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a trust-region algorithm approach with integrated
automatic multiple tuning parameter selection”

Online Resource A Simulations

We report some further results on simulation study I. We first discuss the coverage probabilities

(Section A.1) of the models illustrated in Section 8.1, then we present the performance measures

of some additional models (Section A.2).

A.1 Coverage probabilities

We computed 95% coverage probabilities for the parameters of all penalized models using point-

wise confidence intervals (Table A.1). For clarity of presentation, we only report the inferential

results of the models considered in Table 1. The omitted tables can be requested from the

corresponding author. The standard errors for penfa are based on the Bayesian result illustrated

in Section D.5. On the contrary, for lslx, they are computed using the frequentist expression

of the covariance matrix based on the Fisher information. No coverage probabilities could be

computed for regsem as the package does not currently provide any measure of uncertainty.

Because of the rationale discussed in Section 7, penfa provides a standard error for every single

model parameter, contrarily to lslx which does not provide this information for the parameters

shrunken to zero. However, since the main intent of penalization is to get rid of the uninfluential

elements, the inferential results are presented for the parameters remaining in the model, which

are the effective quantities of interest. The coverage probabilities were furtherly split and averaged

between those corresponding to the penalized parameters (i.e., the non-zero factor loadings) and

the freely estimated ones (i.e., the factor covariances and unique variances). Overall, the values of

both penfa and lslx are close to their true nominal level, the more so as the sample size increases,

for all penalty functions, which proves that the selected models are also valid from an inferential

point of view.
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Sample
size

penfa lslx

ALASSO SCAD MCP MCP

grid auto grid grid grid

Pen. Free Pen. Free Pen. Free Pen. Free Pen. Free

N = 300 0.922 0.942 0.900 0.942 0.916 0.942 0.918 0.942 0.924 0.942
N = 500 0.934 0.946 0.931 0.946 0.929 0.945 0.928 0.945 0.938 0.945
N = 1000 0.940 0.946 0.940 0.946 0.941 0.945 0.940 0.945 0.945 0.946

Note: Pen. indicates the penalized non-zero parameters and free the freely estimated parameters.

Table A.1: Average coverage probabilities of the examined penalized models in simulation study
I by sample size and parameter type. For penfa-alasso with grid a = 2, with the automatic
procedure a = 2 and γ = 4.5, for penfa-scad a = 3 and for penfa-mcp a = 3.

A.2 Additional models

The influence factor γ plays a decisive role in the model fitting results. Table A.2 reports the

performance measures of the penfa-alasso model (a = 2) for γ = 1. The penfa-alasso

model with the larger γ (Table 1) resulted in visibly higher PCTM and lower FPR, at the expense of

a slight increase in bias. This loss in bias, however, became negligible or nonexistent as the sample

size grew. In this respect, it is interesting to look at the MSE, which encloses both the variance

and the squared bias of an estimator. Despite the model with γ = 1 always had a smaller bias, the

one with γ = 4.5 produced such a decrease in the variability of the estimates that its MSE ended

up being always smaller than the one obtained with the inferior value of the influence factor. The

TPR were equal to 1.0 for every sample size.

We conclude the simulation results with the performances of the penfa-lasso models for

which the tuning parameter was either selected by grid-search or estimated through the automatic

procedure (Table A.2). The two models gave overall similar results, with the former having better

FPR and PCTM and the latter lower MSE and bias. The TPR were equal to 1.0 in both cases and

for every sample size. These results, however, are visibly less performing than the models where

the alasso, scad and mcp were used. As a matter of fact, it is well known that the lasso tends

to select an overfitted model, because it equally penalizes all model parameters. Therefore, we

suggest opting for the other penalties, which have been specifically designed to improve the lasso.
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ALASSO LASSO

auto
γ = 1

grid auto
γ = 4.5

MSE
N = 300 0.083 0.109 0.102
N = 500 0.049 0.066 0.061
N = 1000 0.024 0.034 0.031
SB
N = 300 0.001 0.039 0.030
N = 500 0.000 0.024 0.017
N = 1000 0.000 0.013 0.008
FPR
N = 300 0.154 0.094 0.113
N = 500 0.114 0.060 0.074
N = 1000 0.049 0.017 0.026
PCTM
N = 300 0.256 0.409 0.321
N = 500 0.374 0.583 0.493
N = 1000 0.634 0.860 0.795

Table A.2: Performance measures of penfa-alasso and penfa-lasso in simulation study I by
the sample size N . The quantity γ denotes the influence factor. MSE stands for mean-squared
error, SB for squared bias, FPR for false positive rate and PCTM for proportion choosing the true
model.

3



Online Resource B Locally approximated penalties

We describe the process for formulating and locally approximating the employed penalty functions

for single and multiple-group factor analysis models (Sections B.1 and B.2, respectively).

B.1 Normal linear factor model

We first provide an example clarifying the formulation of the sparsity-inducing penalties for the

normal linear factor model (Section B.1.1), we then formulate their expressions for the lasso,

alasso, scad and mcp functions (Section B.1.2), and lastly we derive their local approximations

(Section B.1.3).

B.1.1 Example

For notational clarity, we illustrate the general structure of the penalty described in Section 3 in a

simple example for the normal linear factor model. Consider the factor analysis modelx = Λf+ε,

with p = 6 observed variables and r = 2 common factors, where it is assumed that f ∼ N (0,Φ),

ε ∼ N (0,Ψ) with Ψ a diagonal matrix, and f is independent of ε. The population parameters

are as follows:

Λ =



λ11 0

λ21 λ22

λ31 λ32

0 λ42

λ51 λ52

λ61 λ62



Ψ =



ψ11 0 0 0 0 0

ψ22 0 0 0 0

ψ33 0 0 0

ψ44 0 0

ψ55 0

ψ66



Φ =

 1 φ12

1

 ,

where the elements in italic and underlined were fixed for scale setting and identification purposes.

The vector θ collects the free parameters in vec(Λ), diag(Ψ), and vech(Φ), that is:

θ = (λ11, λ21, λ31, λ51, λ61, λ22, λ32, λ42, λ52, λ62, ψ11, ψ22, ψ33, ψ44, ψ55, ψ66, φ12)T .
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Conveniently, the parameter vector can be rewritten as

θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10︸ ︷︷ ︸
Factor loadings

, θ11, θ12, θ13, θ14, θ15, θ16, θ17)T ,

where the sub-vector (θ1, . . . , θ10)T collects the parameters that are being penalized (i.e., the factor

loadings), whereas (θ11, . . . , θ17)T the unpenalized parameters (i.e., the free elements in Ψ and

Φ). We consider the case where the interest lies in the shrinkage of the factor loadings, although

other model parameters could be in principle penalized. Let q? = 10 be the number of penalized

parameters, andm = 17 the total number of parameters. Define

Rq =

1 q 17



1 0 . . . 0 . . . . . . 0
... . . . ...

...

q 0 . . . 1 . . . . . . 0
...

... . . . ...
...

... . . . ...

17 0 . . . 0 . . . . . . 0

for q = 1, . . . , 10,

and Rq = O17×17 for q = 11, . . . , 17. Then, the sparsity-inducing penalty is expressed as

Pη(θ) = ∑17
q=1Pη,q(||Rqθ||1), where ||Rqθ||1 = |θq| for q = 1, . . . , 10, and 0 for q = 11, . . . , 17.

B.1.2 The penalty functions

Let us write the parameter vector as θ = (θ1, . . . , θq? , θq?+1, . . . , θm)T , where the sub-vector

(θ1, . . . , θq?)T collects the penalized parameters (i.e., the factor loadings), whereas (θq?+1, . . . , θm)T

the unpenalized parameters (i.e., the free elements in Φ and Ψ). Define the diagonal matrix

Rq = diag(0, 0, . . . , 0, 1, 0, . . . , 0) for q = 1, . . . , q? where the 1 on the (q, q)th entry of the

matrix corresponds to the qth parameter in θ, and Rq = Om×m for q = q? + 1, . . . ,m. Let

eq = (0, . . . , 0, 1, 0, . . . , 0)T be the canonical vector with a 1 in the qth position for q = 1, . . . , q?,

and the null vector otherwise. In this work, we employ the lasso, alasso, scad and mcp penalties
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on the factor loadings, whose expressions are derived below. The overall penalty T is given by the

sum of the penalty terms for each parameter, that is,

PTη (θ) =
m∑
q=1
PTη,q(||Rqθ||1),

where T = {L,A, S,M} stands for lasso, alasso, scad, andmcp, respectively. The term ||Rqθ||1 =

|eTq θ| = |θq| for q = 1, . . . , q?, and is equal to zero otherwise. Let us detail the expression of the

penalty term for each of these penalties.

Lasso

PLη (θ) =
m∑
q=1
PLη,q(||Rqθ||1) =

m∑
q=1

η||Rqθ||1 = η
m∑
q=1

{
(Rqθ)T (Rqθ)

} 1
2

= η
m∑
q=1

{
(eTq θ)2

} 1
2 = η

m∑
q=1
|eTq θ| = η

q?∑
q=1
|θq|.

Alasso

PAη (θ) =
m∑
q=1
PAη,q(||Rqθ||1) = η

m∑
q=1

||Rqθ||1
||Rqθ̂||a1

= η
m∑
q=1

{
(Rqθ)T (Rqθ)

} 1
2{(

Rqθ̂
)T (

Rqθ̂
)}a

2

= η
m∑
q=1

{
(eTq θ)2

} 1
2{(

eTq θ̂
)2
}a

2
= η

m∑
q=1

|eTq θ|∣∣∣eTq θ̂∣∣∣a = η
q?∑
q=1

|θq|
|θ̂q|a

,

where θ̂ is generally the maximum likelihood estimator θ̂
MLE

and a > 0 an additional tuning

parameter.

Scad

PSη (θ) =
m∑
q=1
PSη,q(||Rqθ||1) =

m∑
q=1

{
η||Rqθ||11 (0 ≤ ||Rqθ||1 ≤ η)

−
[

(Rqθ)T (Rqθ) + η2 − 2ηa||Rqθ||1
2(a− 1)

]

× 1 (η < ||Rqθ||1 ≤ aη)

+ η2(a+ 1)
2 1 (||Rqθ||1 > aη)

}
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=
m∑
q=1

η
[
(Rqθ)T (Rqθ)

] 1
2
1

(
0 ≤

[
(Rqθ)T (Rqθ)

] 1
2 ≤ η

)

−

(Rqθ)T (Rqθ) + η2 − 2ηa
[
(Rqθ)T (Rqθ)

] 1
2

2(a− 1)



+ η2(a+ 1)
2 1

([
(Rqθ)T (Rqθ)

] 1
2 > aη

)
=

m∑
q=1

η
[
(eTq θ)2

] 1
2
1

(
0 ≤

[
(eTq θ)2

] 1
2 ≤ η

)

−

(eTq θ)2 + η2 − 2ηa
[
(eTq θ)2

] 1
2

2(a− 1)

1(η < [
(eTq θ)2

] 1
2 ≤ aη

)

+ η2(a+ 1)
2 1

([
(eTq θ)2

] 1
2 > aη

)
=

m∑
q=1

{
η|eTq θ|1

(
0 ≤ |eTq θ| ≤ η

)
−
[

(eTq θ)2 + η2 − 2ηa|eTq θ|
2(a− 1)

]
1
(
η < |eTq θ| ≤ aη

)

+ η2(a+ 1)
2 1

(
|eTq θ| > aη

)}

=
q?∑
q=1

{
η|θq|1(0 ≤ |θq| ≤ η)−

[
θ2
q + η2 − 2ηa|θq|

2(a− 1)

]
1(η < |θq| ≤ aη) + η2(a+ 1)

2 (|θq| > aη)
}
,

where a > 2 is an additional tuning parameter.

Mcp

PMη (θ) =
m∑
q=1
PMη,q(||Rqθ||1)

=
q?∑
q=1

{(
η||Rqθ||1 −

(Rqθ)T (Rqθ)
2a

)
1 (0 ≤ ||Rqθ||1 ≤ aη) + η2a

2 1 (||Rqθ||1 > aη)
}

=
m∑
q=1

{(
η
[
(Rqθ)T (Rqθ)

] 1
2 − (Rqθ)T (Rqθ)

2a

)
1

(
0 ≤

[
(Rqθ)T (Rqθ)

] 1
2 ≤ aη

)

+ η2a

2 1

([
(Rqθ)T (Rqθ)

] 1
2 > aη

)}

=
m∑
q=1

{(
η
[
(eTq θ)2

] 1
2 −

(eTq θ)2

2a

)
1

(
0 ≤

[
(eTq θ)2

] 1
2 ≤ aη

)
+ η2a

2 1

([
(eTq θ)2

] 1
2 > aη

)}

=
m∑
q=1

{(
η|eTq θ| −

(eTq θ)2

2a

)
1
(
0 ≤ |eTq θ| ≤ aη

)
+ η2a

2 1
(
|eTq θ| > aη

)}
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Figure B.1: Shapes of the lasso, alasso (a = 1), scad (a = 3.7) and mcp (a = 3) penalty functions
for η = 1.

=
q?∑
q=1

{(
η|θq| −

θ2
q

2a

)
1(0 ≤ |θq| ≤ aη) + η2a

2 1(|θq| > aη)
}
,

where a > 1 is an additional tuning parameter.

In the expressions of the penalties PAη (θ),PSη (θ),PMη (θ), we did not stress their dependence

on the additional tuning parameter a because this quantity is implicitly assumed to be fixed, for

instance, it has been determined from prior trials. Common values of the shape parameter of the

scad range between 2.5 and 4.5 (Huang, Chen & Weng, 2017), with 3.7 being the conventional

level employed in the literature and suggested by Fan and Li (2001). For the mcp, values of a

between 1.5 and 3.5 are often considered (Huang, 2018), whereas the exponent of the alasso does

not typically exceed 2 (Zou, 2006).

