March 31, 2020

ON THE BEHAVIOUR OF *K*-MEANS CLUSTERING OF A DISSIMILARITY MATRIX BY MEANS OF FULL MULTIDIMENSIONAL SCALING

Supplementary material

TABLE 1.

Averaged ARI values when the K-means solutions on X_c , and on X_f , are compared with the simulated values (columns A_c and A_f respectively), as well as for the SYNCLUS method on the dissimilarities (A_{syn}) . The values of $K^* = 4, 6, 8, 10$ and N = 100, 150, 200, for different degree of overlap were considered for equal and unequal-sized homogeneous clusters.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{\mathbf{A}}_{Syn}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
Average overlap, .05 $N = 100$ $N = 150$ $N = 200$ K^* Equal Diff Equal Diff Ac Af ASyn Ac Af ASyn Diff Equal Diff Ac Af ASyn Ac Af ASyn Ac Af ASyn Diff Equal Diff Ac Af ASyn Af	1
$N = 100 \qquad N = 150 \qquad N = 200$ $K^* \underbrace{\text{Equal}}_{A_c A_f A_{Syn}} \underbrace{\text{Diff}}_{A_c A_f A_{Syn}} \underbrace{\text{Equal}}_{A_c A_f A_{Syn}} \underbrace{\text{Diff}}_{A_c A_f A_{Syn}} \underbrace{\text{Diff}}_{A_c A_f A_{Syn}} \underbrace{\text{Equal}}_{A_c A_f A_{Syn}} \underbrace{\text{Equal}}_{A_c A_f A_{Syn}} \underbrace{\text{Diff}}_{A_c A_f A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} \underbrace{\text{Equal}}_{A_c A_{Syn}} $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
A_c A_f A_{Syn} A_c A_f $A Syn$ A_c A_f $A Syn$ A_c A_f A_{Syn} A_c A_f $A Syn$ A_c A_f $A Syn$ <td></td>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{A}_{Syn}
6 .986 1 .986 .918 .982 .915 .999 1 .999 .963 .994 .960 .999 1 1 .972 .999	0.999
	0.972
8 .883 .983 .887 .875 .985 .874 .960 .998 .961 .938 .999 .935 .981 1 .981 .985 1	0.985
10 .766 .891 .772 .755 .886 .747 .825 .952 .815 .801 .949 .803 .845 .985 .843 .828 .973	0.834
Average overlap, .1	
$N = 100 \qquad \qquad N = 150 \qquad \qquad N = 200$	
K* Equal Diff Equal Diff Equal Diff	_
$\mathbf{A}_c \mathbf{A}_f \mathbf{A}_{Syn} \mathbf{A}_c \mathbf{A}_f \mathbf{A}_$	\mathbf{A}_{Syn}
4 .757 .873 .758 .571 .758 .579 .824 .961 .824 .711 .922 .726 .816 .976 .822 .802 .957	.818
6 .783.804.785 .794.841.796 .805.849.805 .816.880.814 .809.878.810 .819.877	.817
8 .731 .823 .732 .756 .827 .756 .757 .860 .759 .777 .853 .767 .775 .875 .779 .782 .877	.785
10 .615 .771 .608 .475 .607 .467 .651 .794 .656 .514 .661 .506 .677 .810 .685 .535 .675	.530
Average overlap, .2	
$N = 100 \qquad \qquad N = 150 \qquad \qquad N = 200 $	
Λ Equal Din Equal Equal Din Equal Din Equal Equal Din Equal E	•
\mathbf{A}_{c} \mathbf{A}_{f} \mathbf{A}_{Syn} \mathbf{A}_{s}	ASyn 569
4 .007 .090 .000 .020 .040 .061 .073 .032 .075 .014 .042 .010 .014 .041 .010 .003 .011 6 .625 .660 .620 .640 .670 .640 .709 .720 .705 .710 .725 .717 .725 .755 .729 .767 .777	.308
8 575 708 576 653 766 641 631 756 636 700 704 600 663 702 660 722 805	713
10 443 603 444 376 404 371 500 665 506 406 534 401 515 684 516 422 562	/18
Average averag	.410
$\frac{N-100}{N-150} = \frac{N-200}{N-200}$	
K^* Equal Diff Equal Diff Equal Diff	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \hline \begin{array}{c} \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	Asar
4 .660 .675 .660 .567 .585 .568 .671 .700 .672 .563 .592 .564 .669 .696 .670 .557 .597	.558
6 .383 .465 .390 .372 .483 .378 .463 .537 .460 .450 .550 .433 .530 .585 .519 .507 .582	.495
8 419 556 412 518 673 516 487 634 498 572 729 575 534 688 536 620 747	.619
$10 .335 \ .469 \ .341 .309 \ .401 \ .301 .388 \ .541 \ .385 .344 \ .455 \ .347 .404 \ .566 \ .407 .359 \ .476$.360

