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This document contains the supplementary material to the paper Bayesian analysis of ANOVA
and mixed models on the log-transformed response variable and it is organized as follows. In section
S1 we complement the discussion on the choice of prior specification for the hyper-parameters γ
contained in section 4.1 of the main paper. In section S2, the minimum MSE estimator conditioned
to the variance components of the overall mean θm is derived and its connection to the Bayesian
framework is explained. This quantity is used as benchmark in the simulation study. In Section S3,
some additional tables concerning the results of the simulation discussed in Section 5 of the paper
are reported. Section S4 contains an additional simulation study in which covariates are included
in the model and the frequentist properties of the posterior predictive distribution are investigated.
Section S5 reports the information about the convergence diagnostics of the MCMC algorithm used
to fit the models compared in the application of Section 6. Eventually, the proof of Corollary 1
and some software details useful to estimate models with dependent random effects are contained
in Section S6.

S1 A simulation exercise for the choice of γ

The conditions on the existence of moments in theorem 1 are expressed as lower bounds for γ
parameters. In section 4.1, we suggest for the γs to set a priori values close, but somewhat larger,
than the lower bounds stated in the theorem. The reason is that a value of γ very close to the lower
bound would cause numerical instability in the estimation of moments from the relevant posteriors
(technically the integral is finite, but very large). Specifically, provided r is the moment order in
whose finiteness we are interested, we suggest to set γ to the lower bound that warrants the existence
of the r + c moment where c is a small constant. The aim of this simulation exercise is to show
why setting c > 0 is necessary and to justify that c ≥ 0.5 is a sensible choice. To stay safe on the
numerical stability side, in the simulations and applications of the main paper we set c = 1.

To the purposes of this section, we consider a single scenario from the simulation study described
in section 5 (specifically: nj = 2, σ2 = 0.5, φ = 1). We focus on the functional θm. The γm
parameter of prior (16) is fixed as to guarantee the existence of the r + c moment with r = 2.
Three different choices of c, i.e. c = 0.01, 0.5, 1 are compared. Figure S1 reports the Monte Carlo
distributions (based on B = 10000 replicates) of posterior standard deviations sd(θm|w). The
numerical instability associated to very small c, i.e. c = 0.01, is apparent from the heavy tail of
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Figure S1: Monte Carlo distributions of the posterior standard deviation of θm under different
choices of c.

the MC distribution. When c increases and γm is well above the lower bound for the existence of
second moment, large outliers (caused by numerical instability) disappear.

S2 Minimum MSE estimator conditioned to the variance compo-
nents

In order to have a complete characterization of the estimation problem, a useful finding might be
the minimum MSE Bayes estimator, conditioned with respect to the variance components. It is the
parallel result of the one by Zellner (1971) for the log-normal mean. Even if the deduced estimator
could be of little practical interest, it might represent an useful benchmark for the considered
methods in the simulation study.

For computational easiness, the one-way random effect model (9) in the balanced case (i.e. nj =
ng, ∀j) is considered. Moreover, we include in the model only a general mean term xTijβ = µ, ∀i, j.
Assuming the variance components σ2 and τ2 as known, the only unknown parameter is the global
mean in the log-scale µ. Similarly to Zellner (1971), the research of an optimal conditional estimator
is restricted to the class of estimators θ∗m = exp {w̄} k. The main result and its relationship with
the Bayesian estimation is contained in the following theorem.

Proposition 1. Considering the estimators of the functional θm = exp{µ + 2−1(σ2 + τ2)} that
consider σ2 and τ2 as known and are included in the class:

θ∗m = k · exp{w̄};

then the one that minimizes the frequentist MSE is:

θ̂∗m = exp

{
w̄ +

σ2 + τ2

2
− 3(σ2 + ngτ

2)

2n

}
.
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Furthermore, it coincides with the conditioned Bayes estimator under the prior p(µ) ∝ 1 that
minimizes the relative quadratic loss function.

Proof. Recalling that w̄ ∼ N
(
µ, σ2n−1 + τ2m−1

)
, the MSE of the considered class of estimator is:

E[(θ∗m − θm)2] = k2 exp
{

2
(
µ+ σ2n−1 + τ2m−1

)}
+

− 2k exp

{
2µ+

σ2m+ τ2n+ nm(σ2 + τ2)

2nm

}
+ c,

where c is a constant. The quantity is minimized when:

k = exp

{
σ2 + τ2

2
− 3(σ2 + ngτ

2)

2n

}
.

