𝐴2 ∙ 𝑓𝑓−1�𝑔𝑔(𝑋𝑋2)�. Given that 
𝑓𝑓(𝐴𝐴) is a amount function, it is expected to be monotonically increasing. On the other hand, not all 
proposed amount function’s inverses have a distributive property. However, the most commonly used 
amount function 𝑓𝑓(𝐴𝐴) = 𝐴𝐴𝛼𝛼 does have a distributive property such that (𝐴𝐴𝐴𝐴)1/𝛼𝛼 = 𝐴𝐴1/𝛼𝛼𝐵𝐵1/𝛼𝛼. For 
example, consider a simple gamble and its certainty equivalent: CEα = Aα · wp. We can de-exponentiate 
both sides to achieve CE = A · wp1/α. Since wp is being raised to an exponent, it does not alter its values at 
0 and 1 which still remain 0 and 1 after exponentiation. Hence this can be estimated generally using the 
form U = A · f(p) with CBS. 

 

B. Monotonic B-splines and relationship to CBS 

Basis-splines (more commonly referred to as B-splines), which CBS is a special case of, 
have been used in scenarios with monotonicity constraints (Brezger & Steiner, 2008; 
Leitenstorfer & Tutz, 2007); but the monotonicity constraint of B-splines has only been worked 
out for evenly spaced knots, which does not allow the data to determine the appropriate position 
of the knots. In this paper, we provide a method for allowing the data to control the position of 
the knots, thereby providing a more flexible approach with a fewer number of parameters 
(knots). This is done by connecting multiple small B-splines, each of which only has four knots, 
and can analytically be constrained for monotonicity even with free positioning of the knots. 
Here we use Bernstein basis function for the splines which makes them Bezier splines. 

 

C. Compulsory and Slope Conditions of CBS 

Because chains of CBS are locally adjustable, the derivation of constraints only need to be 
worked out with regards to one CBS. A single piece of CBS is described by the following two parametric 
curves: 

𝑥𝑥(𝑡𝑡) = (1 − 𝑡𝑡)3𝑥𝑥1 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑥𝑥2 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑥𝑥3 + 𝑡𝑡3𝑥𝑥4, 0 ≤ 𝑡𝑡 ≤ 1 (1) 

𝑦𝑦(𝑡𝑡) = (1 − 𝑡𝑡)3𝑦𝑦1 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑦𝑦2 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑦𝑦3 + 𝑡𝑡3𝑦𝑦4, 0 ≤ 𝑡𝑡 ≤ 1 (2) 

In order to use CBS to approximate a function of the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), we can assume 𝑥𝑥1 < 𝑥𝑥4 in order to 
have a spline of non-zero length. Also, we must ensure that 𝑥𝑥(𝑡𝑡) is a monotonically increasing function of 
𝑡𝑡 in [0  1]. Otherwise, multiple values of 𝑦𝑦 may exist for one 𝑥𝑥. 



2 
 

One may also want to impose additional constraints on CBS. In terms of the first derivative, one 
can make it monotonically increasing or monotonically decreasing. Given that 𝑥𝑥(𝑡𝑡) is a monotonically 
increasing function of 𝑡𝑡, it is only necessary to control for 𝑦𝑦(𝑡𝑡) for this slope constraint. One may also 
want to constrain CBS with the sign of the second derivative to be concave or convex. 

The derivative of 𝑥𝑥(𝑡𝑡) with regards to 𝑡𝑡 is as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 3{(−𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 + 𝑥𝑥4)𝑡𝑡2 + 2(𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3)𝑡𝑡 − 𝑥𝑥1 + 𝑥𝑥2} (3) 

To ensure that 𝑑𝑑𝑥𝑥/𝑑𝑑𝑑𝑑 is positive in [0  1]: 1) 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is positive at 𝑡𝑡 = 0 and 𝑡𝑡 = 1, and 2) 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 has 
no real roots in [0  1]. The first condition gives the following two inequalities: 

𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4 (4) 

 For the second condition, we employ a monotonic transformation of 𝑧𝑧 = 𝑡𝑡/(1 − 𝑡𝑡), in which case 
0 < 𝑡𝑡 < 1 translates to 0 < 𝑧𝑧. Then we only need to ensure that 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 does not have any positive 
real roots. After conversion and arrangement, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 becomes the following: 

(𝑥𝑥3 − 𝑥𝑥4)𝑧𝑧2 + 2(𝑥𝑥2 − 𝑥𝑥3)𝑧𝑧 + 𝑥𝑥1 − 𝑥𝑥2 = 0 (5) 