Simplified examples of the shapes of the illustrated penalties are shown in Figure B.1. For all

penalties η = 1, whereas the shape parameter for the scad is a = 3.7, for the mcp is a = 3, and

the exponent of the alasso is a = 1. All of the four penalties belong to the L1-type family and

are non-differentiable. Contrarily to the lasso and alasso, the depicted scad and mcp penalties are

concave functions.
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Figure B.2 illustrates the shapes of the alasso, scad and mcp by varying the value of their

additional tuning parameter a. The exponent in the expression of the alasso controls the importance

given to the adaptive weights. As the exponent a gets larger, the relative strength of the penalization

increases for smaller maximum likelihood estimates compared to larger maximum likelihood

estimates. The shapes of the scad and mcp are similar, with their degree of concavity decreasing

as the shape parameter a increases. When a → ∞ (see for instance, a = 50), the two penalties

converge to the lasso.
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Figure B.2: The alasso, scad and mcp penalties by varying the value of their additional tuning
parameter a.
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B.1.3 Differentiable approximations of non-differentiable penalties

The penalties examined in this work, i.e., lasso, alasso, scad and mcp, belong to the L1-type family

and are non-differentiable. Given that their non-differentiability poses theoretically and computa-

tional challenges, we propose to replace them with their differentiable local approximations.

Based on the first-order Taylor expansion presented in equation (7) and by applying the chain

rule, the penalty PTη (θ) can be written as

PTη (θ) ≈ PTη (θ̃) +∇θ̃PTη (θ̃)T (θ − θ̃)

≈ PTη (θ̃) +
∂PTη (θ̃)T

∂θ̃
(θ − θ̃)

≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)

∂θ̃

]T
(θ − θ̃)

≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

]T
·
[
∂||Rqθ̃||1
∂Rqθ̃

]T
·
[
∂Rqθ̃

∂θ̃

]T
(θ − θ̃), (B.1)

where θ̃ is an initial value close to the true value of θ.

Let us examine the quantities that make up each addend of expression (B.1). The first factor

represents the derivative of PTη,q(θ̃) with respect to the L1-norm of its argumentRqθ̃. Because the

expression depends on the specific form of the penalty T , it is separately computed for each of the

examined penalties in Section B.1.3.1. The second factor denotes the derivative of the L1-norm

with respect to its argument, and is equal for all penalties to

∂||Rqθ̃||1
∂Rqθ̃

= ∂

∂Rqθ̃

{
m∑
s=1

[
(Rsθ̃)TRsθ̃

] 1
2

}
= ∂

∂Rqθ̃

[
(Rqθ̃)TRqθ̃

] 1
2

= 1
2
[
(Rqθ̃)TRqθ̃

]− 1
2 · 2Rqθ̃ = [(Rqθ̃)TRqθ̃]− 1

2Rqθ̃

≈ 1√
(Rqθ̃)TRqθ̃ + c̄

Rqθ̃,

where the denominator is approximated by
√

(Rqθ̃)TRqθ̃ + c̄ to allow for the case of θ̃ = 0.

Finally, the third factor is simply
∂Rqθ̃

∂θ̃
= Rq.

By combining the local approximation (Rqθ) ≈ (Rqθ̃) (Fan & Li, 2001) with the following

10



approximation introduced in Ulbricht (2010):

(Rqθ)TRq(θ − θ̃) = (Rqθ)TRqθ − (Rqθ)TRqθ̃

= 1
2
{

(Rqθ)TRqθ − 2(Rqθ)TRqθ̃ + (Rqθ̃)TRqθ̃
}

+ 1
2
{

(Rqθ)TRqθ − (Rqθ̃)TRqθ̃
}

= 1
2
{

(θ − θ̃)TRT
qRq(θ − θ̃)

}
+ 1

2
{

(Rqθ)TRqθ − (Rqθ̃)TRqθ̃
}

≈ 1
2

(
θTRT

qRqθ − θ̃
T
RT
qRqθ̃

)
,

we have that

[
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

]T
·
[
∂||Rqθ̃||1
∂Rqθ̃

]T
·
[
∂Rqθ̃

∂θ̃

]T
(θ − θ̃)

=
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

·
[
∂||Rqθ̃||1
∂Rqθ̃

]T
· ∂Rqθ̃

∂θ̃
(θ − θ̃)

=
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

· 1√
(Rqθ̃)TRqθ̃ + c̄

(Rqθ̃)T ·Rq(θ − θ̃)

≈
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

· 1√
(Rqθ̃)TRqθ̃ + c̄

1
2

(
θTRT

qRqθ − θ̃
T
RT
qRqθ̃

)

= 1
2θ

T

∂P
T
η,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

RT
qRq

θ
−1

2 θ̃
T

∂P
T
η,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

RT
qRq

 θ̃

= 1
2

[
θTSTη,q(θ̃)θ − θ̃TSTη,q(θ̃)θ̃

]
,

whereSTη,q(θ̃) =
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

RT
qRq. Let us denoteSTη (θ̃) = ∑m

q=1 STη,q(θ̃).

Then, equation (B.1) can be rewritten as

PTη (θ) ≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

]T [
∂||Rqθ̃||1
∂Rqθ̃

]T [
∂Rqθ̃

∂θ̃

]T
(θ − θ̃)
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= PTη (θ̃) +
m∑
q=1

1
2
[
θTSTη,q(θ̃)θ − θ̃TSTη,q(θ̃)θ̃

]
= PTη (θ̃) + 1

2θ
TSTη (θ̃)θ − 1

2 θ̃
TSTη (θ̃)θ̃.

We can ignore the constant terms that do not depend on θ, namely, PTη (θ̃) and 1
2 θ̃

TSTη (θ̃)θ̃. Then,

the differentiable local approximation of the penalty PTη (θ) is

PTη (θ) ≈ 1
2θ

T


m∑
q=1

∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

RT
qRq

θ = 1
2θ

TSTη (θ̃)θ.

The specific forms of STη (θ̃) for lasso, alasso, scad and mcp are derived in Section B.1.3.1.

B.1.3.1 The penalty matrices

Based on the approximation derived in Section B.1.3, the penalty matrix STη (θ̃) is defined as

STη (θ̃) =
m∑
q=1

∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

RT
qRq,

for T = {L,A, S,M}. Recall thatRq = diag(0, 0, . . . , 0, 1, 0, . . . , 0) for q = 1, . . . , q? where the

1 on the (q, q)th entry of the matrix corresponds to the qth parameter in θ, and Rq = Om×m for

q = q? + 1, . . . ,m. Therefore, the penalty matrix STη (θ̃) is an m ×m block diagonal matrix of

the form:

STη (θ̃) =

 MT
η (θ̃) O

O O

 .

The first block is composed of the q?×q? diagonal matrixMT
η (θ̃) and corresponds to the penalized

parameters (i.e., the q? factor loadings), whereas the second block is an (m− q?)-dimensional null

matrix relative to the unpenalized parameters (i.e., the factor variances and covariances and the

unique variances). The matrixMT
η (θ̃) has the following structure
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MT
η (θ̃) =



mT1 . . . 0 . . . 0
... . . . ...

0 . . . mTq . . . 0
... . . . ...

0 . . . 0 . . . mTq?


,

where the diagonal entries mTq =
∂PTη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

(for q = 1, . . . , q?) determ-

ine the amount of shrinkage on θ̃q controlled by the tuning η and required by penalty T . We now

derive their expressions for the lasso, alasso, scad and mcp.

Lasso

The derivative of the lasso penalty with respect to the L1-norm of its argument is simply the tuning

parameter, that is,
∂PLη,q(||Rqθ̃||1)
∂||Rqθ̃||1

=
∂
(
η||Rqθ̃||1

)
∂||Rqθ̃||1

= η.

Therefore,

[
ML

η (θ̃)
]
qq

= mL
q =

∂PLη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

= η√
(Rqθ̃)TRqθ̃ + c̄

= η√
θ̃2
q + c̄

.

Alasso

Similarly, the derivative of the alasso penalty with respect to the L1-norm of its argument is the

tuning parameter multiplied by the adaptive weight, that is,

∂PAη,q(||Rqθ̃||1)
∂||Rqθ̃||1

= ∂

∂||Rqθ̃||1

η ||Rqθ̃||1∣∣∣∣∣∣Rqθ̂
∣∣∣∣∣∣a

1

 = η
1∣∣∣∣∣∣Rqθ̂
∣∣∣∣∣∣a

1

= η
1
|θ̂q|a

= η wq.

Therefore,

[
MA

η (θ̃)
]
qq

= mA
q =

∂PAη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

= η wq
1√

(Rqθ̃)TRqθ̃ + c̄
= η

|θ̂q|a
√
θ̃2
q + c̄

,

where θ̂ is generally the maximum likelihood estimator θ̂
MLE

.
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Scad

The derivative of the scad penalty with respect to the L1-norm of its argument has the form:

∂PSη,q(||Rqθ̃||1)
∂||Rqθ̃||1

= η

{
1(||Rqθ̃||1 ≤ η) + max(aη − ||Rqθ̃||1, 0)

(a− 1)η 1(||Rqθ̃||1 > η)
}

=


η if |θ̃q| ≤ η,

max(aη − |θ̃q|, 0)
a− 1 if |θ̃q| > η,

which leads to the following expression

[
MS

η (θ̃)
]
qq

= mS
q =

∂PSη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

= η

{
1(||Rqθ̃||1 ≤ η) + max(aη − ||Rqθ̃||1, 0)

(a− 1)η 1(||Rqθ̃||1 > η)
}

1√
(Rqθ̃)TRqθ̃ + c̄

=
η

[
1(|θ̃q| ≤ η) + max(aη − |θ̃q|, 0)

(a− 1)η 1(|θ̃q| > η)
]

√
θ̃2
q + c̄

.

Mcp

The derivative of the mcp penalty with respect to the L1-norm of its argument is

∂PMη,q(||Rqθ̃||1)
∂||Rqθ̃||1

=
(
η − ||Rqθ̃||1

a

)
1(||Rqθ̃||1 < ηa) =


η − |θ̃q|

a
if |θ̃q| ≤ ηa,

0 if |θ̃q| > ηa,

which implies that

[
MM

η (θ̃)
]
qq

= mM
q =

∂PMη,q(||Rqθ̃||1)
∂||Rqθ̃||1

1√
(Rqθ̃)TRqθ̃ + c̄

=
(
η − ||Rqθ̃||1

a

)
1(||Rqθ̃||1 < ηa) 1√

(Rqθ̃)TRqθ̃ + c̄
=

(
η − |θ̃q|

a

)
1(|θ̃q| < ηa)√
θ̃2
q + c̄

.

Notice that the penalty PTη (θ) for T = L,A, S,M , is approximated as
1
2θ

TSTη (θ̃)θ, where

STη (θ̃) is the matrix in (8) and the form ofMT
η (θ̃) changes according to the penalty function (see
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equations (9)-(12)). The penalty PTη (θ) is not approximated by replacing the absolute value |θq|

appearing in equations (3)-(6) with the approximation (θ2
q + c̄) 1

2 proposed by Koch (1996).

B.2 Multiple-group factor model

The rationale used to approximate the sparsity-inducing penalties in the normal linear factor

model is extended to the case of multiple groups to find differentiable local approximations of the

invariance-inducing penalties described in Section 5. An example clarifying the formulation of

the combined penalty is provided in Section B.2.2.

B.2.1 Differentiable approximations

The free parameters of the factor model of each group appearing in vec(Λg), τ g, diag(Ψg),

vech(Φg), andκg are collected in themg-dimensional vector θg, for g = 1, . . . , G, where the vec(·)

operator converts the enclosed matrix into a vector by stacking its columns, diag(·) extracts the

diagonal elements of the enclosed symmetric matrix, and vech(·) vectorizes the lower-diagonal part

of the enclosed symmetric matrix. Without loss of generality, assume that the number of observed

variables p and common factors r is the same across groups, and that the fixed elements required

for model identification are placed in the same positions across groups. Denote the number of

factor loadings in each group (i.e., the free elements in vec(Λg)) as q?, and the number of intercepts

in each group (i.e., the free elements in τ g) as k?. Because of the presence of fixed elements in

Λg and τ g for model identification, q? is smaller than p× r, and k? is smaller than p. Each group

parameter vector is collected in the overall m-dimensional vector θ = (θT1 , . . . ,θTg , . . . ,θTG)T ,

where m = ∑G
g=1 mg. Assume for convenience that each parameter sub-vector has the same

dimension, i.e.,m1 = . . . = mG, so thatm = m1G.

We now describe the structure of the penalty inducing equal factor loadings across groups. The

penalty inducing equal intercepts across groups has precisely the same structure, the only difference

being in the type of parameters among which the differences are computed. A penalty function that

encourages invariant factor loadings can be conveniently specified in terms of a penalty function

shrinking the pairwise absolute differences of every factor loading across groups.

LetDΛ
q , for q = 1, . . . , q?, be the matrix computing the differences of the factor loading pairs
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(θ(g−1)m1+q, θ(g′−1)m1+q) for g < g′. It has dimension equal to m1
(
G
2

)
×m, where the binomial

coefficient
(
G
2

)
denotes the total number of pairwise group differences for a given factor loading. In

its general form,DΛ
q is amatrixwith zeros in every position, except the ((s−1)m1+q, (g−1)m1+q)

entries, which contain a 1.0, and the entries ((s − 1)m1 + q, (g′ − 1)m1 + q), which contain a

-1.0, for s = 1, . . . , G and g < g′ (see MatrixDΛ
q ). For the other parameters (i.e., the intercepts,

the unique variances and the structural parameters), DΛ
q = Om1(G2)×m. Notice that ||DΛ

q θ||1 =∑
g<g′|θ(g−1)m1+q−θ(g′−1)m1+q| for q = 1, . . . , q?, and is equal to zero otherwise. Then, the penalty

inducing equal loadings across groups can be written as PTη2(θ) = ∑m
q=1PTη2,q(||D

Λ
q θ||1).

