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In the supplementary material, we provide the proof of the main theorem, the derivations

for the penalized EM algorithm and a sensitivity analysis of our algorithm with varying upper

bounds for the number of latent classes.

1 Proof for Theorem 3

In this section, we provide the proof of Theorem 3.

Proof. We first introduce some notations. For two sequences {aN} and {bN}, we denote aN . bN

if aN = O(bN), and aN � bN if aN . bN and bN . aN . We use (π0,Θ0) to denote the true model

parameter and use (π̂0, Θ̂0) to denote the oracle MLE obtained by assuming the number of

latent attributes, the hierarchical structure, the Q-matrix and the item-level diagnostic models

are known. Let (π̂∗, Θ̂∗) be the MLE obtained by directly optimizing log-likelihood (9) and

(π̂, Θ̂) be the estimator obtained by optimizing the regularized log-likelihood (10). We define

π̂ρN := {π̂m : π̂m > ρN , m ∈ [M ]} and Θ̂ρN := {θ̂j,m : π̂m > ρN , j ∈ [J ], m ∈ [M ]}, the

model parameters corresponding to the selected latent classes. Let M be the upper bound

for the number of latent classes, M0 be the true number of latent classes, and M̂ =
∣∣{m :

π̂m > ρN , m ∈ [M ]}
∣∣ be the estimated number of latent classes. Without loss of generality, let

π̂0
full = (π̂0,0M−M0). For the true item parameter matrix Θ0, we defined the set of identical item

parameter pairs S0 =
{

(j, k1, k2) : θ0j,k1 = θ0j,k2 , 1 ≤ k1 < k2 ≤ M0

}
. Similarly, for (π̂, Θ̂) we

define Ŝ =
{

(j, k1, k2) : θ̂j,k1 = θ̂j,k2 , 1 ≤ k1 < k2 ≤ M, π̂k1 > ρN , π̂k2 > ρN
}

. We say Ŝ ∼ S0 if

there exists a column permutation σ of Θ̂ such that Ŝσ = S0.
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The probability P
(
M̂ 6= M0

)
can be decomposed into two parts:

P
(
M̂ 6= M0

)
= P

(
M̂ < M0

)
+
(
M̂ > M0

)
. (1)

Similarly, the probability P
(
Ŝ 6= S0

)
can be decomposed into three parts:

P
(
Ŝ � S0

)
= P

(
M̂ < M0

)
+
(
M̂ > M0

)
+ P

(
Ŝ � S0, M̂ = M0

)
. (2)

In the following ,we will bound each part in (1) and (2) respectively. Therefore, we will consider

three cases below:

1. overfitted case: M̂ > M0,

2. underfitted case: M̂ < M0,

3. M̂ = M0 but Ŝ � S0.

The objective function is

GN(π,Θ) =
lN(π,Θ;R)

N
− λ

(1)
N

N

M∑
k=1

log[ρN ] πk −
λ
(2)
N

N

J∑
j=1

Jτ,ρN (θj), (3)

where log[ρN ] πk = log πk · I
(
πk > ρN

)
+ log ρN · I

(
πk ≤ ρN

)
. Let log[ρN ](π) =

∑M
k=1 log[ρN ] πk.

First consider the overfitted case where M̂ > M0. The event
{
GN

(
π̂, Θ̂

)
> GN

(
π̂0, Θ̂0

)}
implies that

1

N

N∑
i=1

log
[ ∑M

k=1 π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂j,k)1−Rij∑M

k=1 π̂
0
k

∏J
j=1(θ̂

0
j,k)

Rij(1− θ̂0j,k)1−Rij

]
>
λ
(1)
N

N

{
log[ρN ](π̂)− log[ρN ](π̂

0
full)

}
+
λ
(2)
N

N

{ J∑
j=1

Jτ,ρN (θ̂j)−
J∑
j=1

Jτ,ρN (θ̂0j )
}

(4)

:= J1 + J2.