Starting from the fact that:

θm|σ2, τ2,w ∼ logN
(
µ̄+

σ2 + τ2

2
,
σ2 + ngτ

2

n

)
,

the expression of the Bayes estimator under relative quadratic loss can be easily derived.

Even if it is not proved to be an optimal estimator, its use for benchmarking purposes appears
to be largely justified by the good frequentist properties that the Bayes estimator under relative
quadratic loss has in the log-normal estimation framework. The formal result is presented in the
following proposition.

Proposition 2. The Bayes estimator of θc(vj) conditioned with respect to the variance components
under the prior p(µ) ∝ 1 that minimizes the relative quadratic loss function is:

θ̂RQc (vl) = exp

{
σ2

σ2 + ngτ2

(
τ2ng
σ2

w̄.j − w̄
)

+
σ2

2
− 3

2

σ2

σ2 + ngτ2

(
τ2 +

σ2

n

)}
.

Proof. To obtain the estimator, the distribution of θc(vl)|σ2, τ2,w must be deduced removing the
conditioning on v from the marginal posterior:

θc(vj)|v, σ2, τ2,w ∼ logN
(∑m

l=1 (w̄.l − vl)
m

+ vj +
σ2

2
,
σ2

n

)
.

Setting the value tj = µ+ vj , the following result can be obtained

tj |σ2, τ2,w ∼ N
(
t̄j , Vtj

)
,

where:

t̄j =

ng

σ2 w̄.l
1
τ2

+
ng

σ2

− σ2

σ2 + ngτ2
w̄, Vtj =

σ2

σ2 + ngτ2

(
τ2 +

σ2

n

)
.

Recalling that the Bayes estimator under relative quadratic loss in a log-normal context is:

θ̂cBc (vj) = exp

{
t̄j +

σ2

2
− 3

2
Vtj

}
,

the final result is obtained by substitution.
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Table S1: Bias and RMSE for the considered estimators of θm in the different scenarios with ng = 5.

θcm θIGm θJm θGIGm

φ σ2 θm Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.5

0.05 1.038 -0.004 0.062 0.187 0.202 0.008 0.064 0.019 0.068
0.25 1.206 -0.023 0.159 0.267 0.342 0.056 0.199 0.085 0.208
0.5 1.455 -0.053 0.271 0.435 1.082 6.181 255.860 0.157 0.385
0.75 1.755 -0.094 0.398 46.354 > 104 > 104 > 104 0.220 0.588

1

0.05 1.051 -0.007 0.082 0.192 0.217 0.016 0.089 0.030 0.094
0.25 1.284 -0.039 0.224 0.308 0.444 0.151 0.767 0.123 0.306
0.5 1.649 -0.098 0.403 0.743 3.341 > 104 > 104 0.212 0.588
0.75 2.117 -0.185 0.628 > 104 > 104 > 104 > 104 0.270 0.928

2

0.05 1.078 -0.012 0.115 0.202 0.248 0.032 0.131 0.050 0.139
0.25 1.455 -0.079 0.343 25.052 > 104 > 104 > 104 0.178 0.490
0.5 2.117 -0.221 0.696 > 104 > 104 > 104 > 104 0.251 1.014
0.75 3.08 -0.467 1.223 > 104 > 104 > 104 > 104 0.205 1.744

S3 Additional tables on simulations

The tables reported in this section refer to the simulation exercise of section 5 of the paper. In
the first place, tables S1 and S2 contain the results for posterior means of θm and θc(vj) for the
scenarios characterized by nj = 5, thereby complementing tables 1 and 2. Results concerning the
frequentist properties of the credible intervals are showed in table S3 for the overall mean predictor
and S4 for the group means.

Eventually, the results concerning three further prior specifications with respect to those men-
tioned in the simulation design of section 5 are reported in tables S5 - S8. Specifically, the following
estimators are considered:

a-b) the posterior means of θm and θc(vj) when priors are:

p(µ) ∝ 1, σ2 ∼ GIG(1, 0.001, γm), τ2 ∼ GIG(1, 0.001, γm),

and:
p(µ) ∝ 1, σ2 ∼ GIG(1, 0.1, γm), τ2 ∼ GIG(1, 0.1, γm),

where γm = max{γσ, γτ,1} =
√

3 + 32m−1. The predictors will be denoted as θ̂GIG0.001
m ,

θ̂GIG0.001
c (vj) for the first prior setting and θ̂GIG0.1

m , θ̂GIG0.1
c (vj) for the second one. The aim

of these additional simulations is to assess the prior sensitivity of posterior distributions with
respect to alternative choices of the GIG scale parameter δ.