The derivation of the expression of the penaltyPTη2(θ) shrinking the pairwise group differences

of the factor loadings follows the same rationale described in Section B.1.2, with the only difference

being that Rqθ is now replaced byDΛ
q θ. The forms of the lasso, alasso, scad, and mcp penalties

for the differences are:

PLη2(θ) = η2
∑
g<g′

q?∑
q=1
|θ(g−1)m1+q − θ(g′−1)m1+q|,

PAη2(θ) = η2
∑
g<g′

q?∑
q=1

|θ(g−1)m1+q − θ(g′−1)m1+q|∣∣∣θ̂(g−1)m1+q − θ̂(g′−1)m1+q

∣∣∣a ,
PSη2(θ) =

∑
g<g′

q?∑
q=1

{
η2|θ(g−1)m1+q − θ(g′−1)m1+q|1(0 ≤ |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ η2)

−
[

(θ(g−1)m1+q − θ(g′−1)m1+q)2 + η2
2 − 2η2a|θ(g−1)m1+q − θ(g′−1)m1+q|

2(a− 1)

]

× 1(η2 < |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ aη2)

+ η2
2(a+ 1)

2 (|θ(g−1)m1+q − θ(g′−1)m1+q| > aη2)
}
,

PMη2 (θ) =
∑
g<g′

q?∑
q=1

{(
η2|θ(g−1)m1+q − θ(g′−1)m1+q| −

(θ(g−1)m1+q − θ(g′−1)m1+q)2

2a

)

× 1(0 ≤ |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ aη2)

+ η2
2a

2 1(|θ(g−1)m1+q − θ(g′−1)m1+q| > aη2)
}
,

where for the alasso a > 0, for the scad a > 2 and for the mcp a > 1.
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m1 2m1 (G− 2)m1 (G− 1)m1 Gm1

DΛ
q =



0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 1 . . . 0 0 . . . −1 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 1 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . −1 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 1 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . −1 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 1 . . . 0 0 . . . −1 . . . 0
...

. . .
...

...
. . .

... . . . . . .
...

. . .
...

...
. . .

...

0 . . . 0 . . . 0 0 . . . 0 . . . 0 . . . . . . 0 . . . 0 . . . 0 0 . . . 0 . . . 0




m1

m1(G− 3)
m1

m1(G− 3)
m1

 (G− 3)(G− 2)
2 − 1

m1

MatrixDΛ
q : The general structure of the matrixDΛ

q computing the pairwise differences of the qth

factor loading across G groups.
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Given that the penalty term PTη2(θ) is non-differentiable at θ = 0, we replace it with its

differentiable local approximation. Following the same reasoning described in Section B.1.3, the

locally approximated penalty takes the form

PTη2(θ) ≈ 1
2θ

T


m∑
q=1

∂PTη2,q(||D
Λ
q θ̃||1)

∂||DΛ
q θ̃||1

1√
(DΛ

q θ̃)TDΛ
q θ̃ + c̄

DΛT

q DΛ
q

θ = 1
2θ

TDTη2(θ̃)θ.

Let dTq =
∂PTη2,q(||D

Λ
q θ̃||1)

∂||DΛ
q θ̃||1

1√
(DΛ

q θ̃)TDΛ
q θ̃ + c̄

. If DΛ
q for the parameter θq is non-null, the

expressions of dTq for the lasso, alasso, scad and mcp penalties are:

dLq = η2√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

,

dAq = η2{∑
g<g′|θ̂(g−1)m1+q − θ̂(g′−1)m1+q|

}a√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

,

dSq =



η2√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

if
∑
g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| ≤ η2,

max(aη2 −
∑
g<g′ |θ̃(g−1)m1+q − θ̃(g′−1)m1+q|, 0)

a− 1√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

if
∑
g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| > η2,

dMq =



η2 −
∑
g<g′ |θ̃(g−1)m1+q − θ̃(g′−1)m1+q|

a√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

if
∑
g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| ≤ η2a,

0 if
∑
g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| > η2a,

where for the alasso a > 0, for the scad a > 2 and for the mcp a > 1. The specification

of the matrix Dτ
q computing the pairwise differences of the intercepts across groups and the

corresponding expression of the approximated penalty matrix DTη3(θ̃) follows the same rationale

described forDΛ
q andDTη2(θ̃).
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B.2.2 Example

Consider the following two-group factor model with p = 6 observed variables and r = 2 factors:

xg = τ g + Λgf g + εg for g = 1, 2,

where f g ∼ N (κg,Φg), εg ∼ N (0,Ψg), with Ψg a diagonal matrix, and f g is independent of εg.

The parameter matrices are as follows, for g = 1, 2:

Λg =



1 0

λ21g λ22g

λ31g λ32g

0 1

λ51g λ52g

λ61g λ62g



τ g =



0

τ2g

τ3g

0

τ5g

τ6g



Ψg =



ψ11g 0 0 0 0 0

ψ22g 0 0 0 0

ψ33g 0 0 0

ψ44g 0 0

ψ55g 0

ψ66g



,

Φg =

 φ11g φ12g

φ22g

 κg =

 κ1g

κ2g

 .
The factor loadings and intercepts of variables x1 and x4 have been fixed for metric setting and

identification purposes. The parameters of each group appearing in vec(Λg), τ g, diag(Ψg),

vech(Φg), and κg are collected in themg-dimensional vectors:

θ1 = (λ211, λ311, λ511, λ611, λ221, λ321, λ521, λ621, τ21, τ31, τ51, τ61, ψ111, ψ221, ψ331,

ψ441, ψ551, ψ661, φ111, φ121, φ221, κ11, κ21)T ,

θ2 = (λ212, λ312, λ512, λ612, λ222, λ322, λ522, λ622, τ22, τ32, τ52, τ62, ψ112, ψ222, ψ332,

ψ442, ψ552, ψ662, φ112, φ122, φ222, κ12, κ22)T ,

where m1 = m2 = 23. The two group parameter vectors are combined into the m-dimensional

vector θ = (θT1 ,θT2 )T , which can be conveniently expressed as
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θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8︸ ︷︷ ︸
Factor loadings
of Group 1

, θ9, θ10, θ11, θ12︸ ︷︷ ︸
Intercepts
of Group 1

, θ13, θ14, θ15, θ16, θ17, θ18, θ19, θ20,

θ21, θ22, θ23, θ24, θ25, θ26, θ27, θ28, θ29, θ30, θ31︸ ︷︷ ︸
Factor loadings
of Group 2

, θ32, θ33, θ34, θ35︸ ︷︷ ︸
Intercepts
of Group 2

, θ36, θ37, θ38,

θ39, θ40, θ41, θ42, θ43, θ44, θ45, θ46)T ,

with m = m1 + m2 = 2m1 = 46. Let q? = 8 be the number of factor loadings in each group,

and k? = 4 the number of intercepts in each group. Notice that the factor loadings in θ are located

in the positions determined by q = (g − 1)m1 + 1, . . . , (g − 1)m1 + q?, for g = 1, 2, that is,

q = 1, . . . , 8, 24, . . . , 31. Define the matrixRq:

Rq =

1 q 46



1 0 . . . 0 . . . . . . 0
... . . . ...

...

q 0 . . . 1 . . . . . . 0
...

... . . . ...
...

... . . . ...

46 0 . . . 0 . . . . . . 0

for q = 1, . . . , 8, 24, . . . , 31,

and Rq = O46×46 otherwise. Then, the penalty inducing sparsity on the factor loadings of each

group is expressed as

Pη1(θ) =
46∑
q=1
Pη1,q(||Rqθ||1),

where ||Rqθ||1 = |θq| for q = 1, . . . , 8, 24, . . . , 31, and 0 otherwise.

The pairwise differences of every loading across the two groups are (θq − θm1+q), for q =

1, . . . , 8, which consist of the set {(θ1 − θ24), (θ2 − θ25), (θ3 − θ26), (θ4 − θ27), (θ5 − θ28), (θ6 −

θ29), (θ7 − θ30), (θ8 − θ31)}. These differences can be specified through the matrixDΛ
q , which, in

case of two groups, for q = 1, . . . , 8, is equal to:
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Dq = [Rq, −Rq] =

1 q 23 23 + q 46



1 0 . . . 0 . . . . . . 0 . . . 0 . . . . . . 0
... . . . ...

...
...

...

q 0 . . . 1 . . . . . . 0 . . . −1 . . . . . . 0
...

... . . . ...
... . . . ...

...
... . . . ...

... . . . ...

23 0 . . . 0 . . . . . . 0 . . . 0 . . . . . . 0

, (B.2)

and DΛ
q = O23×46 otherwise. Then, the penalty inducing equal loadings across groups can be

written as

Pη2(θ) =
46∑
q=1
Pη2,q(||DΛ

q θ||1),

where ||DΛ
q θ||1 = |θq − θm1+q| for q = 1, . . . , 8, and 0 otherwise.

The pairwise differences of the intercepts across groups are computed similarly, the only

difference being that the index q is now shifted by q? units, that is, q = (g − 1)m1 + q? +

1, . . . , (g−1)m1 + q?+k? = 9, . . . , 12, 32, . . . , 35. Then, the penalty introducing equal intercepts

across groups is written as

Pη3(θ) =
46∑
q=1
Pη3,q(||Dτ

qθ||1),

where Dτ
q is equal to the matrix in (B.2) for q = 9, . . . , 12, and Dτ

q = O23×46 otherwise, and

||Dτ
qθ||1 = |θq?+q − θm1+q?+q| for q = 9, . . . , 12, and 0 otherwise.

Remark 1 (Fused penalty). The first two penalties in (15) shrink the factor loadings within each

group as well as their differences across groups. If T = L, such penalty can be related to the

generalized fused lasso proposed by Danaher, Wang and Witten (2014) in the context of multiple

graphical models to penalize the off-diagonal elements of the precisionmatrices of different classes,

as well as their differences across classes. On a different note, that penalty can be viewed as an

extension of the pairwise fused lasso illustrated by Petry (2011) to penalize the coefficients of a

general linear model as well as their differences among any pair of regressors.
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Online Resource C Generalized Information Criterion

This section illustrates how the degrees of freedom of the penalized model can be found by

deriving the bias term of the Generalized Information Criterion (GIC; Konishi & Kitagawa, 1996),

an extension of the Akaike Information Criterion (AIC; Akaike, 1974) to the case where the

estimation is not conducted through ordinary maximum likelihood. We follow the exposition in

Konishi and Kitagawa (2008) and adapt it to the current context.

Suppose that N observations xxxN = {x1, . . . ,xα, . . . ,xN} generated from the unknown true

distribution function G(x) having density function g(x) are realizations of the random vector

XN = (X1, . . . ,Xα, . . . ,XN)T . In order to capture the structure of the given phenomena, we

assume a parametric model that consists of a family of parametric distributions {f(x|θ);θ ∈

Θ ⊂ Rm}, where θ = (θ1, . . . , θm)T is the m-dimensional vector of unknown parameters and

Θ is an open subset of Rm. We assume that the distribution g(x) that generated the data is

included in the class of parametric models, that is, there exists a parameter vector θ0 ∈ Θ such that

g(x) = f(x|θ0). A statistical model f(x|θ̂) is then obtained by replacing the parameter vector θ

with the penalized maximum likelihood estimator (PMLE) θ̂.

For convenience, we assume that each parameter θq in θ can be expressed in the form of a real-

valued function of the distribution of G, that is, the functional Tq(G), where Tq(G) is a function

defined on the set of all distributions on the sample space and does not depend on the sample size

N . Then, given data xxxN = {x1, . . . ,xα, . . . ,xN}, the estimator θ̂q for the qth parameter θq is

θ̂q = θ̂q(x1, . . . ,xα, . . . ,xN) = Tq(Ĝ) for q = 1, . . . ,m,

in which the unknown probability distribution G has been replaced with the empirical distribution

function Ĝ based on the data. The empirical distribution function is the distribution function for

the probability function ĝ(xα) = 1
N

(α = 1, . . . , N) that gives the equal probability 1
N

for each

of the N observations {x1, . . . ,xα, . . . ,xN}. Because the estimator θ̂q = Tq(Ĝ) depends on the

data only through the empirical distribution function Ĝ, the functional is referred to as statistical

functional.
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Let us write them-dimensional functional vector with Tq(G) as the qth element as

T (G) = (T1(G), . . . , Tq(G), . . . , Tm(G))T ,

where T (G) is defined as the solution of the implicit equations

∫
ψ(x,T (G))dG(x) = 0. (C.1)

The function ψ = (ψ1, . . . , ψm)T collects the real-valued functions ψq(x,T (G)) defined on the

product space of the sample space and the parameter space Θ. Theψ-functionψ(x,T (G)) of the

PMLE defined in Section 7 is

ψ(x,T (G)) = ∂

∂θ

{
log f(x|θ)− PTη (θ)

} ∣∣∣∣
θ=T (G)

= ∂

∂θ

{
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

,

where the penalty term PTη (θ) = 1
2θ

TSTη (θ̃)θ is a twice-continuously differentiable function,

T = {L,A, S,M} and θ̃ is an initial value close to the true value of θ. In case of the normal

linear factor model (Section 2), the log-likelihood of the sample is as in equation (2), the vector of

the tuning parameters η reduces to the scalar η, and STη (θ̃) is as in equation (8). In case of the

multiple-group factor model (Section 4), the log-likelihood of the sample is as in (14), the vector of

tuning parameters η is equal to the triplet (η1, η2, η3)T , and STη (θ̃) = DTη1(θ̃) +DTη2(θ̃) +DTη3(θ̃).