For the RHS of (4), we have J1 & N−1λ
(1)
N | log ρN | and J2 & −N−1λ(2)N τJM2. Since λ

(2)
N τ =

o(λ
(1)
N | log ρN |), we have RHS & N−1λ

(1)
N | log ρN |.
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For the LHS of (4), we have

LHS of (4) =
1

N
log
[ M∑
k=1

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂j,k)1−Rij

]
− 1

N
log
[ M∑
k=1

π̂0
k

J∏
j=1

(θ̂0j,k)
Rij(1− θ̂0j,k)1−Rij

]
≤ 1

N
log
[ M∑
k=1

π̂∗k

J∏
j=1

(θ̂∗j,k)
Rij(1− (θ̂∗j,k))

1−Rij
]
− 1

N
log
[ M∑
k=1

π̂0
k

J∏
j=1

(θ̂0j,k)
Rij(1− θ̂0j,k)1−Rij

]
. N−δ,

where the last inequality follows from Assumption 1. When N1−δ/| log(ρN)| = o
(
λ
(1)
N

)
, we

have N−δ = o
(
N−1λ

(1)
N | log ρN |

)
, which implies that the event described in (4) will happen with

probability tending to zero. Therefore we have P
(
M̂ > M0

)
−→ 0 as N −→ ∞. That is to say,

with the appropriate choice of tuning parameters, the extent that the log-penalty part favors a

smaller model would dominate the extent that the likelihood part favors a larger model in the

overfitted case.

Now consider the under-fitted case where M̂ < M0. We need to bound

P
(

sup
M̂<M0

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂0)

]
> 0
)
. (5)

We follow a similar argument to Shen et al. (2012). More specifically, since

P
(

sup
M̂<M0

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂0)

]
> 0
)
≤

M0−1∑
m=1

P
(

sup
M̂=m

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂0)

]
> 0
)
,

(6)

we will bound each term in the RHS of (6). By the large deviation inequality in Theorem 1 of

Wong and Shen (1995), we have

P
(

sup
h2
(
(π̂,Θ̂),(π0,Θ0)

)
≥ε2N

[ 1

N
lN
(
π̂, Θ̂

)
− 1

N
lN
(
π0,Θ0

)]
> −ε2N

)
≤ P

(
sup

h2
(
(π̂,Θ̂),(π0,Θ0)

)
≥ε2N

[ 1

N
lN
(
π̂, Θ̂

)
− 1

N
lN
(
π0,Θ0

)]
> −ε2N

)
≤ exp(−Nε2N),

(7)

where h2
(
(π̂, Θ̂), (π0,Θ0)

)
=
∑
R∈{0,1}J

[
P(R | π̂, Θ̂)1/2 − P(R | π0,Θ0)1/2

]
is the Hellinger

distance. From the remark in Wong and Shen (1995), the inequality (7) holds for any t > εN .
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To use this large deviation inequality, we need to introduce the notion of bracketing Hellinger

metric entropy H(t,Bm), which characterizes the size of the local parameter space. Consider

the local parameter space Bm =
{(
π̂, Θ̂

)
: M̂ = m ≤ M0, h

2
(
(π̂, Θ̂),

(
π0,Θ0)

)
≤ 2ε2N

}
, then

H(t,Bm) is defined as the logarithm of the cardinality of the t-bracketing of Bm of the smallest

size. Specifically, following the definition in Shen et al. (2012), consider a bracket covering

S(t,m) = {f l1, fu1 , · · · , f lm, fum} such that max1≤j≤m ||fuj − f lj||2 ≤ t and for any f ∈ Bm, there is

some j such that f lj ≤ f ≤ fuj almost surely. Then H(t,Bm) is defined as log
(

min{m : S(t,m)}
)
.

Following Lemma 3 in Gu and Xu (2019), for any 2−4ε < t < ε, there is

H(t,Bm) .M0 logM log(2ε/t). (8)

Next we need to verify the conditions in Wong and Shen (1995). Let’s take εN =
√
M0 logM/N

and verify the entropy integral condition in Theorem 1 of Wong and Shen (1995) for such εN .

The integral of bracketing Hellinger metric entropy on the interval [2−8ε2N ,
√

2εN ] satisfies the

following inequality

∫ √2εN
2−8ε2N

H1/2(t,Bm)dt ≤
∫ √2εN
2−8ε2N

√
M0 logM log(2εN/t)dt

=
√
M0 logM

∫ √
log 29

εN

√
log
√
2

4εNu
2e−u

2

du

=
√
M0 logM · 2εN

∫ log 29

εN

log
√
2

√
ue−udu

.
√
Nε2N .

Note that εN = o(1) as N →∞.