Since 𝑥𝑥3 ≠ 𝑥𝑥4, equation (5) is quadratic and the roots are the following: 

𝑧𝑧 =
(𝑥𝑥3 − 𝑥𝑥2) ± �(𝑥𝑥3 − 𝑥𝑥2)2 − (𝑥𝑥2 − 𝑥𝑥1)(𝑥𝑥4 − 𝑥𝑥3)

𝑥𝑥3 − 𝑥𝑥4
(6) 

It must be that either the determinant is negative or that it is non-negative but the roots are negative. In 
order for the determinant to be negative, the following must be true: 

−�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 < �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) (7) 

If the determinant is non-negative, the converse is true: 

𝑥𝑥3 − 𝑥𝑥2 ≤ −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1)         𝑜𝑜𝑜𝑜       �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) ≤ 𝑥𝑥3 − 𝑥𝑥2 (8) 

If the left part of inequality (8) is true, it means that 𝑥𝑥3 − 𝑥𝑥2 is negative, which leads to at least one root of 
𝑧𝑧 (equation 6) being positive (since the denominator is negative). Hence, only the right part of inequality 
(8) can be true. 

 Combining all our results so far, we have the following compulsory conditions: 

𝑥𝑥1 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4, −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 (9) 

While these conditions guarantee that 𝑥𝑥(𝑡𝑡) is a monotonic function of 𝑡𝑡, we found that it is not ideal in 
that the final constraint is a non-linear inequality that entangles the 4 coordinates simultaneously, thereby 
reducing their independence. For this reason, we provide a more restrictive constraint of monotonicity 
that also allows the parameters to be more independent from each other: 

𝑥𝑥1 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥3, 𝑥𝑥2 < 𝑥𝑥4 (10) 

These constraints make it so that as long as 𝑥𝑥2 and 𝑥𝑥3 stay within [𝑥𝑥1, 𝑥𝑥4], monotonicity is conserved. We 
can show that this satisfies the conditions on (9) by the following proof. 

 If 𝑥𝑥2 < 𝑥𝑥3, then 0 < 𝑥𝑥3 − 𝑥𝑥2, which obviously satisfies −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2. If 
otherwise (𝑥𝑥2 ≥ 𝑥𝑥3), then it means that 𝑥𝑥1 < 𝑥𝑥3 ≤ 𝑥𝑥2 < 𝑥𝑥4 under conditions in (10). Then, we can see 
that (𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) = {(𝑥𝑥4 − 𝑥𝑥2) + (𝑥𝑥2 − 𝑥𝑥3)}{(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥3 − 𝑥𝑥1)} = (𝑥𝑥2 − 𝑥𝑥3)2 +
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(𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥3 − 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥3 − 𝑥𝑥1) and that this is strictly greater 
(𝑥𝑥3 − 𝑥𝑥2)2 since all terms are positive. Therefore, −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 is satisfied. 

 Finally, we can see that the very first inequality in (10) is now obsolete because the other 
inequalities (e.g., 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥2 < 𝑥𝑥4) already imply it. The constraint for slope is very similar to the 
compulsory condition as one only needs to swap 𝑥𝑥 and 𝑦𝑦. 

 

D. Curvature Conditions of CBS 

 Constraint for curvature must be done using the second derivative 𝑑𝑑2𝑦𝑦/𝑑𝑑𝑥𝑥2: 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

=

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 −

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
3 (11) 

Since our interest lies in constraining the sign of the 2nd derivative, the denominator is unnecessary for 
our purpose as it is always positive. The numerator becomes the following quadratic function of 𝑡𝑡: 

𝑝𝑝𝑡𝑡2 + 𝑞𝑞𝑡𝑡 + 𝑟𝑟 (12) 

𝑝𝑝 =  (𝑦𝑦1 − 2𝑦𝑦2 + 𝑦𝑦3)(𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 − 𝑥𝑥4) − (𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3)(𝑦𝑦1 − 3𝑦𝑦2 + 3𝑦𝑦3 − 𝑦𝑦4) 

𝑞𝑞 =  (𝑥𝑥1 − 𝑥𝑥2)(𝑦𝑦1 − 3𝑦𝑦2 + 3𝑦𝑦3 − 𝑦𝑦4) − (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 − 𝑥𝑥4) 