Then, them-dimensional PMLE θ̂ can be expressed as

θ̂ = T (Ĝ) = (T1(Ĝ), . . . , Tq(Ĝ), . . . , Tm(Ĝ))T ,

where T (Ĝ) is defined as the solution of the system of penalized likelihood equations

N∑
α=1

ψ(xα,T (Ĝ)) =
N∑
α=1

ψ(xα, θ̂) = 0,
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with

ψ(xα, θ̂) = ∂

∂θ

{
log f(xα|θ)− 1

2θ
TSTη (θ)θ

} ∣∣∣∣∣
θ=θ̂

.

Once the model has been constructed, the interest usually lies in its evaluation from the standpoint

of making a prediction. The idea is thus to evaluate the expected goodness of the estimated model

f(z|θ̂) when it is used to predict the independent future data Z = z generated from the unknown

true distribution g(z). Specifically, the goodness of the statistical model f(z|θ̂) can be assessed

by evaluating its closeness to the true distribution g(z) in terms of the Kullback-Leibler (K-L)

information

I(g(z); f(z|θ̂)) := EG(z)

[
log

{
g(Z)
f(Z|θ̂)

}]
=
∫

log
{
g(z)
f(z|θ̂)

}
g(z)dz

=
∫
g(z) log g(z)dz −

∫
g(z) log f

(
z|θ̂

)
dz, (C.2)

where the expectation is taken with respect to the unknown true probability distribution function

G(z). Because the first term on the right-hand side of equation (C.2) is a constant that depends

solely on the true model g, in order to compare different models it is sufficient to consider only the

second term on the right-hand side, called the expected log-likelihood:

ϕ(XN ;G) := EG(z)[log f(Z|θ̂(XN))] =
∫
g(z) log f(z|θ̂)dz

=
∫

log f(z|θ̂)dG(z). (C.3)

The larger this value is for a model, the smaller its K-L information and the closer the model is to

the true one. The expected log-likelihood still depends on the true distribution g and is an unknown

quantity that eludes explicit computation. A good estimate of the expected log-likelihood can be

obtained from the data by replacing G with Ĝ, that is,

ϕ(XN ; Ĝ) = EĜ[log f(Z|θ̂)] =
∫

log f(z|θ̂)dĜ(z)

=
N∑
α=1

ĝ(xα) log f(xα|θ̂) = 1
N

N∑
α=1

log f(xα|θ̂). (C.4)

According to the law of large numbers, when the number of observations N tends to infinity, the

24



mean of the random variables Y α = log f(Xα) (α = 1, . . . , N) converges in probability to its

expectation, that is,

ϕ(XN ; Ĝ) = 1
N

N∑
α=1

log f(Xα)

= 1
N

log f(XN |θ̂(XN)) N→∞−−−−→ EG[log f(Z|θ̂)] = ϕ(XN ;G).

Therefore, the estimate based on the empirical distribution function is a natural estimate of the

expected log-likelihood. The estimate of the expected log-likelihood multiplied by N is the

log-likelihood of the statistical model f(z|θ̂(xxxN))

N
∫

log f(z|θ̂)dĜ(z) =
N∑
α=1

log f(xα|θ̂(xxxN)) = log f(xxxN |θ̂(xxxN)) = `(θ̂).

It is worth noting that the estimator of the expected log-likelihood EG[log f(Z|θ̂)] is 1
N
`(θ̂) and

that the log-likelihood `(θ̂) is an estimator of N EG[log f(Z|θ̂)].

In this procedure, the log-likelihood in (C.4) was obtained by estimating the expected log-

likelihood EG[log f(Z|θ̂)] by reusing the data xxxN that were initially used to estimate the model

f(Z|θ̂) in place of the future data. The use of the same data twice for estimating the parameters and

the evaluation measure (expected log-likelihood) of the goodness of the estimated model gives rise

to bias. Specifically, the bias of the log-likelihood as an estimator of the expected log-likelihood

given in (C.3) is defined as

b(G) := EG{ϕ(XN ; Ĝ)− ϕ(XN ;G)}

= EG(xxxN )

[ 1
N

log f(XN |θ̂(XN))− EG(z)[log f(Z|θ̂(XN))]
]
,

where the expectation EG(xxxN ) is taken with respect to the joint distribution G(xxxN) = ∏N
α=1 G(xα)

of the sample XN . The prerequisite for a fair comparison of models is thus the evaluation of

and the correction for this bias term. The general form of the Generalized Information Criterion,

which is defined as a bias-corrected log-likelihood, can be constructed by evaluating the bias and

correcting for it as follows:
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GIC(XN ; Ĝ) = −2N
(

1
N

N∑
α=1

log f(Xα|θ̂)− b(Ĝ)
)

= −2
N∑
α=1

log f(Xα|θ̂) + 2N b(Ĝ). (C.5)

The GIC represents an extension of the AIC (see Konishi & Kitagawa, 2008 for a full exposition

on the topic). In the same spirit, we can formulate a Generalized Bayesian Information Criterion

(GBIC) as an extension of the Bayesian Information Criterion (BIC; Schwarz, 1978)

GBIC(XN ; Ĝ) = −2
N∑
α=1

log f(Xα|θ̂) + log(N)N b(Ĝ), (C.6)

by changing the weight given to the bias term b(Ĝ) from 2 to log(N) used in the BIC.

Konishi and Kitagawa (1996) showed that the asymptotic bias of the log-likelihood in the

estimation of the expected log-likelihood can be represented as the integral of the product of the

influence function of the employed estimator and the score function of the probability model, i.e.,

EG[ϕ(XN ; Ĝ)− ϕ(XN ;G)] =
[

1
N

N∑
α=1

log f(Xα|θ̂)−
∫

log f(z|θ̂)dG(z)
]

= 1
N
b1(G) + o

( 1
N

)
,

where

b1(G) = tr
{∫

T (1)(z;G)∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)
}
. (C.7)

The quantity T (1)(z;G) is the influence function of them-dimensional functional T (G) at the true

distributionG. The influence functionT (1)(z;G) = (T (1)
1 (z;G), . . . , T (1)

q (z;G), . . . , T (1)
m (z;G))T

describes the effect of an infinitesimal contamination at z. Its components T (1)
q (z, G) (q =

1, . . . ,m) are defined in terms of the directional derivative of the functional Tq(G) with respect to

G, that is,

lim
ε→0

Tq((1− ε)G+ εδz)− Tq(G)
ε

= ∂

∂ε
{Tq((1− ε)G+ εδz)}

∣∣∣∣
ε=0

=
∫
T (1)
q (z;G)dδz := T (1)

q (z;G),
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where δz is a point mass at z.

The expression of the influence function of the PMLE can be found by calculating the derivative

of the corresponding functional. Firstly, substitute (1− ε)G+ εδz for G in equation (C.1):

∫
ψ(x,T ((1− ε)G+ εδz))d{(1− ε)G(x) + εδz(x)} =

∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{(1− ε)G(x) + εδz(x)} = 0.

Secondly, differentiate both sides of the equation with respect to ε:

∫ ∂

∂ε

{
∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{(1− ε)G(x) + εδz(x)}
}

= 0

∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

∂

∂ε
d{(1− ε)G(x) + εδz(x)}

+
∫ ∂

∂ε

{
∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

}
d{(1− ε)G(x) + εδz(x)} = 0

∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{−G(x) + δz(x)}

+
∫ ∂

∂θT
∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

× ∂

∂ε
{T ((1− ε)G+ εδz)}d{(1− ε)G(x) + εδz(x)} = 0.

Then set ε = 0:

∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T (G)

d{δz(x)−G(x)}

+
∫ ∂

∂θ

∂

∂θT

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

]∣∣∣∣∣
θ=T (G)

∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0
dG(x) = 0
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∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dδz(x)

−
∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x)
︸ ︷︷ ︸

=0 by eq. (C.1)

+
∫ ∂2

∂θ∂θT

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x) ∂
∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= 0

∫ ∂

∂θ

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dδz(x)

+
∫ ∂2

∂θ∂θT

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x) ∂
∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= 0

∂

∂θ

[
log f(z|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

+
∫ ∂2

∂θ∂θT

[
log f(x|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x) ∂
∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0︸ ︷︷ ︸

=T (1)(z;G)

= 0.

Consequently, the influence function T (1)(z;G) that defines the PMLE is given by

T (1)(z;G) := ∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= −


∫ ∂2

∂θ∂θT

[
log f(z|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(z)


−1

×

 ∂

∂θ

[
log f(z|θ)− 1

2θ
TSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)


= R(ψ, G)−1ψ(z;T (G)), (C.8)

whereR(ψ, G) is anm×m matrix defined as

R(ψ, G) = −
∫ ∂ψ(z,θ)T

∂θ

∣∣∣∣
θ=T (G)

dG(z)

= −
∫ ∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z) +
∫ ∂2

∂θ∂θT

(1
2θ

TSTη (θ̃)θ
) ∣∣∣∣

θ=T (G)
dG(z).
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More specifically, for the normal linear factor model, if we denote θ = (θ?, θ̌)T , where θ? collects

the penalized parameters and θ̌ the unpenalized parameters, we have that:

∂ψ(z,θ)T
∂θ

=


∂2 log f(z|θ)
∂θ?∂θ?

T −MT
η (θ̃) ∂2 log f(z|θ)

∂θ?∂θ̌
T

∂2 log f(z|θ)
∂θ̌∂θ?

T

∂2 log f(z|θ)
∂θ̌∂θ̌

T

 ,

where MT
η (θ̃) is the sub-matrix of STη (θ̃) corresponding to the penalized parameters defined in

Section 3.1, and the tuning parameter vector η reduces to the scalar η.

By substituting the expression of the influence function of the PMLE into equation (C.7), we

get the following expression of the bias:

b1(G) = tr
{∫

T (1)(z;G)∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)
}

= tr
{∫

R(ψ, G)−1ψ(z,T (G))∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)
}

= tr
{
R(ψ, G)−1

∫
ψ(z;T (G))∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)
}

= tr
{
R(ψ, G)−1Q(ψ, G)

}
,

whereQ(ψ, G) is anm×m matrix defined as

Q(ψ, G) =
∫
ψ(z;T (G))∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=
∫ ∂

∂θ

{
log f(z|θ)− 1

2θ
TSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)

=
∫ ∂ log f(z|θ)

∂θ

∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)

−
∫

STη (θ̃)T (G)∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)

=
∫ ∂ log f(z|θ)

∂θ

∂ log f(z|θ)
∂θT

∣∣∣∣
θ=T (G)

dG(z)

= −
∫ ∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z) = Q(G).
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The fourth line follows from the fact that as N →∞

0 =
∫ ∂

∂θ

[
log f(z|θ)−

(1
2θ

TSTη (θ̃)θ
)] ∣∣∣∣

θ=T (G)
dG(z) =

∫ ∂ log f(z|θ)
∂θ

∣∣∣∣
θ=T (G)

dG(z).

Let b1(Ĝ) be a bias estimate obtained by replacing the unknown distribution G with the empirical

distribution Ĝ:

b1(Ĝ) = tr
{

1
N

N∑
α=1

T (1)(xα, Ĝ)∂ log f(xα|θ)
∂θT

∣∣∣∣
θ=T (Ĝ)

}

= tr
{
R(ψ, Ĝ)−1Q(Ĝ)

}
. (C.9)

The quantityT (1)(xα, Ĝ) represents the vector of empirical influence functions, whose components

T (1)
q (xα, Ĝ) are defined as the derivative of Tq(Ĝ)with respect to the probability measure δxα being

the point mass at xα, that is,

T (1)
q (xα, Ĝ) = lim

ε→0

Tq((1− ε)Ĝ+ εδxα)− Tq(Ĝ)
ε

.

The matricesR(ψ, Ĝ) andQ(Ĝ) are as follows:

R(ψ, Ĝ) = − 1
N

N∑
α=1

∂ψ(xα|θ)T
∂θ

∣∣∣∣∣
θ=T (Ĝ)

= − 1
N

N∑
α=1

∂2 log f(xα|θ)
∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

− ∂2

∂θ∂θT

(1
2θ

TSTη (θ)θ
) ∣∣∣∣∣

θ=T (Ĝ)


= − 1

N

 ∂2

∂θ∂θT
`(θ)

∣∣∣∣∣
θ=T (Ĝ)

−N ∂2

∂θ∂θT

(1
2θ

TSTη (θ)θ
) ∣∣∣∣∣

θ=T (Ĝ)


= − 1

N

{
H(θ̂)−NSTη (θ̂)

}
= − 1

N
Hp(θ̂),

Q(Ĝ) = − 1
N

N∑
α=1

∂2 log f(xα|θ)
∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1
N

∂2`(θ)
∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1
N
H(θ̂).

The estimated bias b1(Ĝ) is an estimate of the effective degrees of freedom (edf ) of the penalized

model, that is,
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edf = b1(Ĝ) = tr
{[
− 1
N
Hp(θ̂)

]−1 [
− 1
N
H(θ̂)

]}
= tr

{
Hp(θ̂)−1H(θ̂)

}
. (C.10)

By substituting the asymptotic bias estimate in equation (C.10) into the expressions of the GIC

(eq. C.5) and the GBIC (eq. C.6), the following generalized information criteria are obtained:

GIC(XN ; Ĝ) = −2N
{

1
N

N∑
α=1

log f(xα|θ̂)− 1
N
b1(Ĝ)

}

= −2
N∑
α=1

log f(xα|θ̂) + 2 tr{R(ψ, Ĝ)−1Q(Ĝ)}

= −2 `(θ̂) + 2 tr
{
Hp(θ̂)−1H(θ̂)

}
,

GBIC(XN ; Ĝ) = −2 `(θ̂) + log(N) tr
{
Hp(θ̂)−1H(θ̂)

}
.