Following the proof in Gu and Xu (2019), there exists a constant c0, for some small constant

t > εN , we have

Cmin(π0,Θ0) := inf
(π̂,Θ̂):M̂≤M0

{h2((π̂, Θ̂), (π0,Θ0)
)

max
(
M0 − M̂, 1

) } ≥ c0 & t2 > ε2N .

Moreover, for M̂ = m < M0, there is h2((π̂, Θ̂), (π0,Θ0)) ≥
(
M0 −m

)
Cmin(π0,Θ0). In order
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to have the probability of the event (4) go to zero in the under-fitted case, the log-penalty term

should not be too large such that the likelihood part is dominated by the log-penalty term that

favors a smaller model. Here we take λ
(1)
N = o(N log ρN |−1). Then for (6) we have

RHS of (6)

≤
M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
GN(π̂, Θ̂)−GN(π̂0, Θ̂0)

]
> 0
)

≤
M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π̂0, Θ̂0)

]
> −λ

(1)
N M0| log ρN |

N

)
≤

M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π0,Θ0)

]
> −λ

(1)
N M0| log ρN |

N

)
≤

M0−1∑
m=1

P
(

sup
h2((π̂,Θ̂),(π0,Θ0))≥(M0−m)Cmin(π0,Θ0),M̂=m

[
lN(π̂, Θ̂)− lN(π0,Θ0)

]
> −(M0 −m)Cmin(π0,Θ0)

)
≤

M0−1∑
m=1

exp
(
− c2N(M0 −m)Cmin(π0,Θ0)

)
≤ c3 exp

(
− c2NCmin(π0,Θ0)

)
.

Therefore we have P
(
M̂ < M0

)
−→ 0 as N −→∞. So far we have proved (12) in Theorem 3,

P
(
M̂ 6= M0

)
= P

(
M̂ < M0

)
+ P

(
M̂ > M0

)
−→ 0.

Finally we consider the third case where M̂ = M0 but Ŝ � S0. The argument is similar

to the proof of Proposition 2 in Xu and Shang (2018). We first show (π̂ρN , Θ̂ρN ) converge to

(π0,Θ0) with rate N−1/2. For (π,Θ) with (πρN ,ΘρN ) in a small neighborhood of (π0,Θ0),

G′N(πρN ,ΘρN ) :=
lN(πρN ,ΘρN ;R)

N
− λ

(1)
N

N

∑
k:πk>ρN

log πk −
λ
(2)
N

N

J∑
j=1

Jτ,ρN (θj)

=
lN(πρN ,ΘρN ;R)

N
−O(λ

(1)
N N−1| log ρN |)−O(λ

(2)
N τN−1),

converges uniformly to the same limit of lN(πρN ,ΘρN ;R)/N by the uniform law of large number,

since λ
(1)
N N−1| log ρN | → 0 and λ

(2)
N τN−1 → 0. We use G0(πρN ,ΘρN ) to denote the limit process,

which is the expectation of the negative log-likelihood of a single observation. By Taylor’s
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expansion, we have G0(πρN ,ΘρN )−G0(π
0,Θ0) = O(

∣∣∣∣(πρN ,ΘρN ))− (π0,Θ0)
∣∣∣∣2).

For the log-likelihood function lN(π̂, Θ̂;R) =
∑N

i=1 log
(∑M

k=1 π̂k
∏J

j=1 θ̂
Rij
j,k (1 − θ̂1−Rijj,k )

)
, we

have

1

N

∣∣lN(π̂, Θ̂;R)− lN(π̂ρN , Θ̂ρN ;R)
∣∣

≤ 1

N

N∑
i=1

∣∣∣ log
( M∑
k=1

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂1−Rijj,k )

)
− log

( ∑
k:π̂k>ρN

π̂k

J∏
j=1

θ̂
Rij
j,k (1− θ̂1−Rijj,k )

)∣∣∣
≤ 1

N

N∑
i=1

∣∣(∑M
k=1 π̂k

∏J
j=1 θ̂

Rij
j,k (1− θ̂1−Rijj,k )

)
−
(∑

k:π̂k>ρN
π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rijj,k )

)∣∣√(∑M
k=1 π̂k

∏J
j=1 θ̂

Rij
j,k (1− θ̂1−Rijj,k )

)
×
(∑

k:π̂k>ρN
π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rijj,k )

) (9)

≤ 1

N

N∑
i=1

(M − M̂)ρN∑
k:π̂k>ρN

π̂k
∏J

j=1 θ̂
Rij
j,k (1− θ̂1−Rijj,k )

=O(ρN) = O(N−d), d ≥ 1, (10)

where inequality (9) follows from an upper bound for log function. Specifically, for x ≥ 1, we

know log x ≤ (x − 1)/
√
x, and thus for 0 < x ≤ y, we have log y − log x ≤ (y − x)/

√
xy.