𝑟𝑟 =  (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3) − (𝑥𝑥1 − 𝑥𝑥2)(𝑦𝑦1 − 2𝑦𝑦2 + 𝑦𝑦3) 

Let 𝑉𝑉0 and 𝑉𝑉1 denote the evaluation of equation 11 at 𝑡𝑡 = 0 and 𝑡𝑡 = 1: 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

�
𝑡𝑡=0

∝ 𝑟𝑟 = 𝑉𝑉0 = −𝑥𝑥2𝑦𝑦1 + 𝑥𝑥3𝑦𝑦1 +  𝑥𝑥1𝑦𝑦2 − 𝑥𝑥3𝑦𝑦2 − 𝑥𝑥1𝑦𝑦3 + 𝑥𝑥2𝑦𝑦3 (13) 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

�
𝑡𝑡=1

∝ 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 = 𝑉𝑉1 = −𝑥𝑥3𝑦𝑦2 +  𝑥𝑥4𝑦𝑦2 +  𝑥𝑥2𝑦𝑦3 − 𝑥𝑥4𝑦𝑦3 − 𝑥𝑥2𝑦𝑦4 +  𝑥𝑥3𝑦𝑦4 (14) 

The interpretation of 𝑉𝑉0 and 𝑉𝑉1 becomes clear when one considers their various forms: 

𝑉𝑉0 = −𝑥𝑥2𝑦𝑦1 +  𝑥𝑥3𝑦𝑦1 + 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥3𝑦𝑦2 − 𝑥𝑥1𝑦𝑦3 +  𝑥𝑥2𝑦𝑦3 (15) 

=  (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦3 − 𝑦𝑦1) − (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦1) 

=  (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦3 − 𝑦𝑦1) − (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3) 

=  (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) − (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3) 

𝑉𝑉1 =  −𝑥𝑥3𝑦𝑦2 +  𝑥𝑥4𝑦𝑦2 + 𝑥𝑥2𝑦𝑦3 − 𝑥𝑥4𝑦𝑦3 − 𝑥𝑥2𝑦𝑦4 + 𝑥𝑥3𝑦𝑦4 (16) 

=  (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) 

=  (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) 

=  (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦3) 

As can be seen from above, a constraint of 𝑉𝑉0 > 0 or 𝑉𝑉1 < 0 is essentially constraining the relationship 
between the slopes between the three points (points 1,2, and 3 for 𝑉𝑉0, and points 2,3, and 4 for 𝑉𝑉1). 
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In order for the entire CBS to convex, it does not suffice for the signs of 𝑉𝑉0 and 𝑉𝑉1 to be both 
positive. We must additionally ensure that equation 11 does not have a root between 0 and 1. Again, we 
use a monotonic transformation𝑧𝑧 = 𝑡𝑡/(1 − 𝑡𝑡), in which case the relevant part (the part that modulates the 
sign) of equation  11 becomes the following: 𝑉𝑉1𝑧𝑧2 + (𝑞𝑞 + 2𝑟𝑟)𝑧𝑧 + 𝑉𝑉0. Then, the two roots of this formula 
is as follows: 

−(𝑞𝑞 + 2𝑟𝑟) ± �(𝑞𝑞 + 2𝑟𝑟)2 − 4𝑉𝑉0𝑉𝑉1
2𝑉𝑉1

(17) 

If the determinant is negative, it means the following constraint is true: 

−2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 < 2�𝑉𝑉0𝑉𝑉1 (18) 

If the determinant is non-negative, it means the converse is true: 

𝑞𝑞 + 2𝑟𝑟 ≤ −2�𝑉𝑉0𝑉𝑉1    𝑜𝑜𝑜𝑜    2�𝑉𝑉0𝑉𝑉1 ≤ 𝑞𝑞 + 2𝑟𝑟 (19) 

Since 𝑉𝑉1 > 0, we know that the denominator of equation 16 is positive and hence the numerator must be 
negative. If the left part of inequality 18 is true, it follows that both roots of equation 16 is positive. Hence 
only the right side of inequality 18 can hold. Combining the constraints, we have the following for a fully 
convex curve: 

𝑉𝑉0 > 0, 𝑉𝑉1 > 0, −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 (20) 

 While this is a sufficient condition of a fully convex curve, it is difficult to utilize because the 
underlying variables are intertwined. If we use the monotonicity constraint from the compulsory condition 
(9), we can simplify this (20) further. 