TABLE 2.

Recovery percentage of the simulated number of clusters according to the K-means solutions on X_f , for clustered simulated datasets with high degree of overlap ($\overline{\omega} = 0.1$) and values of N = 100, 150, 200 and $K^* = 4, 6, 8, 10$ for non-homogeneous clusters of equal and unequal size.

Average overlap, .1							
	Data g	enerated for 10	distinct blo	cks, associated v	with $K^* = 4$		
Criteria	Equal size N :	Unequal size = 100	Equal size N :	Unequal size = 150	Equal size Unequal size $N = 200$		
CH	0	0	0	0	0	0	
Н	3	0	7	2	18	9	
SIL	0	0	0	0	0	0	
KL	0	0	0	0	0	0	
r	0	0	0	0	0	0	
CH^*	0	0	0	0	0	0	
H^*	6	0	6	1	15	4	
r^*	7	5	7	2	12	6	
	Data g	enerated for 21	distinct blo	cks, associated v	with $K^* = 6$		
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size	
	N =	= 100	N :	= 150	N =	= 200	
CH	0	0	0	0	0	0	
Н	0	0	0	2	0	2	
SIL	0	0	0	0	0	0	
KL	0	0	0	0	0	0	
r	0	0	0	0	0	0	
CH^*	0	0	0	0	0	0	
H^*	0	0	0	0	0	3	
r^*	7	7	6	9	11	11	
	Data g	enerated for 36	distinct blo	cks, associated v	with $K^* = 8$		
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size	
	N =	= 100	N = 150		N = 200		
CH	0	0	0	0	0	0	
Η	0	0	0	0	1	2	
SIL	0	0	0	0	0	0	
KL	0	0	0	0	0	0	
r	0	0	0	0	0	0	
CH^*	0	0	0	0	0	0	
H^*	0	0	0	0	1	0	
r^*	7	3	4	3	7	5	
	Data g	enerated for 55	distinct bloc	ks, associated w	with $K^* = 10$		
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size	
	N =	= 100	N :	= 150	N =	= 200	
CH	0	0	0	0	0	0	
H	0	0	0	0	0	0	
SIL	0	0	0	0	0	0	
KL	0	0	0	0	0	0	
r	0	0	0	0	0	0	
CH^*	0	0	0	0	0	0	
H^*	0	0	0	0	0	0	
r^*	5	9	4	7	5	10	

TABLE 3.

Recovery percentage of the simulated number of clusters according to the K-means solutions on X_f , for clustered simulated datasets with very high degree of overlap ($\overline{\omega} = 0.2$) and values of N = 100, 150, 200and $K^* = 4, 6, 8, 10$ for non-homogeneous clusters of equal and unequal size.