From (10), G′N(π̂, Θ̂) = G′N(π̂ρN , Θ̂ρN ) + O(N−d) ≥ G′N(π0,Θ0) and thus G′N(π̂ρN , Θ̂ρN ) >

G′N(π0,Θ0)−O(N−d) ≥ G′N(π0,Θ0)−O(N−1). Since N−1/2λ
(1)
N → 0 and N−1/2λ

(2)
N τ → 0, then

for sufficiently small ζ, by Taylor’s expansion,

E
(

sup
||(πρN ,ΘρN

)−(π0,Θ0)||≤ζ
G′N(πρN ,ΘρN ;R)−G0(πρN ,ΘρN )−G′N(π0,Θ0;R)+G0(π

0,Θ0)
)

= O(ζN−1/2).

By Theorem 3.2.5 in Van Der Vaart and Wellner (1996), we have (π̂ρN , Θ̂ρN ) − (π0,Θ0) =

Op(N
−1/2).

We next show selection consistency of S0. If true item parameters θ0j,k1 6= θ0j,k2 , then from

the above convergence result, we know θ̂j,k1 → θ0j,k1 and θ̂j,k2 → θ0j,k2 , and thus θ̂j,k1 6= θ̂j,k2

in probability. If true item parameters θ0j,k1 = θ0j,k2 but θ̂j,k1 6= θ̂j,k2 , by the Karush-Kuhn-

Tucker (KKT) conditions, we have N−1/2∂lN(π,Θ;R)/∂θj,k1|(π,Θ)=(π̂,Θ̂) = N−1/2λ
(2)
N → ∞ in

probability. However N−1/2∂lN(π,Θ;R)/∂θj,k1 |(π,Θ)=(π̂,Θ̂) = Op(1). Therefore, if θ0j,k1 = θ0j,k2 ,

we have θ̂j,k1 = θ̂j,k2 in probability, which proved the selection consistency that P(Ŝ � S0) → 0

as N →∞.
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2 Derivations of PEM Algorithm

In this section, we give detailed derivations of the penalized EM algorithm in Section 4.1. First

let’s introduce a new variable d = (djkl, j = 1, . . . , J, 1 ≤ k < l ≤M) to be the differences of the

item parameters for each item. Then our problem becomes

min
π,Θ,d

G(π,Θ,d)

s.t. djkl = θjk − θjl

j = 1, . . . , J, 1 ≤ k < l ≤M.

(11)

By using the difference convex property of the truncated Lasso penalty, we can decompose

the objective function into two parts:

G(π,Θ,d) = G1(π,Θ,d)−G2(d), (12)

where

G1(π,Θ,d) = − 1

N
Q(π,Θ|π(c),Θ(c)) + λ̃1

M∑
k=1

log πk + λ̃2

J∑
j=1

∑
1≤k<l≤M

|djkl|, (13)

G2(d) = λ̃2

J∑
j=1

∑
1≤k<l≤M

(
|djkl − τ |

)
+
. (14)

Then we construct a sequence of upper approximation of G(π,Θ,d) iteratively by replacing

G2(d) at iteration c+ 1 with its piecewise affine minorization:

G
(c)
2 (d) = G2(d̂

(c)) + λ̃2

J∑
j=1

∑
1≤k<l≤M

(
|djkl| − |d̂(c)jkl|

)
· I
(
|d̂(c)jkl| ≥ τ

)
, (15)

at the current estimate d̂(c), which lead to an upper convex approximation:

G(c+1)(π,Θ,d) =− 1

N
Q(π,Θ|π(c),Θ(c)) + λ̃1

M∑
k=1

log πk

+ λ̃2

J∑
j=1

∑
1≤k<l≤M

|djkl| · I
(
|d̂(c)jkl| < τ

)
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+ λ̃2τ
J∑
j=1

∑
1≤k<l≤M

I
(
|d̂(c)jkl| ≥ τ

)
.