First, we prove that 𝑉𝑉0 > 0, 𝑉𝑉1 > 0, 0 < 𝑞𝑞 + 2𝑟𝑟 is a sufficient condition for convexity using proof 
by contradiction. Let's assume that there is a fully convex curve that satisfies the following constraints: 
𝑉𝑉0 > 0, 𝑉𝑉1 > 0,−2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 ≤ 0.  

If𝑥𝑥2 < 𝑥𝑥3, it implies 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥3 < 𝑥𝑥4 by (9), and the following conditions hold: 

𝑉𝑉0 > 0 ⟺ (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦3 − 𝑦𝑦1) − (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦1) > 0 ⟺
𝑦𝑦3 − 𝑦𝑦1
𝑥𝑥3 − 𝑥𝑥1

>
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(21) 

𝑉𝑉1 > 0 ⟺ (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) > 0 ⟺
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

>
𝑦𝑦4 − 𝑦𝑦2
𝑥𝑥4 − 𝑥𝑥2

(22) 

𝑞𝑞 + 2𝑟𝑟 ≤ 0 ⟺ (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) ≤ 0 ⟺
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

≤
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(23) 

Also, by the inequality of arithmetic and geometric means, we also see that if −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 holds, 
−(𝑉𝑉0 + 𝑉𝑉1) < 𝑞𝑞 + 2𝑟𝑟 also holds, giving us the following inequality: 

−(𝑉𝑉0 + 𝑉𝑉1) < 𝑞𝑞 + 2𝑟𝑟 ⟺ (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦2) − (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦3 − 𝑦𝑦1) > 0 ⟺
𝑦𝑦4 − 𝑦𝑦2
𝑥𝑥4 − 𝑥𝑥2

>
𝑦𝑦3 − 𝑦𝑦1
𝑥𝑥3 − 𝑥𝑥1

(24) 

Combination of inequality 21, 22, and 24 give us the following inequality: 
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

>
𝑦𝑦4 − 𝑦𝑦2
𝑥𝑥4 − 𝑥𝑥2

>
𝑦𝑦3 − 𝑦𝑦1
𝑥𝑥3 − 𝑥𝑥1

>
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(25) 

However, this is directly contradicted by inequality 23. Hence 𝑥𝑥2 < 𝑥𝑥3 cannot hold. 
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 If 𝑥𝑥2 ≥ 𝑥𝑥3, we expand the condition of −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 ≤ 0: 

−2��(𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) − (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3)��(𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦3)� <

(𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) ≤ 0 (26)
 

From the compulsory condition on equation 9, we have �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) > 𝑥𝑥2 − 𝑥𝑥3. We can 
multiply both sides by�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1), which gives us (𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) >  (𝑥𝑥2 −
𝑥𝑥3)�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1). Since both sides of inequality 26 are negative, we can divide the left side with a 
smaller positive number and the right side with a larger positive number and still maintain the inequality. 
Hence we divide the left side with (𝑥𝑥2 − 𝑥𝑥3)�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) and the right side with(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 −
𝑥𝑥1). This gives us the following: 

−2��
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

−
𝑦𝑦2 − 𝑦𝑦3
𝑥𝑥2 − 𝑥𝑥3

� �
𝑦𝑦2 − 𝑦𝑦3
𝑥𝑥2 − 𝑥𝑥3

−
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

� <
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

−
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(27) 

Applying the inequality of arithmetic and geometric mean on the left side, we have the following: 

−�
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

−
𝑦𝑦2 − 𝑦𝑦3
𝑥𝑥2 − 𝑥𝑥3

+
𝑦𝑦2 − 𝑦𝑦3
𝑥𝑥2 − 𝑥𝑥3

−
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

� <
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

−
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(28) 

However, the left-side equals the right side and the inequality provides a contradiction. Hence whether 
𝑥𝑥2 < 𝑥𝑥3 or 𝑥𝑥2 ≥ 𝑥𝑥3, our initial assumption of 𝑉𝑉0 > 0, 𝑉𝑉1 > 0, −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑟𝑟 ≤ 0 does not hold. 
Concordantly, we have 𝑉𝑉0 > 0, 𝑉𝑉1 > 0, 0 < 𝑞𝑞 + 2𝑟𝑟. 