c) the posterior means of θm and θc(vj) when priors are:

p(µ) ∝ 1, σ2 ∼ IG(1, 0.001), τ2 ∼ IG(1, 0.001),

that will be labelled as θ̂IG2
m and θ̂IG2

c (vj). This latter set of prior specifications complements
the comparison with the family of inverse-gamma priors for the variance parameters, as this
specification is very popular in applications.
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Table S2: RABias and RRMSE for the considered estimators of the group-specific expectations in
the different scenarios with ng = 5.

θcc(vj) θIGc (vj) θJc (vj) θGIGc (vj)

φ σ2 RABias RRMSE RABias RRMSE RABias RRMSE RABias RRMSE

0.5

0.05 0.008 0.087 0.038 0.104 0.009 0.092 0.010 0.090
0.25 0.037 0.192 0.069 0.230 0.050 0.228 0.049 0.218
0.5 0.073 0.268 0.111 0.342 0.109 0.362 0.095 0.334
0.75 0.106 0.325 0.157 0.447 0.175 0.496 0.138 0.438

1

0.05 0.009 0.092 0.038 0.106 0.010 0.098 0.011 0.096
0.25 0.043 0.204 0.073 0.240 0.056 0.241 0.056 0.234
0.5 0.083 0.285 0.123 0.366 0.119 0.382 0.109 0.363
0.75 0.121 0.345 0.178 0.488 0.191 0.527 0.160 0.482

2

0.05 0.010 0.096 0.038 0.107 0.010 0.100 0.012 0.099
0.25 0.046 0.212 0.077 0.249 0.057 0.245 0.059 0.243
0.5 0.090 0.295 0.132 0.385 0.122 0.388 0.117 0.380
0.75 0.131 0.357 0.194 0.519 0.195 0.533 0.173 0.509

S4 Simulation study: evaluations of effects and predictions

In this section we carry out an additional simulation study in which the data generating process
is characterized by the presence of a continuous covariate. We have two main aims: exploring
if different priors on the variance components change the frequentist properties of the regression
coefficients’ estimates, and evaluating the performances of the posterior predictive distributions.
The following special case of model (9) is considered:

log (yij) = β0 + x1,ijβ1 + vj + εij ; j = 1, ...,m; i = 1, ..., nj ;

where m = 10 and nj = 2, 5. In line with the simulation study in Fabrizi and Trivisano (2016), the

covariate is fixed and generated once from a uniform distribution: xij
ind∼ U (0, 1), and (β0, β1) =

(1, 1). As far as the variance components are concerned, two different scenarios are considered:(
σ2, τ2

)
∈ {(0.15, 0.1) , (0.3, 0.2)}, inducing overall variances in the log-scale equal to 0.25 and 0.5.

To sum up, 4 scenarios are taken into consideration. Since we focus also on the posterior predictive
distribution, a grid of covariate values needs to be specified for prediction. We define them as
x̃k = c(1, x̃1,k), where x̃1,k = 0, 0.1, . . . , 1.1, 1.2 following Fabrizi and Trivisano (2016).

As in section 5, the results obtained under the following priors for the variance components
are compared: GIG(1, 0.01, γm), IG(1, 1), and IG(0.001, 0.001), where γm is fixed to fulfill the
condition iii) of theorem 1, computing the leverage for each vector x̃k. Diffuse priors on the
regression coefficients are set to complete the model specification.

The estimates of β1 are compared in terms of bias, RMSE, frequentist coverage, and average
posterior intervals width in tables S9 and S10. The results about the regression coefficient exhibit
minor changes from one prior specification to another, whereas some problems emerge for the
intervals under the IG(1, 1) prior: they are significantly larger than those obtained with the other
priors, affected by over-coverage especially when nj = 2.

Eventually, in figure S2 results (bias, log RMSE, frequentist coverage, and average width) con-
cerning the predictions at each covariate values x̃1,k are reported for the different scenarios. Focusing
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Table S3: Frequentist coverage and width for the credible intervals of θm in the different scenarios.