Now we can apply ADMM. At iteration c+ 1, the augmented Lagrangian is

Lγ(π,Θ,d,y) = G(c+1)(π,Θ,d)+
J∑
j=1

∑
1≤k<l≤M

yjkl·
(
djkl−(θjk−θjl)

)
+
γ

2

J∑
j=1

∑
1≤k<l≤M

∣∣djkl−(θjk−θjl)
∣∣2,

(16)

where yjkl’s are the dual variables and γ is a nonnegative penalty parameter. Then ADMM

(Boyd et al., 2011) consists of the following iterations:

π(c+1) = argmin
π

Lγ(π,Θ
(c),d(c),y(c)),

Θ(c+1) = argmin
Θ

Lγ(π
(c+1),Θ,d(c),y(c)),

d(c+1) = argmin
d

Lγ(π
(c+1),Θ(c+1),d,y(c)),

y
(c+1)
jkl = y

(c)
jkl + γ(d

(c+1)
jkl −

(
θ
(c+1)
jk − θ(c+1)

jl )
)
, j = 1, ..., J, 1 ≤ k < l ≤M.

Using the scaled Lagrangian multiplier µjkl = yjkl/γ and defining the residual rjkl = djkl −

(θjk − θjl), we have:

yjkl ·
(
djkl − (θjk − θjl)

)
+
γ

2

∣∣djkl − (θjk − θjl)
∣∣2

=yjkl · rjkl +
γ

2
r2jkl

=
γ

2

(
rjkl + (1/γ)yjkl

)2 − 1

2γ
µ2
jkl

=
γ

2

(
rjkl + µjkl

)2 − 1

2γ
µ2
jkl.

Then using the scaled dual variable, we can express ADMM as:

π(c+1) = argmin
π

G(c+1)(π,Θ(c),d(c)),

Θ(c+1) = argmin
Θ

G(c+1)(π(c+1),Θ,d(c)) +
γ

2

J∑
j=1

∑
1≤k<l≤M

(
d
(c)
jkl − (θ

(c)
jk − θ

(c)
jl ) + µ

(c)
jkl

)
,

d(c+1) = argmin
d

G(c+1)(π(c+1),Θ(c+1),d) +
γ

2

J∑
j=1

∑
1≤k<l≤M

(
djkl − (θ

(c+1)
jk − θ(c+1)

jl ) + µ
(c)
jkl

)
,
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µ
(c+1)
jkl = µ

(c)
jkl + d

(c+1)
jkl −

(
θ
(c+1)
jk − θ(c+1)

jl ), j = 1, ..., J, 1 ≤ k < l ≤M.

Specifically, we get the following updates:

(1)

π
(c+1)
k =

∑N
i=1 s

(c+1)
ik /N − λ̃1

1−Mλ̃1
, where s

(c+1)
ik =

π
(c)
k ϕk(Ri; Θ

(c)
k )∑(c)

k′ π
(c)
k′ ϕ

(c)
k′ (Ri;θ

(c)
k′ )

,

(2)

θ̂
(c+1)
jk = argmin

θjk

{
−
∑N

i=1 s
(c)
ik Rij

N
log θjk −

∑N
i=1 s

(c)
ik (1−Rij)

N
log(1− θjk)

+
γ

2

∑
l>k

(
d̂
(c)
jkl − (θjk − θ̂(c)jl ) + µ̂

(c)
jkl

)2
+
γ

2

∑
l<k

(
d̂
(c)
jlk − (θ̂jl

(c+1)
− θjk) + µ̂

(c)
jlk

)2}

(3)

d̂
(c+1)
jkl =

θ̂
(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl, if |d̂(c)jkl| ≥ τ

ST
(
θ̂
(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl; λ̃2/γ

)
, if |d̂(c)jkl| < τ,where ST(x; γ) = (|x| − γ)+x/|x|

,

(4)

µ̂
(c+1)
jkl = µ̂

(c)
jkl + d̂

(c+1)
jkl −

(
θ̂
(c+1)
jk − θ̂(c+1)

jl

)
.

Note that the objective in step (2) is convex in θjk, therefore we use gradient descent to perform

the minimization.

3 PEM Algorithm with Missing Values

In this section, we present the penalized EM algorithm with missing values. Here we use a mask

matrix M ∈ {0, 1}N×J to indicate the locations of the missing values, where Mi,j = 0 means the

ith subject’s response to the jth item is missing. The details of the algorithm is summarized in

Algorithm 1.
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Algorithm 1: Penalized EM with missing data

Data: Binary response matrix R = (Ri,j)N×J and the mask matrix M = (Mij)N×J
indicating missing values.