 Now if we assume 𝑥𝑥3 ≤ 𝑥𝑥2, these conditions give us contradiction: 

𝑉𝑉0 > 0, 𝑉𝑉1 > 0 ⟺ 
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

<
𝑦𝑦3 − 𝑦𝑦2
𝑥𝑥3 − 𝑥𝑥2

<
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(29) 

𝑞𝑞 + 2𝑟𝑟 > 0 ⟺
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

>
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

(30) 

Hence, 𝑥𝑥2 < 𝑥𝑥3 and the convexity condition can be simplified as the following: 
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

<
𝑦𝑦3 − 𝑦𝑦2
𝑥𝑥3 − 𝑥𝑥2

<
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

(31) 

 

E. Smoothness Conditions of multi-piece CBS 

 So far, all the constraints have been worked out with regards to a single piece of CBS. However, 
in order to model more complex functions, one would need to chain multiple pieces of CBS functions 
together. In order to guarantee a smooth transition between the two chained CBS functions, there are 
some constraints that one should impose. 

 First, the derivative of CBS must be continuous at the joining point of two CBS functions. This is 
straightforward as the line between the anchor point and its control point marks the local derivative. 
Hence, one should just ensure that the two control points of an anchor point is on the same line. Second, if 
the control handles (i.e., the distance between anchor point and its control points) becomes very short, 
there is potential for a kink in that location (Supplemental Fig 1). Therefore, it can be useful to constrain 
the minimal distance between control points and their anchor point. 
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Supplemental Figure 1. Two-piece CBS. Panel A on the left shows the kink that forms when the control 
points become too close to the anchor point at the joining point of two CBS functions. Panel B shows a 
smooth transition between two pieces of CBS functions thanks to the appropriate distance between 
control points and anchor point. 

The table below summarizes all the constraints. 

Compulsory 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥3 < 𝑥𝑥4 

Slope 
Monotonically increasing 𝑦𝑦1 < 𝑦𝑦2 < 𝑦𝑦4, 𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦4 

Monotonically decreasing 𝑦𝑦1 > 𝑦𝑦2 > 𝑦𝑦4, 𝑦𝑦1 > 𝑦𝑦3 > 𝑦𝑦4 

Curvature 
Convex 

𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

<
𝑦𝑦3 − 𝑦𝑦2
𝑥𝑥3 − 𝑥𝑥2

<
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

 

Concave 
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

>
𝑦𝑦3 − 𝑦𝑦2
𝑥𝑥3 − 𝑥𝑥2

>
𝑦𝑦4 − 𝑦𝑦3
𝑥𝑥4 − 𝑥𝑥3

 

Smoothness 

For a n – piece CBS function,  
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

=
𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

, ∀𝑖𝑖 = 3𝑗𝑗 + 1, 𝑗𝑗 ∈ {1,2, … , 𝑛𝑛 − 1}. 

And, 
𝑚𝑚2 < (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2, 𝑚𝑚2 < (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 

For a small number m (m = 0.1 in this paper). 
 

F. Summary measure of impulsivity and risk-aversion via CBS AUC 

The area under the curve (AUC) of fitted CBS functions serves as a summary measure of 
impulsivity and risk-aversion. In the case of a 2-piece CBS function, one can add up the AUC of 
each individual piece. The formula for AUC can be calculated quite straightforwardly by 
applying integration on equations (1) and (2). Let (xi, yi) denote the coordinates of the point Pi. 
Then, the AUC of each CBS piece is as follows: 

 

� y dx
x3

x0
=

1
20

� 6x1y0 − 6x0y1 − 10x0y0 − 3x0y2 + 3x2y0 − x0y3 − 3x1y2
+3x2y1 + x3y0 − 3x1y3 + 3x3y1 − 6x2y3 + 6x3y2 + 10x3y3

� (32) 
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G. Simulated Utility Function Recovery Using CBS 

 

Supplemental Figure 2. Average CBS fits from ITC choice dataset simulation. CBS fits are 
shown overlaid on top of 6 different ITC utility functions. The first and the third row shows the 
true simulating utility functions and their average CBS fits. The average CBS fits were 
calculated by taking the mean of the 200 fitted CBS functions from the largest choice dataset 
(400 choices). The second and the fourth row shows the mean error of the fitted CBS functions 
and the true simulating functions. 
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Supplemental Figure 3. Average CBS fits from RC dataset simulation. CBS fits are shown 
overlaid on top of 6 different RC utility functions (converted into probability space). The first 
and the third rows show the true simulating utility functions and their average CBS fits. The 
average CBS fits were calculated by taking the mean of the 200 fitted CBS functions from the 
largest choice dataset (400 choices). The second and the fourth rows show the mean error of the 
fitted CBS functions and the true simulating functions. 
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