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Wild Bootstraps

In addition to the non-parametric and Bayesian bootstrap we discussed in the main paper, we
also considered several variants of the wild bootstrap, which was originally proposed by (Wu,
1986). The wild bootstrap is a kind of residual bootstrap which leaves the covariates at the
sample value but resamples the outcome values based on the residual values. That is, in each
replicate, the resampled outcome value of the i-th observation is

y∗i = ŷi + ε̂i × wi, (1)

where ŷi and ε̂i are the expected value and estimated residual of the i-th observation from
the analysis model, respectively. wi is a random number, called multiplier, drawn from a
distribution W such that E(W ) = 0 and V ar(W ) = 1. There are several different distributions
from which wi can be drawn, such as the Rademacher and standard Normal distributions.

The original wild bootstrap doesn’t resample the data. We propose several variants of the
original wild bootstrap: (1) resampling covariates along with residuals with replacement; (2)
fixing covariates and only resampling residuals with replacement; (3) independently resam-
pling covariates and residuals with replacement. We also considered 3 types of multipliers:
(1) no multipliers, i.e., wi = 1, ∀i; (2) multipliers drawn from the Rademacher distribution; (3)
multipliers drawn from standard Normal distribution. Table 1 below summarizes the origi-
nal and variant wild bootstraps considered in this paper. The original wild bootstrap without
using multipliers is excluded because no resampling happens within this combination. There-
fore, there are 11 combinations of the wild bootstrapping evaluated in the simulations.

Wild bootstrap type Multiplier Bootstrap model Assumption(s)

Original None Y (b) = Xβ̂ + ε̂× 1 = Y Excluded b/c no sampling happens here
Rademacher Y (b) = Xβ̂ + ε̂×W ,wi ∼ Rad Symmetric errors
N(0, 1) Y (b) = Xβ̂ + ε̂×W ,wi ∼ N(0, 1) Symmetric errors

(1) Resampling covariates along
with residuals

None Y (b) = R(b)Xβ̂ + R(b) ε̂× 1 Non-parametric bootstrap. not assuming homo-
/hetero-skedasticity or symmetric errors

Rademacher Y (b) = R(b)Xβ̂ + R(b) ε̂×W ,wi ∼ Rad Symmetric errors
N(0, 1) Y (b) = R(b)Xβ̂ + R(b) ε̂×W ,wi ∼ N(0, 1) Symmetric errors

(2) Fixing covariates and only
resampling residuals

None Y (b) = Xβ̂ + R(b) ε̂× 1 Homoskedasticity

Rademacher Y (b) = Xβ̂ + R(b) ε̂×W ,wi ∼ Rad Homoskedasticity and symmetric errors
N(0, 1) Y (b) = Xβ̂ + R(b) ε̂×W ,wi ∼ N(0, 1) Homoskedasticity and symmetric errors

(3) independently resampling
covariates and residuals

None Y (b) = R
(b)
1 Xβ̂ + R

(b)
2 ε̂× 1 Homoskedasticity

Rademacher Y (b) = R
(b)
1 Xβ̂ + R

(b)
2 ε̂×W ,wi ∼ Rad Homoskedasticity and symmetric errors

N(0, 1) Y (b) = R
(b)
1 Xβ̂ + R

(b)
2 ε̂×W ,wi ∼ N(0, 1) Homoskedasticity and symmetric errors

Table 1: Eleven bootstrap procedures considered in this paper. The original wild bootstrap with con-
stant multiplier is excluded since it performs no resampling. R(b) denotes the bootstrap matrix for the
b-th replicate; Y (b) is the bootstrapped outcome values; X is the covariate(s); β̂ is the estimated param-
eters; ε̂ is the estimated residuals; W is the randomly drawn values for the multiplier.
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Simulation Results

In this section, we show the coverage performance for the confidence intervals constructed us-
ing different wild bootstraps under different scenarios (homo-/hetero-skedasticity and sym-
metric skewed errors) given random covariate and different true RESI value.
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