Average overlap, .2								
	Data g	enerated for 10	distinct bloc	ks, associated	with $K^* = 4$			
Criteria	Equal size N =	Unequal size = 100	Equal size N =	Unequal size = 150	Equal size N =	Unequal size = 200		
CH	0	0	0	0	0	0		
Н	1	0	0	0	0	1		
SIL	1	0	0	0	0	0		
KL	1	0	0	0	1	3		
r	1	0	0	0	0	3		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	12	1	6	2	8	5		
	Data g	enerated for 21	distinct bloc	ks, associated	with $K^* = 6$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N =	= 150	N =	= 200		
CH	0	0	0	0	0	0		
Н	0	0	0	0	0	0		
SIL	0	0	0	0	0	0		
KL	4	8	3	8	4	2		
r	1	7	0	5	5	3		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	2	0	0	3	3	0		
	Data g	enerated for 36	distinct bloc	ks, associated	with $K^* = 8$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N =	= 150	N =	N = 200		
CH	0	0	0	0	0	0		
Η	0	0	0	0	0	0		
SIL	0	0	0	0	0	0		
KL	11	6	13	11	12	8		
r	6	4	14	7	8	7		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	4	8	6	5	2	6		
	Data ge	enerated for 55	distinct bloc	ks, associated v	with $K^* = 10$			
Criteria	Equal size N =	Unequal size = 100	Equal size N =	Unequal size = 150	Equal size N =	Unequal size = 200		
CH	0	0	0	0	0	0		
Н	0	0	0	0	0	0		
SIL	0	0	0	0	0	0		
KL	16	9	10	9	16	6		
r	8	3	6	3	12	3		
CH^*	õ	õ	Õ	õ	0	õ		
H^*	õ	õ	õ	õ	õ	ů 0		
r^*	6	1	$\tilde{4}$	3	3	0		

TABLE 4.

Recovery percentage of the simulated number of clusters according to the K-means solutions on X_f , for fully overlapping grouped simulated data sets ($\overline{\omega} = 0.3$) and values of N = 100, 150, 200 and $K^* = 4, 6, 8, 10$ for non-homogeneous clusters of equal and unequal size.

Average overlap, .3								
	Data g	enerated for 10) distinct blo	cks, associated	with $K^* = 4$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N :	= 150	N =	= 200		
CH	0	0	0	0	0	0		
Н	0	0	0	0	0	0		
SIL	11	0	3	0	1	0		
KL	1	0	1	0	0	0		
r	1	0	1	0	0	0		
CH^*	1	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	7	4	8	8	5	3		
	Data g	generated for 21	distinct bloc	cks, associated	with $K^* = 6$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N :	= 150	N =	= 200		
CH	0	0	0	0	0	0		
Η	0	0	0	0	0	0		
SIL	0	0	0	0	0	0		
KL	0	0	0	0	0	0		
r	0	0	0	0	0	0		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	3	6	1	6	2	3		
	Data g	enerated for 36	6 distinct bloo	cks, associated	with $K^* = 8$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N :	= 150	N =	N = 200		
CH	0	0	0	0	0	0		
Η	0	0	0	0	0	0		
SIL	1	1	0	0	0	0		
KL	0	0	0	0	0	0		
r	0	0	0	0	0	0		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	3	6	3	7	3	5		
	Data g	enerated for 55	distinct bloc	ks, associated v	with $K^* = 10$			
Criteria	Equal size	Unequal size	Equal size	Unequal size	Equal size	Unequal size		
	N =	= 100	N :	= 150	N =	= 200		
CH	0	0	0	0	0	0		
Н	0	0	0	0	0	0		
SIL	0	0	1	0	0	0		
KL	0	0	0	0	0	0		
r	0	0	0	0	0	0		
CH^*	0	0	0	0	0	0		
H^*	0	0	0	0	0	0		
r^*	7	6	7	12	7	10		

TABLE 5.

Averaged ARI values when the K-means solutions on X_a are compared with the simulated values, where X_a is obtained using the additive constant procedure of Cailliez (left panel). The averaged values of the additive constants provided by the Calliez procedure (central panel) and by the Lingoes procedure (right panel) are shown. The values considered were $K^* = 4, 6, 8, 10$ and N = 100, 150, 200, for non-overlapping clusters.