The vector of tuning parameters η enters through the penalty matrix, which is included in Hp.

The determination of the tuning parameter(s) can be viewed as a model selection and evaluation

problem. Therefore, information criteria evaluating a penalized model can be used as tuning

parameter selectors. By evaluating statistical models determined according to grid(s) of values of

η, we take the optimal vector of the tuning parameter η̂ to be the one minimizing the value of the

GBIC (since the BIC generally selects more sparse models than does the AIC), that is,

η̂ = arg min
η
GBIC(XN ; Ĝ).

Online Resource D Optimization and estimation

D.1 A general expression for the PMLE

To avoid notational clutter, we omit the superscript T = {L,A, S,M} in the expression of the

penalty matrix. By using a first-order Taylor expansion of gp(θ[t+1]) at θ[t] it follows that

0 = gp(θ[t+1]) ≈ gp(θ[t]) + Hp(θ[t])(θ[t+1] − θ[t]),
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where gp(θ[t]) = g(θ[t]) − NSη̂(θ̃
[t])θ[t] and Hp(θ[t]) = H(θ[t]) − NSη̂(θ̃[t]). Define I(θ[t]) =

−H(θ[t]), then

0 = gp(θ[t]) +
[
−I(θ[t])−NSη̂(θ̃

[t])
]

(θ[t+1] − θ[t]).

By rearranging the above equation, we get:

gp(θ[t]) =
[
I(θ[t]) +NSη̂(θ̃

[t])
]

(θ[t+1] − θ[t])

g(θ[t])−NSη̂(θ̃
[t])θ[t] =

[
I(θ[t]) +NSη̂(θ̃

[t])
]
θ[t+1] − I(θ[t])θ[t] −NSη̂(θ̃

[t])θ[t]

θ[t+1][I(θ[t]) +NSη̂(θ̃[t])] = I(θ[t])θ[t] + g(θ[t])

θ[t+1][I(θ[t]) +NSη̂(θ̃[t])] =
√
I(θ[t])

[√
I(θ[t])θ[t] +

√
I(θ[t])

−1
g(θ[t])

]
.

Therefore, the vector parameter estimator can be expressed as

θ[t+1] =
[
I(θ[t]) +NSη̂(θ̃

[t])
]−1√

I(θ[t])K [t],

whereK [t] = µ
[t]
K +ϑ[t] with µ[t]

K =
√
I(θ[t])θ[t] and ϑ[t] =

√
I(θ[t])

−1
g(θ[t]). The square root of

I(θ[t]) and its inverse are obtained via eigenvalue decomposition (see Section D.2).

D.2 Correction for positive-definiteness

An eigenvalue decomposition is a technique that allows one to express anm×m symmetric matrix

B as

B = UDUT ,

where U is an orthogonal matrix with the eigenvectors in its columns, and D is a diagonal

matrix with the corresponding eigenvalues d11, . . . , dqq, . . . , dmm in the main diagonal, sorted in

descending order. If all the eigenvalues are strictly positive, thematrix is said to be positive-definite,

and its inverse is found asB−1 = UD−1UT .

However, if at least one of its eigenvalues is null or negative, the matrix is non-positive definite,

and it must be corrected before its inversion takes place. An effective procedure that adjusts
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the problematic eigenvalues of a non-positive definite matrix, and eventually makes the matrix

positive-definite, is the following.

Without loss of generality, assume that all the eigenvalues of B are strictly positive except

for the last one, i.e., dqq > 0 for q = 1, . . . ,m − 1 and dmm ≤ 0. Define l = ∑m
q=2 dqq and

t = 100l2 + 1. The non-positive eigenvalue dmm is then substituted with the positive quantity

d̃mm = dm−1,m−1
(l − dmm)2

t
,

where dm−1,m−1 is the smallest positive eigenvalue ofB. By defining D̃ = diag(d11, . . . , dqq, . . . ,

d̃mm), the corrected positive-definite matrix B̃ can be found as

B̃ = UD̃UT ,

and its inverse as

B̃
−1 = UD̃

−1
UT .

We employed this procedure to compute and, if necessary, to correct the square root of I(θ) and

its inverse.

D.3 Derivation of the UBRE criterion

Let Aη =
√
I(θ̂)

[
I(θ̂) +NSη(θ̂)

]−1√
I(θ̂), where Aη is used as a shortcut for ATη for T =

{L,A, S,M}. Based on the derivation in Section D.1, we can work out the expression of the

UBRE criterion, i.e., the expectation of the average squared distance of µ̂K = AηK from its

expected value µK :

E
[ 1
N
||µK − µ̂K ||22

]
= E

[ 1
N
||(K − ϑ)−AηK||22

]

= E
[ 1
N
||(K −AηK)− ϑ||22

]

= 1
N
E
[
||K −AηK||22 + ϑTϑ− 2ϑT (K −AηK)

]
= 1
N
E
[
||K −AηK||22

]
+ 1
N
E
[
ϑTϑ

]
− 2
N
E
[
ϑT [µK + ϑ−Aη(µK + ϑ)]

]
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= 1
N
E
[
||K −AηK||22

]
− 1
N
E
[
ϑTϑ

]
− 2
N
E
[
ϑTµK

]
+ 2
N
E
[
ϑTAηµK

]
+ 2
N
E
[
ϑTAηϑ

]
.

We now use the following results (Wood, 2017, Section 1.8.6)

E
[
ϑTϑ

]
= E

[
N∑
α=1

ϑ2
i

]
= N,

E
[
ϑTµK

]
= E

[
ϑT
]
µK = 0,

E
[
ϑTAηµK

]
= E

[
ϑT
]
AηµK = 0,

E
[
ϑTAηϑ

]
= E

[
tr{ϑTAηϑ}

]
= E

[
tr{Aηϑϑ

T}
]

= tr{E
[
Aηϑϑ

T
]
}

= tr
{
AηE

[
ϑϑT

]}
= tr{AηI} = tr(Aη).

Then the expression of the UBRE criterion is:

E
[ 1
N
||µK − µ̂K ||22

]
= 1
N
E
[
||K −AηK||22

]
+ 2
N
tr(Aη)− 1.

D.4 Equivalence to the AIC

This section shows that V(η) is approximately proportional to the Akaike information criterion

(AIC). The AIC of a model is defined as

AIC := −2`(θ) + 2m,

where m is the number of estimated parameters in the model. Consider the following Taylor

expansion of −2`(θ̂) about −2`(θ):

−2`(θ̂) ≈ −2`(θ) + (θ̂ − θ)T∇θ[−2`(θ)] + 1
2(θ̂ − θ)T∇θ∇θT [−2`(θ)](θ̂ − θ)

≈ −2`(θ)− 2(θ̂ − θ)Tg − (θ̂ − θ)TH(θ̂ − θ), (D.1)
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where we wrote g := g(θ) and H := H(θ) for simplicity of notation. By denoting I = −H and

recalling thatK =
√
Iθ +

√
I−1

g, we have that

(θ̂ − θ)Tg = (θ̂ − θ)T
√
I
√
I
−1
g =

[√
I(θ̂ − θ)

]T √
I
−1
g

=
[√

Iθ̂ −
√
Iθ
]T √

I
−1
g =

[√
Iθ̂ −K +

√
I
−1
g
]T √

I
−1
g

= −
[
K −

√
Iθ̂
]T √

I
−1
g + gT

√
I
−1√

I
−1
g

= −
[
K −

√
Iθ̂
]T √

I
−1
g + ||

√
I
−1
g||22

= −
〈
K −

√
Iθ̂,
√
I
−1
g
〉

+ ||
√
I
−1
g||22, (D.2)

−(θ̂ − θ)TH(θ̂ − θ) = (θ̂ − θ)TI(θ̂ − θ) = ||
√
I(θ̂ − θ)||22

= ||
√
Iθ̂ −

√
Iθ||22 = ||

√
Iθ̂ −K +

√
I
−1
g||22

= ||
(
K −

√
Iθ̂
)
−
√
I
−1
g||22

= ||K −
√
Iθ̂||22 + ||

√
I
−1
g||22 − 2

〈
K −

√
Iθ̂,
√
I
−1
g
〉
, (D.3)

where we used the fact that ||a||22 = ||−a||22 for any vector a, and 〈·, ·〉 represents the inner product.

By substituting equations (D.2) and (D.3) into expression (D.1), we obtain:

−2`(θ̂) ≈ −2`(θ) + 2
〈
K −

√
Iθ̂,
√
I
−1
g
〉
− 2||

√
I
−1
g||22

+ ||K −
√
Iθ̂||22 + ||

√
I
−1
g||22 − 2

〈
K −

√
Iθ̂,
√
I
−1
g
〉

= −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22.

It then follows that

AIC = −2`(θ) + 2m ≈ −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22 + 2m

≈ −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22 + 2tr(Aη), (D.4)
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where tr(Aη) denotes the number of estimated parameters in the model, and thus, m = tr(Aη).

Since we want to optimize the criterion with respect to the tuning parameter vector η, we ignore

any terms that are not affected by it, like −2`(θ) and ||
√
I−1

g||22. After dropping these constants,

expression (D.4) becomes proportional to the AIC, that is,

AIC = ||K −
√
Iθ̂||22 + 2tr(Aη) ∝ V(η),

where ||K −
√
Iθ̂||22 is a quadratic approximation of −2`(θ̂) and tr(Aη) represents the effective

degrees of freedom of the model.

D.5 Intervals

At convergence, the covariance matrix of θ̂ is V θ̂ = Jp(θ̂)−1J (θ̂)Jp(θ̂)−1. However, for

practical purposes it is more convenient to employ at convergence the alternative Bayesian result

V θ = Jp(θ̂)−1. (For an unpenalized model V θ̂ and V θ are equivalent as there is no penalty

involved in the covariance matrices.) In fact, at finite sample sizes, V θ can produce intervals

with close to nominal “across-the-function” frequentist coverage probabilities (Marra & Wood,

2012) because the Bayesian covariance matrix includes both a bias and variance component in a

frequentist sense, a feature not shared by V θ̂. This result can be justified using the distribution of

K given in Section 7, making the large sample assumption that H(θ) can be treated as fixed, and

making the prior Bayesian assumption of θ ∼ N (0, (NSη(θ̃))−1).

The goodness of fit of the penalized model can then be evaluated through confidence in-

tervals, which are available for each model parameter, obtained from the posterior distribution

θ|{x1, . . . ,xN},η ∼ N (θ̂,V θ). Confidence intervals for non-linear functions of the parameter

vector θ can be conveniently obtained by simulation from the posterior of θ as follows. Let T (θ)

be any function of the parameters, then

Step 1 Draw Nsim random vectors θ?h (for h = 1, . . . , Nsim) from N (θ̂,V θ);

Step 2 Compute T ?h := T (θ?h)∀h, and define T ?α to be the [Nsim · α]th smallest value of the ordered

sample {T ?1 , . . . , T ?Nsim}, with [a] denoting the integer part of a ∈ R;

Step 3 Obtain an approximate (1−α)% confidence interval for T (θ̂) using
[
T ?α

2
, T ?1−α2

]
, where α is
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usually set to 0.05.

Introducing penalties in the estimation process is fundamentally motivated by the belief that in

the population, the factor structures are more likely to be sparse than dense, and similar across

sub-populations rather than heterogeneous. This prior belief can be formalized by specifying the

exponential prior exp
{
−N

2 θ
TSη(θ̃)θ

}
on the penalty function. This is equivalent to assuming

for the parameter vector a zero-mean improper Gaussian prior distribution with precision matrix

proportional toSη(θ̃), i.e., θ ∝ N (0, (NSη(θ̃))−1), whereSη(θ̃)−1 is theMoore-Penrose pseudo-

inverse of Sη(θ̃) (Wood, 2017). The proposed penalized approach can thus be viewed as an

“empirical Bayes” method that gives good frequentist properties.

Online Resource E Empirical application

The Holzinger & Swineford data set (Holzinger & Swineford, 1939; Kelley, 2019) includes the

following 19 tests: visual perception (VISUAL), cubes (CUBES), paper from board (PAPER),

flags (FLAGS), general information (GENERAL), paragraph comprehension (PARAGRAP), sen-

tence completion (SENTENCE), word classification (WORDC), word meaning (WORDM), ad-

dition (ADDITION), code (CODE), counting groups of dots (COUNTING), straight and curved

capitals (STRAIGHT), word recognition (WORDR), number recognition (NUMBERR), figure re-

cognition (FIGURER), object-number (OBJECT), number-figure (NUMBERF), figure-word (FIG-

UREW). These tests are thought of as measuring four correlated abilities: spatial ability (VISUAL,

CUBES, PAPER, FLAGS), verbal intelligence (GENERAL, PARAGRAP, SENTENCE,WORDC,

WORDM), speed (ADDITION, CODE, COUNTING, STRAIGHT), and memory (WORDR,

NUMBERR, FIGURER, OBJECT, NUMBERF, FIGUREW).