θcm θIGm θJm θGIGm

nj φ σ2 Cov Width Cov Width Cov Width Cov Width

2

0.5

0.05 0.949 0.289 0.994 1.294 0.953 0.340 0.977 0.433
0.25 0.949 0.769 0.954 2.174 0.941 1.090 0.961 1.237
0.5 0.949 1.349 0.950 3.762 0.939 2.539 0.954 2.190
0.75 0.949 2.050 0.952 6.258 0.939 5.273 0.954 3.238

1

0.05 0.953 0.360 0.979 1.347 0.947 0.423 0.968 0.528
0.25 0.953 1.017 0.947 2.611 0.933 1.627 0.947 1.578
0.5 0.953 1.927 0.947 5.354 0.931 4.922 0.945 2.909
0.75 0.953 3.162 0.952 10.695 0.929 14.240 0.946 4.454

2

0.05 0.953 0.479 0.966 1.467 0.935 0.595 0.958 0.699
0.25 0.953 1.532 0.944 3.817 0.932 3.420 0.942 2.259
0.5 0.953 3.384 0.948 11.722 0.930 19.592 0.931 4.466
0.75 0.953 6.475 0.952 39.113 0.932 139.616 0.907 7.275

5

0.5

0.05 0.951 0.242 0.998 0.937 0.949 0.272 0.971 0.334
0.25 0.951 0.637 0.976 1.515 0.938 0.820 0.962 0.931
0.5 0.951 1.108 0.965 2.475 0.933 1.738 0.955 1.647
0.75 0.951 1.669 0.963 3.833 0.936 3.242 0.954 2.466

1

0.05 0.947 0.321 0.991 0.997 0.939 0.375 0.964 0.447
0.25 0.947 0.901 0.966 1.929 0.936 1.368 0.953 1.312
0.5 0.947 1.693 0.957 3.779 0.933 3.751 0.945 2.422
0.75 0.948 2.752 0.956 7.148 0.933 9.488 0.941 3.739

2

0.05 0.946 0.448 0.979 1.121 0.938 0.560 0.955 0.635
0.25 0.946 1.423 0.959 3.066 0.938 3.008 0.944 2.024
0.5 0.946 3.116 0.954 9.244 0.941 15.489 0.932 4.009
0.75 0.946 5.911 0.952 29.254 0.940 95.540 0.908 6.648
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Table S4: Average frequentist coverage and average width for the credible intervals of group means
θc(vj).

θcc(vj) θIGc (vj) θJc (vj) θGIGc (vj)

nj φ σ2 ACov AWidth ACov AWidth ACov AWidth ACov AWidth

2

0.5

0.05 0.947 0.466 1.000 1.324 0.931 0.488 0.964 0.575
0.25 0.923 1.104 0.988 2.145 0.917 1.335 0.956 1.526
0.5 0.894 1.677 0.975 3.426 0.915 2.557 0.949 2.617
0.75 0.868 2.205 0.967 5.160 0.912 4.378 0.942 3.821

1

0.05 0.949 0.533 1.000 1.355 0.927 0.564 0.962 0.642
0.25 0.930 1.325 0.985 2.364 0.917 1.669 0.951 1.787
0.5 0.908 2.139 0.969 4.088 0.917 3.501 0.940 3.235
0.75 0.885 2.989 0.959 6.658 0.915 6.486 0.932 4.976

2

0.05 0.949 0.591 0.999 1.417 0.935 0.662 0.962 0.728
0.25 0.936 1.626 0.980 2.823 0.930 2.218 0.950 2.226
0.5 0.917 2.977 0.965 5.642 0.930 5.370 0.940 4.486
0.75 0.897 4.718 0.955 10.643 0.928 12.108 0.930 7.633

5

0.5

0.05 0.938 0.342 0.993 0.574 0.930 0.352 0.950 0.376
0.25 0.898 0.806 0.967 1.150 0.923 0.930 0.946 0.991
0.5 0.846 1.216 0.959 1.904 0.921 1.650 0.943 1.709
0.75 0.795 1.588 0.953 2.830 0.920 2.547 0.938 2.533

1

0.05 0.939 0.371 0.992 0.584 0.938 0.387 0.951 0.403
0.25 0.905 0.917 0.964 1.239 0.935 1.088 0.947 1.116
0.5 0.860 1.471 0.954 2.199 0.935 2.060 0.941 2.041
0.75 0.815 2.043 0.949 3.492 0.934 3.390 0.937 3.200

2

0.05 0.941 0.395 0.992 0.601 0.945 0.416 0.952 0.428
0.25 0.908 1.079 0.963 1.424 0.944 1.294 0.947 1.307
0.5 0.868 1.962 0.952 2.876 0.942 2.785 0.943 2.689
0.75 0.826 3.089 0.947 5.210 0.942 5.211 0.938 4.743
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Table S5: Bias and RMSE for the considered estimators of θm in the different scenarios.