Set hyperparameters λ̃1, λ̃2, τ, γ and ρ.
Set an upper bound of the number of latent classes L.
Initialize parameters π, Θ, and the conditional expectations s.
while not converged do

In the (c+ 1)th iteration,
for (i, k) ∈ [N ]× [L] do

s
(c+1)
ik =

π
(c)
k ϕk(Ri;θ

(c)
k )∑(c)

k′ π
(c)

k′ ϕ
(c)

k′ (Ri;θ
(c)

k′ )
, ϕ(ri;θk) =

∏J
j=1

(
θ
Rij
jk (1− θkj)1−Rij

)mij
for k ∈ [L] and π

(c)
k > ρ do

π
(c+1)
k =

∑N
i=1 s

(c+1)
ik /N−λ̃1
1−Lλ̃1

.

for (j, k) ∈ [J ]× [L] and π
(c+1)
k > ρ do

θ
(c+1)
jk = argmin

θjk

{
−
∑N

i=1 s
(c)
ik Rijmij∑N
i=1mij

log θjk −
∑N

i=1 s
(c)
ik (1−ij)mij∑N
i=1mij

log(1− θjk)

+
γ

2

∑
l>k

(
d̂
(c)
jkl − (θjk − θ̂(c)jl ) + µ̂

(c)
jkl

)2
+
γ

2

∑
l<k

(
d̂
(c)
jlk − (θ̂jl

(c+1)
− θjk) + µ̂

(c)
jlk

)2}

for j ∈ [J ], k, l ∈ [L], k < l and π
(c+1)
k > ρ, π

(c+1)
l > ρ do

d̂
(c+1)
jkl =

{
θ̂
(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl, if |d̂(c)jkl| ≥ τ

ST
(
θ̂
(c+1)
jk − θ̂(c+1)

jl − µ̂(c)
jkl; λ̃2/γ

)
, if |d̂(c)jkl| < τ

,

µ̂
(c+1)
jkl = µ̂

(c)
jkl + d̂

(c+1)
jkl −

(
θ̂
(c+1)
jk − θ̂(c+1)

jl

)
.

Output:
{
π̂, Θ̂, ŝ

}

4 Sensitivity Analysis

In this section, we conduct the sensitivity analysis of our algorithm by investigating the effects of

different inputs of M , the upper bound of the number of latent classes, on the simulation results.

In particular, we focus on two simulation settings: (1) DINA model with linear hierarchical

structure, N = 500 and r = 0.1; (2) GDINA model with linear hierarchical structure, N = 1000

and r = 0.1. Both two settings have K = 4 latent attributes and J = 30 test items, and run
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for 50 repetitions. We keep the parameter generation process and the hyperparameter tuning

strategy consistent with the simulation studies in the main article. In this sensitivity analysis, we

fit our proposed method with various M = {8, 12, 16, 20, 24, 32} in the two simulations settings.

The evaluation results in DINA and GDINA settings are based on metrics Acc(M̂), Acc(P̂ ),

Acc(Ê), MSE(Θ̂) and Acc(Q̂). Consistent with the simulation studies in the main article, the

Acc(M̂), Acc(P̂ ) and Acc(Ê) are calculated for all the cases; MSE(Θ̂) is calculated for the cases

when the number of latent classes is correctly selected; Acc(Q̂) is calculated for the cases when

the hierarchical structure is successfully recovered. The results are plotted in Figure 1.

From the simulation results in Figure 1, we see our proposed method is robust to the different

specifications of M , in terms of all metrics. Among cases with different M , our method achieves

a high accuracy in estimating the number of latent classes, and in recovering the partial orders,

the hierarchical structures, the item parameter matrix, and the Q-matrix. In terms of compu-

tation time, the average running time is 0.36 seconds and 1.12 seconds for DINA and GDINA,

respectively, per repetition per set of tuning hyperparameters.
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Specifications of M
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Figure 1: Sensitivity analysis results. (a) DINA results; (b) GDINA results. The red curve
captures the Acc(M̂), Acc(P̂ ), Acc(Ê), the blue curve captures MSE(Θ̂) and the purple curve
captures the Acc(Q̂) for various M .
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