The parameter estimates of the best lslx (BIC = 7565.92; mcp, η̂ = 0.13, â = 3.32) and

regsem (BIC = 7565.21; mcp, η̂ = 1.28, a = 3.7) models are illustrated in Table E.3 for the

single-group analysis. Fixed parameters are italic and underlined. A blank cell indicates that the

corresponding estimate is zero. Two penalized cross-loadings (λ̂91, λ̂32) were identified as non-zero

by both methods. Additionally, lslx detected another secondary loading (λ̂51). Table E.4 reports

the parameter estimates for the optimal lslx model (BIC = 14697.72; mcp, η̂ = 0.14, â = 3) in

the multiple-group analysis. Non-invariant parameters across groups are starred (?).
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Measurement
model

lslx-mcp regsem-mcp

Spatial Verbal Speed Ψ Spatial Verbal Speed Ψ

VISUAL 0.85 0 0 0.62 0.84 0 0 0.66
CUBES 0.52 1.11 0.52 1.11
FLAGS 0.80 −0.17 0.73 0.86 −0.26 0.70
PARAGRAP 0 0.98 0 0.38 0 0.99 0 0.37
SENTENCE −0.12 1.17 0.40 1.11 0.44
WORDM 0.91 0.36 0.91 0.36
ADDITION 0 0 0.66 0.74 0 0 0.66 0.75
COUNTING 0.81 0.37 0.81 0.36
STRAIGHT 0.37 0.45 0.57 0.38 0.44 0.57
Structural
model Spatial Verbal Speed Spatial Verbal Speed

Spatial 1 0.51 0.31 1 0.52 0.31
Verbal - 1 0.21 - 1 0.20
Speed - - 1 - - 1

Table E.3: Parameter estimates of the nine mental tests from the Holzinger & Swineford data set
for lslx-mcp (η̂ = 0.13, â = 3.32) and regsem-mcp (η̂ = 1.28, a = 3.7).

Pasteur School Grant-White School

Measurement
model τ 1 Spatial Verbal Speed Memory Ψ1 τ 2 Spatial Verbal Speed Memory Ψ2

VISUAL 0 1 0 0 0 0.48 0 1 0 0 0 0.45
CUBES 0.01 0.64 0.87 0.01 0.64 0.67
PAPER 0.00 0.66 0.81 0.00 0.66 0.71
FLAGS 0.27? 0.86 0.62 −0.28? 0.86 0.47
GENERAL −0.03? 1.03 −0.15 0.26 0.02? 1.03 −0.15 0.31
PARAGRAP 0.00? 0.98 0.35 −0.01? 0.98 0.31
SENTENCE 0.00 −0.09 1.10 −0.10 0.25 0.00 −0.09 1.10 −0.10 0.21
WORDC −0.09? 0.04 0.84 0.40 0.09? 0.04 0.84 0.44
WORDM 0 0 1 0 0 0.23 0 0 1 0 0 0.35
ADDITION −0.02 −0.47 1.31 0.48 −0.02 −0.47 1.31 0.30
CODE −0.01 0 0.15 0.91 0.10 0.43 −0.01 0.15 0.91 0.10 0.63
COUNTING 0 0 0 1 0 0.61 0 0 0 1 0 0.52
STRAIGHT 0.00 0.37 0.76 0.63 0.00 0.37 0.76 0.46
WORDR 0 0 0 0 1 0.61 0 0 0 0 1 0.57
NUMBERR 0.00 −0.09 0.88 0.69 0.00 −0.09 0.88 0.68
FIGURER 0.01 0.40 0.69 0.72 0.01 0.40 0.69 0.46
OBJECT 0.12? −0.32 0.46 0.90 0.60 −0.15? −0.32 0.46 0.90 0.45
NUMBERF 0.03 0.68 0.77 0.03 0.49? 0.68 0.62
FIGUREW −0.28? 0.17 0.58 0.83 0.29? 0.17 0.58 0.60

Structural
model κ1 Spatial Verbal Speed Memory κ2 Spatial Verbal Speed Memory

Spatial −0.07 0.54 0.25 0.17 0.16 0.07 0.55 0.32 0.29 0.21
Verbal −0.25 0.64 0.21 0.11 0.28 0.62 0.26 0.24
Speed 0.12 0.36 0.12 −0.11 0.50 0.16
Memory −0.04 0.48 0.04 0.37

Table E.4: Parameter estimates of the 19 mental tests from the Holzinger & Swineford data set for
lslx-mcp (η̂ = 0.14, â = 3).
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Online Resource F Software implementation

The proposed methodology and estimation approach are implemented in the R package penfa

to enhance reproducible research and transparent dissemination of results. In this section, we

describe the main functions for fitting single and multiple-group factor analysis models according

to the penalized likelihood-based estimation framework proposed in this paper. To this end, we

demonstrate how users can carry out the empirical analyses presented in Sections 9.1 and 9.2. The

subsequent analyses require the R package penfa to be installed and loaded.

F.1 Penalized factor analysis

The empirical analysis presented in Section 9 employs the Holzinger & Swineford data set

(Holzinger & Swineford, 1939), a classical psychometric application on students’ mental abil-

ities. The data set, already scaled as described in Yuan and Bentler (2006), is contained in the R

package lavaan (Rosseel, 2012; Rosseel et al., 2019). Let us load and inspect the data.

data <- lavaan::HolzingerSwineford1939
summary(data)

## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
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## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##

The data set contains information on the test scores (items x1 to x9) ofN = 301 seventh-grade

and eighth-grade students on p = 9 mental tests. Additional information is available, such as the

age of the students and the attended school (i.e., Pasteur or Grant-White). Let us select and center

the data subset constituted by the nine tests.

data <- scale(data[,7:15], center = TRUE, scale = FALSE)

The following sections describe how to specify and estimate a penalized factor analysis model

using the adaptive lasso penalization to encourage a sparse factor loading matrix and the automatic

tuning parameter procedure to select the optimal amount of sparsity. This combination of penalty

and tuning selection strategy produced the model with the superior fit in the empirical analysis (see

Table 4 with the BIC ranking).

F.1.1 Model specification

Before fitting the model, users should write a “model syntax” which describes the model to be

estimated and specifies the relationships between the observed variables and the latent variables

(i.e., the common factors). To facilitate its formulation, the rules for the syntax specification

broadly follow the ones required by the package lavaan. Let us have a look at the following

syntax, which is enclosed in single quotes.

syntax <- '
# Measurement model
spatial =~ x1 + x2 + x3 + 0*x4 + x5 + x6 + 0*x7 + x8 + x9
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verbal =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + 0*x7 + x8 + x9
speed =~ 0*x1 + x2 + x3 + 0*x4 + x5 + x6 + x7 + x8 + x9

# Unit variances for common factors
spatial ~~ 1*spatial
verbal ~~ 1*verbal
speed ~~ 1*speed
'

The three common factors are referred to as spatial, verbal and speed, whereas the

observed variables names range from x1 to x9. The factors appear on the left-hand side, whereas

the observed variables on the right-hand side. The special operator “=~” is read as “is measured

by”, and is used to list the observed variables loading on each factor. The factor variances and

covariances are specified using the double tilde operator “~~”. In order to fix a parameter to a

given value, we pre-multiply (through the symbol “*”) the corresponding variable in the formula

by the specific numerical value.

The above syntax specifies a factor model with r = 3 common factors, where each observed

variable loads on each of the factors, apart from the ones whose loadings are fixed to zero for

identification purposes. The scales of the factors are specified by fixing their variances to 1.0. By

default, the unique variances are automatically added to the model, and the common factors are

allowed to correlate. These specifications can be easily modified by altering the syntax according

to one’s own preferences.

F.1.2 Model fitting

We now show how to estimate the factor analysis model specified in the syntax according to the

penalized likelihood-based approach presented in this work. The estimation process is demon-

strated for the alasso penalty and the automatic tuning procedure, but the rationale is similar for

other choices of penalty functions. The alasso employs a set of adaptive weights correcting the

bias issue of the lasso. A common choice for the weights is given by the maximum likelihood

estimates from the unpenalized factor model. The unpenalized model can be estimated through

the function penfa as follows:
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fit.mle <- penfa(model = syntax,
data = data,
information = "fisher",
pen.shrink = "none",
pen.diff = "none",
eta = list(shrink = c("none" = 0),

diff = c("none" = 0)),
strategy = "fixed",
verbose = FALSE)

The function penfa takes as first argument the user-specified model syntax, and as second

argument the data set with the observed variables. The information argument allows users

to choose between the penalized expected Fisher information (“fisher”) or the penalized Hessian

matrix (“hessian”) as second-order derivatives to be used in the trust-region algorithm. In the

pen.shrink and pen.diff arguments, users can specify the penalty functions for sparsity and

parameter equivalence (for multiple-group analyses); when they are both set equal to “none”, no

penalization is applied, and the model is estimated by ordinary maximum likelihood. We specify

strategy equal to “fixed” to prompt an analysis using as tuning values the ones defined in the

eta argument. We can get an overview of the data set and the optimization process by printing the

fit.mle object.

fit.mle

## penfa reached convergence
##
## Number of observations 301
##
## Estimator MLE
## Optimization method trust-region
## Information fisher
## Strategy fixed
## Number of iterations 15
## Effective degrees of freedom 33.000
##

The trust-region algorithm required a small number of iterations to converge. Since no penaliz-

ation is imposed, the effective degrees of freedom coincide with the number of model parameters,

that is, edf = m = 33. The parameter estimates can be extracted through the function coef

together with their names. Each name is composed of three parts and reflects the part of the
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formula in which a given parameter is involved. The variable name appears on the left-hand side of

the formula, the operator is placed in the middle, and the variable corresponding to the parameter

is on the right-hand side.

weights <- coef(fit.mle)
weights

## spatial=~x1 spatial=~x2 spatial=~x3 spatial=~x5
## 0.814 0.652 0.909 -0.134
## spatial=~x6 spatial=~x8 spatial=~x9 verbal=~x2
## 0.067 0.296 0.540 -0.118
## verbal=~x3 verbal=~x4 verbal=~x5 verbal=~x6
## -0.330 0.987 1.193 0.875
## verbal=~x8 verbal=~x9 speed=~x2 speed=~x3
## -0.158 -0.141 -0.161 -0.012
## speed=~x5 speed=~x6 speed=~x7 speed=~x8
## 0.008 -0.020 0.767 0.680
## speed=~x9 x1~~x1 x2~~x2 x3~~x3
## 0.433 0.696 1.035 0.692
## x4~~x4 x5~~x5 x6~~x6 x7~~x7
## 0.377 0.403 0.365 0.594
## x8~~x8 x9~~x9 spatial~~verbal spatial~~speed
## 0.479 0.551 0.585 0.173
## verbal~~speed
## 0.220

The estimation of the penalized factor model is again carried out through the penfa function,

but with some new arguments. The alasso penalty is specified in the pen.shrink argument

(pen.diff is still equal to “none”), whereas the adaptive weights are given in the weights

argument. The value of the additional tuning parameter a of the alasso can be assigned through

the a.alasso argument, whereas the eta argument allows users to provide a starting value for the

shrinkage parameter η. The name given to the starting value - “lambda” in this case - reflects the

parameter matrix or vector to be penalized. By default, all of its elements are penalized, which

means here that the penalization is applied to all of the factor loadings. If “strategy” is specified

equal to “fixed”, then a penalized model with the value of η given in eta is estimated, whereas the

automatic tuning parameter procedure is carried out when strategy is set equal to “auto”. Lastly,

users can choose a specific value of the influence factor γ through the gamma argument.
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fit <- penfa(## factor model
model = syntax,
data = data,
information = "fisher",
# penalization
pen.shrink = "alasso",
pen.diff = "none",
eta = list(shrink = c("lambda" = 0.01),

diff = c("none" = 0)),
# automatic procedure
strategy = "auto",
gamma = 4.5,
# alasso
a.alasso = 1,
weights = weights,
verbose = FALSE)

fit

## penfa reached convergence
##
## Number of observations 301
##
## Estimator PMLE
## Optimization method trust-region
## Information fisher
## Strategy auto
## Number of iterations (total) 32
## Number of two-steps (automatic) 1
## Effective degrees of freedom 22.843
##
## Penalty function:
## Sparsity alasso
##

Printing the fitted object gives an overview of the optimization and penalization processes,

including the employed optimizer and penalty function, the total number of iterations and the

number of outer iterations of the automatic procedure. The automatic procedure is very fast, as it

required a single outer iteration to reach convergence. The number of effective degrees of freedom

of the penalized model is edf = 22.843, which is a fractional number, as opposed to the integer

number that existing penalized factor analytic techniques report for the degrees of freedom.

The summary function details information on the model characteristics, the optimization and

the penalization procedures, as well as the parameter estimates with associated standard errors and
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confidence intervals. The optimal value of the tuning parameter is η̂ = 0.017. The data set well

supported the introduction of sparsity, as demonstrated by the reduction in theGeneralizedBayesian

Information Criterion (GBIC) when moving from the unpenalized model fit.mle (7601.416) to

its penalized counterpart fit (7558.026). The Type column distinguishes between the fixed

parameters that have been set to specific values for identification purposes, the free parameters that

have been estimated through ordinary maximum likelihood, and the penalized parameters (denoted

as pen). The standard errors are computed as the square root of the inverse of the penalized Fisher

information matrix (or alternatively, of the penalized Hessian if information = “hessian”). The

last columns report 95% confidence intervals for the model parameters. The standard errors and

the confidence intervals of the penalized parameters that were shrunken to zero are not reported.