				Non-overl	apping o	lusters				
					N = 10	00				
K^*	* <u>Aa</u>				Cailliez			Lingoes		
	Equal	%10	%60	Equal	%10	%60	Equal	%10	%60	
4	1	1	.990	5.62	5.75	6.10	5.79	6.05	6.96	
6	1	.999	.968	4.01	4.05	4.46	3.86	3.98	5.00	
8	.997	.997	.718	3.19	3.15	3.65	2.92	2.87	4.02	
10	.955	.960	.503	2.66	2.66	3.03	2.33	2.33	3.20	
					N = 15	60				
K^*	A_a			Cailliez			Lingoes			
	Equal	%10	%60	Equal	%10	%60	Equal	%10	%60	
4	1	1	1	6.93	6.96	7.53	7.33	7.40	8.95	
6	.999	1	.971	4.98	5.04	5.43	4.93	5.01	6.34	
8	.998	.997	.717	3.88	3.94	4.42	3.66	3.70	4.97	
10	.962	.969	.518	3.19	3.28	3.62	2.87	3.03	3.92	
					N = 20	00				
K^*		A_a			Cailliez			Lingoes		
	Equal	%10	%60	Equal	%10	%60	Equal	%10	%60	
4	1	1	1	8.00	8.34	8.93	8.50	9.16	10.77	
6	1	1	.976	5.80	5.73	6.35	5.90	5.80	7.43	
8	.998	1	.706	4.52	4.50	5.12	4.37	4.37	5.91	
10	.706	.969	.507	5.12	3.75	4.24	3.48	3.50	4.77	

TABLE 6.

Averaged ARI values when the K-means solutions on X_a are compared with the simulated values, where X_a is obtained using the additive constant procedure of Cailliez (left panel). The averaged values of the additive constants provided by the Calliez procedure (central panel) and by the Lingoes procedure (right panel) are shown. The values considered were $K^* = 4, 6, 8, 10$ and N = 100, 150, 200, for low ($\overline{\omega} = 0.01$) and moderate ($\overline{\omega} = 0.05$) degrees of overlap. Equal and unequal-sized, non-homogeneous clusters were considered.

			Average over	rlap, .01				
			N =	= 100				
K^*		A_a Cailliez			Lin	Lingoes		
	Equal	Unequal	Equal	Unequal	Equal	Unequal		
4	.998	1	3.35	4.36	3.01	5.03		
6	.872	.911	3.51	3.54	3.08	3.60		
8	.911	.916	2.84	2.61	2.21	2.05		
10	.803	.656	3.40	3.68	2.93	3.44		
			N =	= 150				
K^*		A_a	Cail	liez	Lin	goes		
	Equal	Unequal	Equal	Unequal	Equal	Unequal		
4	1	1	4.12	5.42	3.83	6.48		
6	.875	.927	4.37	4.38	3.92	4.62		
8	.908	.925	3.41	2.98	2.72	2.36		
10	.804	.671	4.25	4.22	3.76	3.78		
			N =	= 200				
K^*		A_a	Cail	liez	Lin	goes		
	Equal	Unequal	Equal	Unequal	Equal	Unequal		
4	1	1	4.70	6.24	4.43	7.62		
6	.880	.936	5.05	5.10	4.57	5.46		
8	.918	.930	3.89	3.48	3.15	2.81		
10	.811	.674	4.86	4.87	4.35	4.40		
	.011	1011	Average over	rlan05	1.00	1110		
			N -	- 100				
K^*		A	Cail	liez	Lin	roes		
11	Equal	Unequal	Equal	Unequal	Equal	Unequal		
4	769	456	6 10	7 68	6 11	9 44		
6	645	730	6.89	6.78	6.83	7.80		
8	620	708	7.54	6.64	7.16	6.36		
0	502	.120	7.54	0.04	7.10	0.30		
10	.325	.440	1.14	1.14	1.11	8.04		
V^*		Λ	N = Coil	= 150	Lin	200		
Π	Faul	Incanal	Fauel	Unoqual	Fauel	Uncaugh		
4	575	487	Equal 7.60	0.74	Equal 7 71	10 01 equal		
4	.110	.401	(.02 0 EE	9.14	(.(1	14.41		
U o	.009	.101	0.00	0.00	0.02	10.07		
0	.075	.141	9.19	8.00	0.79	7.05		
10	.525	.434	9.74	9.68	9.92	9.86		
V^*		٨	N =	= 200	τ			
n	Ferrel	<u>IInogral</u>	Famel	Unormal	Earral	IIncorre 1		
4	Equal 701	504	Equal	11 27	Equal 8 00	14 49		
4	.791	.024	8.79	11.37	8.99	14.42		
6	.695	.804	9.92	9.97	9.98	11.82		
8	.694	.750	10.75	9.48	10.26	9.13		
10	.533	.449	11.36	11.34	11.46	11.53		