θIG2
m θGIG0.001

m θGIG0.1
m

nj φ σ2 θm Bias RMSE Bias RMSE Bias RMSE

2

0.5

0.05 1.038 0.004 0.075 0.034 0.086 0.038 0.088
0.25 1.206 0.029 0.219 0.139 0.281 0.144 0.284
0.5 1.455 0.090 0.439 0.240 0.516 0.246 0.520
0.75 1.755 0.274 1.947 0.317 0.775 0.324 0.778

1

0.05 1.051 0.006 0.095 0.044 0.111 0.047 0.113
0.25 1.284 0.048 0.305 0.172 0.373 0.176 0.375
0.5 1.649 0.189 0.795 0.283 0.714 0.287 0.713
0.75 2.117 499.684 > 104 0.348 1.114 0.351 1.111

2

0.05 1.078 0.010 0.130 0.063 0.154 0.066 0.156
0.25 1.455 0.136 0.667 0.223 0.557 0.226 0.557
0.5 2.117 > 104 > 104 0.314 1.151 0.316 1.145
0.75 3.08 > 104 > 104 0.251 1.951 0.251 1.941

5

0.5

0.05 1.038 0.001 0.063 0.019 0.068 0.021 0.069
0.25 1.206 0.010 0.174 0.084 0.208 0.087 0.210
0.5 1.455 0.036 0.333 0.155 0.385 0.159 0.388
0.75 1.755 0.092 0.570 0.217 0.588 0.223 0.593

1

0.05 1.051 0.003 0.085 0.030 0.094 0.031 0.095
0.25 1.284 0.031 0.263 0.121 0.305 0.124 0.308
0.5 1.649 0.140 0.704 0.209 0.585 0.214 0.592
0.75 2.117 8.137 299.176 0.268 0.928 0.275 0.936

2

0.05 1.078 0.010 0.122 0.049 0.139 0.051 0.140
0.25 1.455 0.134 0.752 0.175 0.489 0.179 0.494
0.5 2.117 436.861 > 104 0.248 1.012 0.255 1.022
0.75 3.08 > 104 > 104 0.197 1.734 0.205 1.748
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Table S6: Frequentist coverage and width for the credible intervals of θm in the different scenarios.

θIG2
m θGIG0.001

m θGIG0.1
m

nj φ σ2 Cov Width Cov Width Cov Width

2

0.5

0.05 0.272 0.913 0.975 0.432 0.983 0.451
0.25 0.783 0.901 0.958 1.236 0.962 1.252
0.5 1.577 0.897 0.951 2.185 0.955 2.206
0.75 2.815 0.904 0.953 3.233 0.956 3.256

1

0.05 0.331 0.895 0.968 0.526 0.973 0.540
0.25 1.051 0.884 0.948 1.573 0.955 1.585
0.5 2.430 0.878 0.946 2.900 0.949 2.910
0.75 5.073 0.885 0.942 4.448 0.947 4.451

2

0.05 0.455 0.882 0.962 0.695 0.965 0.706
0.25 1.848 0.875 0.946 2.248 0.947 2.255
0.5 6.247 0.875 0.933 4.456 0.933 4.463
0.75 22.913 0.866 0.903 7.258 0.906 7.270

5

0.5

0.05 0.219 0.896 0.967 0.333 0.975 0.347
0.25 0.591 0.875 0.959 0.927 0.962 0.939
0.5 1.114 0.874 0.955 1.641 0.954 1.653
0.75 1.852 0.871 0.951 2.456 0.954 2.475

1

0.05 0.306 0.887 0.966 0.446 0.965 0.455
0.25 0.961 0.880 0.950 1.304 0.951 1.315
0.5 2.176 0.877 0.944 2.409 0.948 2.428
0.75 4.379 0.870 0.940 3.736 0.944 3.758

2

0.05 0.457 0.904 0.955 0.631 0.958 0.640
0.25 1.892 0.899 0.946 2.008 0.944 2.025
0.5 6.323 0.894 0.932 3.995 0.933 4.020
0.75 20.936 0.891 0.907 6.609 0.908 6.643
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Table S7: RABias and RRMSE for the considered estimators of the group-specific expectations in
the different scenario.