A different significance level can be specified through the level argument in the summary call.

summary(fit)

## penfa reached convergence
##
## Number of observations 301
## Number of groups 1
## Number of observed variables 9
## Number of latent factors 3
##
## Estimator PMLE
## Optimization method trust-region
## Information fisher
## Strategy auto
## Number of iterations (total) 32
## Number of two-steps (automatic) 1
## Influence factor 4.5
## Number of parameters:
## Free 12
## Penalized 21
## Effective degrees of freedom 22.843
## GIC 7473.346
## GBIC 7558.026
##
## Penalty function:
## Sparsity alasso
##
## Additional tuning parameter
## alasso 1
##
## Optimal tuning parameter:
## Sparsity
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## - Factor loadings 0.017
##
## Parameter Estimates:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
## x1 pen 0.829 0.073 0.685 0.972
## x2 pen 0.493 0.073 0.350 0.636
## x3 pen 0.758 0.086 0.591 0.926
## x4 fixed 0.000 0.000 0.000
## x5 pen -0.060 0.034 -0.128 0.007
## x6 pen 0.000
## x7 fixed 0.000 0.000 0.000
## x8 pen 0.124 0.059 0.008 0.239
## x9 pen 0.410 0.062 0.290 0.531
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.157 0.066 -0.286 -0.029
## x4 pen 0.960 0.055 0.852 1.069
## x5 pen 1.114 0.065 0.987 1.240
## x6 pen 0.889 0.052 0.787 0.992
## x7 fixed 0.000 0.000 0.000
## x8 pen -0.000
## x9 pen -0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.013
## x3 pen 0.000
## x4 fixed 0.000 0.000 0.000
## x5 pen 0.000
## x6 pen 0.000
## x7 pen 0.697 0.078 0.544 0.850
## x8 pen 0.704 0.077 0.553 0.854
## x9 pen 0.423 0.060 0.305 0.541
##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.481 0.065 0.354 0.609
## speed free 0.196 0.098 0.004 0.389
## verbal ~~
## speed free 0.160 0.077 0.008 0.312
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial fixed 1.000 1.000 1.000
## verbal fixed 1.000 1.000 1.000
## speed fixed 1.000 1.000 1.000
## .x1 free 0.623 0.095 0.438 0.809
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## .x2 free 1.110 0.099 0.917 1.304
## .x3 free 0.748 0.092 0.567 0.930
## .x4 free 0.380 0.048 0.287 0.473
## .x5 free 0.418 0.059 0.303 0.533
## .x6 free 0.363 0.043 0.279 0.447
## .x7 free 0.669 0.097 0.479 0.859
## .x8 free 0.444 0.087 0.273 0.616
## .x9 free 0.560 0.059 0.444 0.676

The penalty matrix Sη̂(θ̂) at convergence is stored in the slot @Penalize. It is a diagonal

matrix with the elements on the diagonal quantifying the extent to which each model parameter

has been penalized.

round(diag(fit@Penalize@Sh.info$S.h), 2)

## spatial=~x1 spatial=~x2 spatial=~x3 spatial=~x5
## 7.64 16.02 7.47 639.57
## spatial=~x6 spatial=~x8 spatial=~x9 verbal=~x2
## 626389.20 140.69 23.27 427303.89
## verbal=~x3 verbal=~x4 verbal=~x5 verbal=~x6
## 99.47 5.44 3.88 6.62
## verbal=~x8 verbal=~x9 speed=~x2 speed=~x3
## 246589.16 347789.43 2446.04 4332622.32
## speed=~x5 speed=~x6 speed=~x7 speed=~x8
## 6419433.77 2587290.17 9.63 10.76
## speed=~x9 x1~~x1 x2~~x2 x3~~x3
## 28.16 0.00 0.00 0.00
## x4~~x4 x5~~x5 x6~~x6 x7~~x7
## 0.00 0.00 0.00 0.00
## x8~~x8 x9~~x9 spatial~~verbal spatial~~speed
## 0.00 0.00 0.00 0.00
## verbal~~speed
## 0.00

The values corresponding to the factor loadings are different from zero, as these are the

parameters that have been penalized, whereas the values for the unique variances (x1~~x1 to

x9~~x9) and the factor covariances (spatial~~verbal, spatial~~speed, verbal~~speed) are

zero, as these elements were not affected by the penalization. The magnitude of the penalization

varied depending on the size of the factor loading to be penalized: small loadings received a

considerable penalty, whereas large loadings a little one. Figure F.3 shows the heat map of the

penalty matrix SA
η̂ (θ̂) on a log-scale, given the wide range of its elements (from 0 to over 6× 106).
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Figure F.3: Heat map of the penalty matrix SA
η̂ (θ̂) on a log-scale for penfa-alasso (a = 1, γ =

4.5) on the Holzinger & Swineford data set.

F.2 Penalized multiple-group factor analysis

As a followup, we consider the penalized estimation of a multiple-group factor model with the

alasso penalty and the automatic multiple tuning procedure (Section 9.2). Interestingly, there are

now multiple tuning parameters: one of them introduces sparsity in the factor loading matrices of

each group, whereas the other two encourage cross-group invariance of loadings and intercepts.

For this example, we use the complete version of the Holzinger & Swineford data set in the R

package MBESS (Kelley, 2019). An inspection at the data set reveals that it contains the scores on

26 tests from N = 301 students attending the Pasteur and Grant-White schools. We analyze the

subset consisting of the first p = 19 tests, which we standardized to handle the scaling effect. The

variables were also renamed for convenience when formulating the syntax.

library(MBESS)
data(HS)
data <- HS[,8:27]
colnames(data) <- c("school","visual","cubes","paper","flags", "general",
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"paragrap", "sentence", "wordc", "wordm", "addition",
"code", "counting", "straight", "wordr", "numberr",
"figurer", "object", "numberf", "figurew")

summary(data)

## school visual cubes paper
## Grant-White:145 Min. : 4.00 Min. : 9.00 Min. : 6.00
## Pasteur :156 1st Qu.:25.00 1st Qu.:21.00 1st Qu.:12.00
## Median :30.00 Median :24.00 Median :14.00
## Mean :29.61 Mean :24.35 Mean :14.23
## 3rd Qu.:34.00 3rd Qu.:27.00 3rd Qu.:16.00
## Max. :51.00 Max. :37.00 Max. :25.00
## flags general paragrap sentence
## Min. : 2 Min. : 8.00 Min. : 0.000 Min. : 4.00
## 1st Qu.:11 1st Qu.:31.00 1st Qu.: 7.000 1st Qu.:14.00
## Median :17 Median :41.00 Median : 9.000 Median :18.00
## Mean :18 Mean :40.62 Mean : 9.183 Mean :17.36
## 3rd Qu.:25 3rd Qu.:49.00 3rd Qu.:11.000 3rd Qu.:21.00
## Max. :36 Max. :84.00 Max. :19.000 Max. :28.00
## wordc wordm addition code
## Min. :10.00 Min. : 1.0 Min. : 30.00 Min. : 19.00
## 1st Qu.:23.00 1st Qu.:10.0 1st Qu.: 80.00 1st Qu.: 60.00
## Median :26.00 Median :14.0 Median : 94.00 Median : 68.00
## Mean :26.13 Mean :15.3 Mean : 96.24 Mean : 69.16
## 3rd Qu.:30.00 3rd Qu.:19.0 3rd Qu.:113.00 3rd Qu.: 79.00
## Max. :43.00 Max. :43.0 Max. :171.00 Max. :118.00
## counting straight wordr numberr
## Min. : 61.0 Min. :100.0 Min. :121.0 Min. : 68
## 1st Qu.: 97.0 1st Qu.:171.0 1st Qu.:168.0 1st Qu.: 84
## Median :110.0 Median :195.0 Median :176.0 Median : 90
## Mean :110.5 Mean :193.4 Mean :175.2 Mean : 90
## 3rd Qu.:122.0 3rd Qu.:219.0 3rd Qu.:184.0 3rd Qu.: 96
## Max. :200.0 Max. :333.0 Max. :198.0 Max. :112
## figurer object numberf figurew
## Min. : 58.0 Min. : 0.000 Min. : 0.000 Min. : 3.00
## 1st Qu.: 98.0 1st Qu.: 5.000 1st Qu.: 6.000 1st Qu.:11.00
## Median :103.0 Median : 8.000 Median : 9.000 Median :14.00
## Mean :102.5 Mean : 8.216 Mean : 9.395 Mean :14.02
## 3rd Qu.:107.0 3rd Qu.:11.000 3rd Qu.:12.000 3rd Qu.:17.00
## Max. :119.0 Max. :26.000 Max. :20.000 Max. :20.00

data[, 2:20] <- scale(data[, 2:20])
colnames(data)[2:20] <- paste0("x", 1:19)
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F.2.1 Model specification

The syntax becomes more elaborate, due to the additional specification of the mean structure.

syntax.mg <-
'
# Measurement model
spatial =~ 1*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
verbal =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1*x9 + x10 +

x11 + 0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
speed =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 1*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
memory =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 0*x12 + x13 + 1*x14 + x15 + x16 + x17 + x18 + x19

# Estimate intercepts
x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 +

x13 + x15 + x16 + x17 + x18 + x19 ~ 1

# Fixed intercepts
x1 + x9 + x12 + x14 ~ 0*1

# Structural model
spatial ~~ NA*spatial
verbal ~~ NA*verbal
speed ~~ NA*speed
memory ~~ NA*memory

spatial ~ NA*1
verbal ~ NA*1
speed ~ NA*1
memory ~ NA*1 '

The mean structure can be explicitly introduced by including “intercept formulas” in the model

syntax. These expressions are constituted by the name of the variable, followed by the tilde operator

“~”, and the number 1. If the variable appearing in the formula is an observed variable, then the

formula specifies the intercept term for that item; if the variable is latent (i.e., a common factor),

then the formula specifies a factor mean. To avoid clutter, if users desire to introduce intercepts

for multiple variables, they can specify on the left-hand side all the variables of interest, followed

by plus (“+”) signs. By default, the factor means are fixed to zero. Provided that identification

restrictions are applied, users can force the estimation of any model parameter by pre-multiplying
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the variable name on the right-hand side by NA. This is done in the syntax for the means and the

variances of the common factors.

The syntax above specifies a factor model with r = 4 factors and p = 19 observed variables.

The metric of the factors is accommodated through the “marker-variable” approach, with the

markers being x1, x9, x12, x14. The structural model is freely estimated. The fact that the syntax

should prompt a multiple-group analysis is communicated to penfa through proper arguments (see

below for details). The model in the syntax is fitted to all groups.

Before carrying out the penalized estimation, we fit the unpenalized model to obtain the

maximum likelihood estimates to be used as weights for the alasso. To facilitate the estimation

process, we can provide informative starting values to (some of) the parameters. This can be

done through the pre-multiplication mechanism employed to fix some parameter values, but the

numeric constant becomes the argument of the function start. To fix parameters or provide

starting values in case of multiple groups, we use the same pre-multiplication mechanism, but the

numeric argument is a vector of arguments, one for each group. When users provide a single value

instead of a vector of values, that element is applied for all groups. The syntax below provides a

starting value equal to 0.8 to the primary loadings of all factors.

syntax.mle.mg <- '
# Measurement model + starting values
spatial =~ 1*x1 + start(0.8)*x2 + start(0.8)*x3 + start(0.8)*x4 +

x5 + x6 + x7 + x8 + 0*x9 + x10 + x11 + 0*x12 + x13 +
0*x14 + x15 + x16 + x17 + x18 + x19

verbal =~ 0*x1 + x2 + x3 + x4 + start(0.8)*x5 + start(0.8)*x6 +
start(0.8)*x7 + start(0.8)*x8 + 1*x9 + x10 + x11 +
0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19

speed =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 +
start(0.8)*x10 + start(0.8)*x11 + 1*x12 +
start(0.8)*x13 + 0*x14 + x15 + x16 + x17 + x18 + x19

memory =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +
x11 + 0*x12 + x13 + 1*x14 + start(0.8)*x15 +
start(0.8)*x16 + start(0.8)*x17 + start(0.8)*x18 +
start(0.8)*x19

# Estimate intercepts
x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x13 + x15 + x16 +
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x17 + x18 + x19 ~ 1
# Fix intercepts
x1 + x9 + x12 + x14 ~ 0*1

# Structural model
spatial ~~ NA*spatial
verbal ~~ NA*verbal
speed ~~ NA*speed
memory ~~ NA*memory

spatial ~ NA*1
verbal ~ NA*1
speed ~ NA*1
memory ~ NA*1 '

As for the single-group analysis, the fit of the unpenalizedmultiple-group factormodel is carried

out through the penfa function, with the specification of two new arguments: meanstructure

and group. The argument meanstructure is set to TRUE to obtain the estimates of the means of

the observed and the latent variables. In the group argument, we indicate the name of the group

variable in the data set, which is the “school” attended by the students.

fit.mle.mg <- penfa(# factor model
model = syntax.mle.mg,
data = data,
information = "fisher",
meanstructure = TRUE,
group = "school",
# No penalization
pen.shrink = "none",
pen.diff = "none",
eta = list(shrink = c("none" = 0),

diff = c("none" = 0)),
strategy = "fixed",
verbose = FALSE)

weights.mg <- coef(fit.mle.mg)
fit.mle.mg

## penfa reached convergence
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
##
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## Estimator MLE
## Optimization method trust-region
## Information fisher
## Strategy fixed
## Number of iterations 21
## Effective degrees of freedom 216.000
##

F.2.2 Model fitting

We can now proceed with the estimation of the penalized multiple-group factor model with the

alasso penalization and the automatic tuning procedure to find the optimal value of the tuning

parameter vector η = (η1, η2, η3)T . The penalty function employed to shrink the pairwise group

differences of the factor loadings and the intercepts can be specified through the diff argument.