TABLE 7.

Averaged frequency at which the local minimum is reached in K-means clustering. The values considered were 5000 replicates, $K^* = 4, 6, 8, 10$ and N = 100, 150, 200. Non-overlapping clusters and non-homogeneous clusters with different degrees of overlap were considered.

	Non-overlapping clusters									
		N = 100 $N = 150$				0	N = 200			
K^*	Equal	%10	%60	Equal	%10	%60	Equal	%10	%60	
4	69.6	63.7	35.2	72.4	83.8	62.0	91.0	90.0	81.0	
6	54.2	28.6	51.8	50.6	76.4	29.2	50.0	55.0	70.0	
8	51.0	58.4	16.0	60.8	51.8	26.4	46.0	54.0	28.0	
10	27.0	20.2	18.4	29.4	21.4	2.4	40.0	59.0	33.0	

		Over	lapping clust	ers		
		Aver	age overlap,	.01		
	N =	= 100	N =	: 150	N =	= 200
K^*	Equal	Unequal	Equal	Unequal	Equal	Unequa
4	87.0	87.0	79.6	86.4	77.4	89.0
6	21.0	15.4	28.8	16.0	22.0	10.6
8	37.0	34.2	42.2	37.0	39.0	30.0
10	23.0	10.4	16.0	13.6	16.4	14.4
		Aver	age overlap,	.05		
	N =	= 100	N =	: 150	N =	= 200
K^*	Equal	Unequal	Equal	Unequal	Equal	Unequal
4	58.0	40.0	64.0	35.0	54.0	40.0
6	16.6	26.0	28.0	35.0	27.0	31.0
8	18.0	15.0	10.0	14.0	11.6	13.8
10	4.0	3.0	3.0	4.0	3.8	1.2
		Aver	age overlap,	.1		
	N =	= 100	N =	: 150	N = 200	
K^*	Equal	Unequal	Equal	Unequal	Equal	Unequa
4	11.2	8.2	17.0	1.0	1.6	2.0
6	4.4	2.0	9.6	3.4	15.2	6.8
8	4.6	0.4	3.6	1.4	0.6	1.2
10	1.8	3.2	1.2	0.2	0.2	1.2
		Aver	age overlap,	.2		
	N =	= 100	N =	: 150	N = 200	
K^*	Equal	Unequal	Equal	Unequal	Equal	Unequa
4	27.8	8.8	8.4	0.4	14.8	0.4
6	1.6	5.4	0.2	1.2	0.6	0.2
8	7.4	0.6	1.2	2.8	0.4	0.2
10	0.2	0.2	0.2	0.4	0.2	0.2
		Aver	age overlap,	.3		
	N =	= 100	N =	: 150	N =	= 200
K^*	Equal	Unequal	Equal	Unequal	Equal	Unequa
4	3.0	2.6	5.4	1.2	2.6	1.8
6	1.6	0.2	0.2	0.8	0.2	0.2
8	0.8	0.8	0.6	0.2	0.2	0.2
10	0.2	0.2	0.2	0.2	0.2	0.2