θIG2
c (vj) θGIG0.001

c (vj) θGIG0.1
c (vj)

nj φ σ2 RABias RRMSE RABias RRMSE RABias RRMSE

2

0.5

0.05 0.019 0.140 0.024 0.128 0.025 0.128
0.25 0.127 0.415 0.109 0.330 0.109 0.329
0.5 0.300 0.775 0.198 0.529 0.197 0.527
0.75 0.531 1.282 0.273 0.713 0.272 0.710

1

0.05 0.032 0.181 0.030 0.145 0.031 0.144
0.25 0.234 0.641 0.143 0.394 0.143 0.392
0.5 0.611 1.454 0.272 0.667 0.270 0.663
0.75 1.198 2.920 0.393 0.950 0.391 0.943

2

0.05 0.046 0.217 0.037 0.160 0.038 0.159
0.25 0.401 1.034 0.183 0.464 0.182 0.461
0.5 1.278 3.468 0.364 0.842 0.362 0.837
0.75 3.532 14.667 0.549 1.282 0.546 1.272

5

0.5

0.05 0.009 0.101 0.010 0.090 0.010 0.090
0.25 0.064 0.281 0.049 0.218 0.049 0.217
0.5 0.153 0.487 0.095 0.333 0.095 0.332
0.75 0.258 0.719 0.137 0.438 0.137 0.436

1

0.05 0.010 0.105 0.011 0.096 0.011 0.096
0.25 0.066 0.285 0.055 0.234 0.055 0.233
0.5 0.154 0.500 0.109 0.363 0.109 0.362
0.75 0.267 0.772 0.160 0.482 0.160 0.481

2

0.05 0.010 0.103 0.012 0.099 0.012 0.099
0.25 0.057 0.263 0.059 0.243 0.059 0.243
0.5 0.127 0.443 0.117 0.380 0.117 0.380
0.75 0.208 0.646 0.174 0.510 0.174 0.509
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Table S8: Average frequentist coverage and average width for the credible intervals of group means
θc(vj) in the different scenarios.

θIG2
c (vj) θGIG0.001

c (vj) θGIG0.1
c (vj)

nj φ σ2 ACov AWidth ACov AWidth ACov AWidth

2

0.5

0.05 0.829 0.383 0.963 0.575 0.969 0.593
0.25 0.723 0.924 0.956 1.526 0.957 1.542
0.5 0.692 1.709 0.948 2.616 0.949 2.633
0.75 0.679 2.920 0.940 3.820 0.943 3.840

1

0.05 0.821 0.464 0.961 0.641 0.965 0.653
0.25 0.711 1.230 0.950 1.787 0.951 1.796
0.5 0.671 2.529 0.941 3.235 0.941 3.243
0.75 0.655 4.807 0.931 4.968 0.933 4.980

2

0.05 0.853 0.587 0.962 0.728 0.965 0.735
0.25 0.762 1.859 0.950 2.227 0.951 2.233
0.5 0.716 4.620 0.939 4.483 0.940 4.488
0.75 0.693 12.920 0.930 7.624 0.930 7.631

5

0.5

0.05 0.876 0.317 0.950 0.376 0.955 0.382
0.25 0.808 0.777 0.947 0.991 0.949 0.996
0.5 0.772 1.321 0.943 1.709 0.944 1.715
0.75 0.752 1.991 0.939 2.532 0.940 2.539

1

0.05 0.908 0.367 0.951 0.403 0.953 0.405
0.25 0.880 1.001 0.947 1.116 0.947 1.118
0.5 0.863 1.850 0.942 2.039 0.942 2.043
0.75 0.851 2.990 0.937 3.200 0.937 3.205

2

0.05 0.931 0.402 0.953 0.428 0.954 0.430
0.25 0.922 1.231 0.947 1.307 0.948 1.308
0.5 0.918 2.598 0.943 2.691 0.943 2.693
0.75 0.916 4.786 0.939 4.739 0.938 4.744
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IG(0.001, 0.001) IG(1, 1) GIG(1, 0.01, γm)

Scenario σ2 τ2 nj Bias RMSE Bias RMSE Bias RMSE

1 0.15 0.1 2 0.000 0.304 0.000 0.304 0.001 0.302
2 0.30 0.2 2 0.002 0.432 0.001 0.429 0.001 0.428
3 0.15 0.1 5 -0.005 0.229 -0.003 0.229 -0.005 0.228
4 0.30 0.2 5 -0.008 0.324 -0.005 0.323 -0.007 0.322

Table S9: Bias and RMSE of the posterior mean of β1 under three different priors for the variance
components.