The argument eta is now a list that determines the starting values for each of the tuning parameters

on the specified parameter matrices and vectors.

fit.mg <- penfa(# factor model
model = syntax.mg,
data = data,
information = "fisher",
meanstructure = TRUE,
group = "school",
# penalization
pen.shrink = "alasso",
pen.diff = "alasso",
eta = list(shrink = c("lambda" = 0.01),

diff = c("lambda" = 0.1, "tau" = 0.01)),
# automatic procedure
strategy = "auto",
gamma = 4,
# alasso
a.alasso = 1,
weights = weights.mg,
verbose = FALSE)

From the summary of the fitted object, we can notice that the automatic tuning procedure

required just a couple of iterations to converge. The optimal tuning parameters are η̂1 = 0.006, η̂2 =

16221.852 and η̂3 = 0.013. The analysis benefited from the encouragement of sparsity and loading
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and intercept invariance, as it is evident from the reduction in the GBIC after the penalization

(from 15123.43 for the unpenalized model to 14658 for the penalized model).

summary(fit.mg)

## penfa reached convergence
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of groups 2
## Number of observed variables 19
## Number of latent factors 4
##
## Estimator PMLE
## Optimization method trust-region
## Information fisher
## Strategy auto
## Number of iterations (total) 347
## Number of two-steps (automatic) 5
## Influence factor 4
## Number of parameters:
## Free 66
## Penalized 150
## Effective degrees of freedom 109.242
## GIC 14253.027
## GBIC 14657.998
##
## Penalty functions:
## Sparsity alasso
## Invariance alasso
##
## Additional tuning parameter
## alasso 1
##
## Optimal tuning parameters:
## Sparsity
## - Factor loadings 0.006
## Invariance
## - Factor loadings 16221.852
## - Intercepts 0.013
##
##
## Parameter Estimates:
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
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## x1 fixed 1.000 1.000 1.000
## x2 pen 0.583 0.082 0.423 0.744
## x3 pen 0.618 0.082 0.457 0.779
## x4 pen 0.863 0.094 0.678 1.047
## x5 pen -0.000
## x6 pen 0.000
## x7 pen -0.121 0.045 -0.210 -0.032
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen -0.401 0.095 -0.588 -0.215
## x11 pen 0.000
## x12 fixed 0.000 0.000 0.000
## x13 pen 0.397 0.078 0.245 0.550
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.018
## x16 pen 0.367 0.080 0.211 0.523
## x17 pen -0.231 0.077 -0.382 -0.080
## x18 pen 0.001
## x19 pen 0.059 0.042 0.024 0.142
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.087 0.051 -0.187 0.013
## x5 pen 1.020 0.056 0.910 1.130
## x6 pen 0.957 0.055 0.849 1.064
## x7 pen 1.075 0.059 0.960 1.191
## x8 pen 0.839 0.058 0.725 0.952
## x9 fixed 1.000 1.000 1.000
## x10 pen 0.141 0.064 0.015 0.267
## x11 pen 0.168 0.052 0.066 0.270
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 0.000 0.000 0.000
## x15 pen -0.143 0.055 -0.250 -0.036
## x16 pen -0.000
## x17 pen 0.000
## x18 pen 0.000
## x19 pen 0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.000
## x5 pen 0.000
## x6 pen -0.000
## x7 pen -0.000
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.988 0.113 0.765 1.210
## x11 pen 0.744 0.089 0.570 0.918
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## x12 fixed 1.000 1.000 1.000
## x13 pen 0.677 0.087 0.506 0.848
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.000
## x16 pen 0.000
## x17 pen 0.321 0.078 0.168 0.475
## x18 pen 0.245 0.070 0.108 0.382
## x19 pen 0.093 0.045 0.005 0.181
## memory =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.000
## x4 pen 0.000
## x5 pen -0.109 0.045 -0.198 -0.020
## x6 pen 0.009
## x7 pen -0.000
## x8 pen 0.028
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.145 0.073 0.002 0.288
## x11 pen 0.267 0.079 0.113 0.422
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 1.000 1.000 1.000
## x15 pen 0.838 0.110 0.624 1.053
## x16 pen 0.632 0.100 0.435 0.828
## x17 pen 0.875 0.115 0.649 1.100
## x18 pen 0.647 0.098 0.455 0.840
## x19 pen 0.533 0.093 0.351 0.714
##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.281 0.067 0.150 0.411
## speed free 0.158 0.062 0.037 0.278
## memory free 0.174 0.064 0.049 0.300
## verbal ~~
## speed free 0.185 0.059 0.071 0.300
## memory free 0.104 0.059 -0.012 0.220
## speed ~~
## memory free 0.075 0.057 -0.038 0.187
##
## Type Estimate Std.Err 2.5% 97.5%
## .x2 pen 0.009 0.056 -0.100 0.119
## .x3 pen 0.001 0.056 -0.108 0.110
## .x4 pen 0.137 0.070 0.001 0.273
## .x5 pen -0.012 0.044 -0.099 0.074
## .x6 pen -0.007 0.044 -0.094 0.079
## .x7 pen -0.006 0.043 -0.091 0.079
## .x8 pen -0.081 0.055 -0.188 0.026
## .x10 pen 0.145 0.078 -0.008 0.298
## .x11 pen 0.000 0.053 -0.104 0.104
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## .x13 pen -0.002 0.052 -0.104 0.099
## .x15 pen 0.000 0.060 -0.117 0.118
## .x16 pen 0.016 0.054 -0.090 0.121
## .x17 pen 0.164 0.077 0.012 0.316
## .x18 pen -0.002 0.057 -0.114 0.110
## .x19 pen -0.204 0.075 -0.352 -0.057
## .x1 fixed 0.000 0.000 0.000
## .x9 fixed 0.000 0.000 0.000
## .x12 fixed 0.000 0.000 0.000
## .x14 fixed 0.000 0.000 0.000
## spatial free -0.021 0.077 -0.173 0.130
## verbal free -0.259 0.073 -0.402 -0.116
## speed free 0.089 0.074 -0.055 0.234
## memory free -0.046 0.077 -0.198 0.105
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial free 0.591 0.106 0.384 0.798
## verbal free 0.656 0.091 0.477 0.834
## speed free 0.441 0.087 0.271 0.612
## memory free 0.519 0.104 0.315 0.722
## .x1 free 0.437 0.079 0.283 0.591
## .x2 free 0.886 0.107 0.677 1.095
## .x3 free 0.814 0.099 0.619 1.008
## .x4 free 0.612 0.087 0.442 0.781
## .x5 free 0.257 0.038 0.183 0.331
## .x6 free 0.348 0.046 0.258 0.439
## .x7 free 0.254 0.039 0.179 0.330
## .x8 free 0.407 0.051 0.307 0.506
## .x9 free 0.230 0.035 0.162 0.298
## .x10 free 0.523 0.085 0.356 0.689
## .x11 free 0.441 0.061 0.321 0.561
## .x12 free 0.543 0.084 0.378 0.707
## .x13 free 0.617 0.082 0.456 0.778
## .x14 free 0.580 0.091 0.402 0.758
## .x15 free 0.676 0.092 0.495 0.857
## .x16 free 0.735 0.094 0.550 0.919
## .x17 free 0.625 0.089 0.450 0.800
## .x18 free 0.778 0.096 0.589 0.966
## .x19 free 0.846 0.101 0.648 1.044
##
## Group 2 [Grant-White]:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
## x1 fixed 1.000 1.000 1.000
## x2 pen 0.583 0.082 0.423 0.744
## x3 pen 0.618 0.082 0.457 0.779
## x4 pen 0.863 0.094 0.678 1.047
## x5 pen -0.000
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## x6 pen 0.000
## x7 pen -0.121 0.045 -0.210 -0.032
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen -0.401 0.095 -0.588 -0.215
## x11 pen 0.000
## x12 fixed 0.000 0.000 0.000
## x13 pen 0.397 0.078 0.245 0.550
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.018
## x16 pen 0.367 0.080 0.211 0.523
## x17 pen -0.231 0.077 -0.382 -0.080
## x18 pen 0.001
## x19 pen 0.059 0.042 -0.024 0.142
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.087 0.051 -0.187 0.013
## x5 pen 1.020 0.056 0.910 1.130
## x6 pen 0.957 0.055 0.849 1.064
## x7 pen 1.075 0.059 0.960 1.191
## x8 pen 0.839 0.058 0.725 0.952
## x9 fixed 1.000 1.000 1.000
## x10 pen 0.141 0.064 0.015 0.267
## x11 pen 0.168 0.052 0.066 0.270
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 0.000 0.000 0.000
## x15 pen -0.143 0.055 -0.250 -0.036
## x16 pen -0.000
## x17 pen 0.000
## x18 pen 0.000
## x19 pen 0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.000
## x5 pen 0.000
## x6 pen -0.000
## x7 pen -0.000
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.988 0.113 0.765 1.210
## x11 pen 0.744 0.089 0.570 0.918
## x12 fixed 1.000 1.000 1.000
## x13 pen 0.677 0.087 0.506 0.848
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.000
## x16 pen 0.000
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## x17 pen 0.321 0.078 0.168 0.475
## x18 pen 0.245 0.070 0.108 0.382
## x19 pen 0.093 0.045 0.005 0.181
## memory =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.000
## x4 pen 0.000
## x5 pen -0.109 0.045 -0.198 -0.020
## x6 pen 0.009
## x7 pen -0.000
## x8 pen 0.028
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.145 0.073 0.002 0.288
## x11 pen 0.267 0.079 0.113 0.422
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 1.000 1.000 1.000
## x15 pen 0.838 0.110 0.624 1.053
## x16 pen 0.632 0.100 0.435 0.828
## x17 pen 0.875 0.115 0.649 1.100
## x18 pen 0.647 0.098 0.455 0.840
## x19 pen 0.533 0.093 0.351 0.714
##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.363 0.071 0.223 0.503
## speed free 0.289 0.074 0.143 0.434
## memory free 0.242 0.064 0.117 0.367
## verbal ~~
## speed free 0.231 0.067 0.100 0.362
## memory free 0.257 0.061 0.138 0.375
## speed ~~
## memory free 0.158 0.062 0.037 0.279
##
## Intercepts:
## Type Estimate Std.Err 2.5% 97.5%
## .x2 pen 0.011 0.056 -0.098 0.121
## .x3 pen 0.001 0.056 -0.108 0.110
## .x4 pen -0.163 0.067 -0.294 -0.032
## .x5 pen -0.008 0.044 -0.095 0.079
## .x6 pen -0.007 0.044 -0.094 0.079
## .x7 pen -0.006 0.043 -0.091 0.079
## .x8 pen 0.074 0.059 -0.041 0.189
## .x10 pen -0.179 0.072 -0.319 -0.038
## .x11 pen -0.000 0.053 -0.104 0.104
## .x13 pen -0.002 0.052 -0.104 0.099
## .x15 pen -0.000 0.060 -0.118 0.117
## .x16 pen 0.016 0.054 -0.089 0.121
## .x17 pen -0.191 0.073 -0.335 -0.048
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## .x18 pen -0.002 0.057 -0.114 0.110
## .x19 pen 0.235 0.068 0.102 0.369
## .x1 fixed 0.000 0.000 0.000
## .x9 fixed 0.000 0.000 0.000
## .x12 fixed 0.000 0.000 0.000
## .x14 fixed 0.000 0.000 0.000
## spatial free 0.023 0.080 -0.134 0.180
## verbal free 0.289 0.075 0.141 0.436
## speed free -0.085 0.082 -0.246 0.075
## memory free 0.052 0.075 -0.095 0.199
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial free 0.597 0.108 0.385 0.808
## verbal free 0.625 0.092 0.445 0.805
## speed free 0.627 0.115 0.402 0.851
## memory free 0.420 0.088 0.248 0.591
## .x1 free 0.435 0.074 0.290 0.579
## .x2 free 0.683 0.086 0.515 0.851
## .x3 free 0.712 0.090 0.536 0.888
## .x4 free 0.472 0.070 0.334 0.610
## .x5 free 0.311 0.045 0.222 0.400
## .x6 free 0.313 0.044 0.226 0.400
## .x7 free 0.219 0.037 0.147 0.292
## .x8 free 0.446 0.058 0.333 0.560
## .x9 free 0.346 0.049 0.250 0.442
## .x10 free 0.335 0.067 0.203 0.467
## .x11 free 0.615 0.082 0.454 0.775
## .x12 free 0.442 0.075 0.295 0.590
## .x13 free 0.443 0.065 0.315 0.570
## .x14 free 0.556 0.084 0.392 0.719
## .x15 free 0.674 0.091 0.496 0.851
## .x16 free 0.471 0.065 0.344 0.598
## .x17 free 0.464 0.069 0.328 0.601
## .x18 free 0.649 0.083 0.487 0.812
## .x19 free 0.600 0.075 0.453 0.746

The diagonal elements of the penaltymatrixSA
η̂ (θ̂) are roughly in the range [−3×1012, 3×1012].

In Figure F.4a, we find the heat map of the penalty matrix DA
η̂1(θ̂), which shrinks the small factor

loadings of each group to zero. Because the range of the diagonal elements of the penalty matrix

is very wide, we employed the log-scale. The non-zero diagonal elements correspond to the factor

loadings of the two groups. All of the remaining entries of the penalty matrix are equal to zero.

Figure F.4b represents the heat map of the penalty matrix DA
η̂2(θ̂), which shrinks the pairwise

group differences of the factor loadings towards zero. Similarly, the heat map of the penalty matrix

DA
η̂3(θ̂) shrinks the pairwise group differences of the intercepts, and is depicted in Figure F.4c.
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Further details, examples, and options can be found in the documentation of the R package

penfa.

R session info: mgcv (version 1.8-24), GJRM (version 0.2).

(a) Heat map of DA
η̂1

(θ̂) on a log-scale.
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(b) Heat map of DA
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(θ̂) on a log-scale.
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(c) Heat map of DA
η̂3

(θ̂) on a log-scale.
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Figure F.4: Representation of the penalty matrices for sparsity of the factor loadings and loading
and intercept invariance on a log-scale for penfa-alasso (a = 1, γ = 4) on the Holzinger &
Swineford data set.
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