IG(0.001, 0.001) IG(1, 1) GIG(1, 0.01, γm)

Scenario σ2 τ2 nj Width Cov Width Cov Width Cov

1 0.15 0.1 2 1.332 0.959 1.771 0.997 1.277 0.955
2 0.30 0.2 2 1.891 0.960 2.114 0.982 1.697 0.942
3 0.15 0.1 5 0.888 0.940 1.011 0.971 0.887 0.944
4 0.30 0.2 5 1.256 0.941 1.328 0.958 1.229 0.938

Table S10: Frequentist coverage and average width of the 95% credible intervals of β1 under three
different priors for the variance components.

on the logarithm of the RMSE, numerical evidences of the moment indefiniteness can be noted for
the inverse gamma priors as occasional peaks, likely due to numerical extreme associated to non-
existing moments, appear.

S5 Model convergence

All the models related to simulations and the application in section 6 were fitted using MCMC
algorithms. With specific reference to those of the application a total of 105000 iterations were
produced, the first 5000 were discarded as burn-in (or warm-up for Stan models, Carpenter et al.,
2017), and the remaining 100000 iterations were thinned by 10. In the first place, the convergence
of the basic model parameters were monitored by visual inspection of chains. In all cases we have
satisfying chains, both in terms of stationarity and quality of mixing. As an example, in figure S3,
the traceplots, histograms, and autocorrelation function are reported for the model fitted on the
reduced data with GIG priors for the variance components.

S6 Model with dependent random effects

S6.1 Proof of Corollary 1

To adapt the proof of Theorem 1 to the model considered in this corollary, it is useful to consider the
decomposition D = LΛDLT , where ΛD is a diagonal matrix containing the variance components

(in this case τ20 and τ21 ) and L is the Cholesky factor of the correlation matrix R (D = Λ
1
2
DRΛ

1
2
D).

The proofs concerning conditions i) and iii) are based on result (A1), that requires a diagonal
matrix for being effective. Exploiting the previous decomposition of D, it is possible to show that
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Figure S2: Bias, log RMSE, frequentist coverage, and average width of the predictions at different
covariate values x̃1,k.

13



Figure S3: Plots concerning the convergence of the MCMC algorithm for the basic parameters the
model fitted under GIG priors on the reduced dataset.
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the result (A3) still holds since the (A1) can be used after some algebra:

lim
σ2→+∞

(
(ZTZ)− +

D

σ2

)−1
= lim

σ2→+∞

(
(ZTZ)− +

LΛDLT

σ2

)−1
= lim

σ2→+∞

(
LT
)−1(

LTR−1(ZTZ)−R−1L +
ΛD

σ2

)−1
L−1 = ZTZ.

Focusing on condition ii), the result in (A4) can also be retrieved with the considered structure
of D since:

lim
τ2i→+∞

(
σ2

(ZTZ)−

τ2i
+

D

τ2i

)
= Ci, i = 0, 1. (S1)

This is due to the fact that the limit of all the off-diagonal entries is 0 (limτ20→+∞ ρτ1/τ0 = 0 and

limτ21→+∞ ρτ0/τ1 = 0), and the diagonal structure is equal to those in Theorem 1.

S6.2 Stan code to specify the GIG distribution

Unfortunately, the GIG distribution is not implemented in the Stan library. However, if a model
with correlated random effects needs to be fitted, the following statement before the model syntax
can be included:

functions{ // GIG prior: only integer lambda

real GIG_lpdf(real y, int lambda, real delta, real gamma){

real log_p;

log_p = - lambda * log(gamma / delta) - log(2.0)

- log(modified_bessel_second_kind(lambda, delta * gamma))

+ (lambda - 1.0) * log(y) - 0.5 * (delta * delta / y + gamma * gamma * y);

return(log_p);

}

}

Then, for instance, if the variance component tau2 0 is declared in the parameters block, then a
GIG prior can be specified in the model block as follows:

tau2_0 ~ GIG(lambda, delta, gamma);

noting that only integer values for the parameter lambda can be fixed.
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