Supplement to "Generic Identifiability of the DINA Model and Blessing of Latent Dependence"

Yuqi Gu Department of Statistics, Columbia University

Before presenting the proofs of the identifiability results, we introduce a useful technical tool, the T-matrix of marginal response probabilities. This technical tool was proposed by [Xu and Zhang](#page-26-0) [\(2016\)](#page-26-0) and also used in [Gu and Xu](#page-26-1) [\(2019\)](#page-26-1) to study the identifiability of the DINA model. First, consider a general notation $\Theta = (\theta_{j,\alpha})_{J \times 2^K}$ collecting all of the item parameters under the DINA model. The $J \times 2^K$ matrix Θ has rows indexed by the J items and rows by all of the $|\{0,1\}^K| = 2^K$ configurations of the binary latent attribute pattern, where the (j, α) th entry $\theta_{j,\alpha} = \mathbb{P}(R_j = 1 | \mathbf{A} = \alpha)$ denotes the probability of a positive response to the *j*th item given the latent attribute pattern α . Then under the conjunctive assumption of DINA, we can write $\theta_{j,\alpha}$ as

$$
\theta_{j,\alpha} = \begin{cases} 1 - s_j, & \text{if } \xi_{j,\alpha} = \prod_{k=1}^K \alpha_k^{q_{j,k}} = 1; \\ g_j, & \text{otherwise.} \end{cases}
$$

Note that given a Q-matrix, there is a one-to-one mapping between the matrix Θ and the item parameters (s, g) . We next define a $2^{J} \times 2^{K}$ matrix $T(\Theta)$ based on Θ . The rows of $T(\Theta)$ are indexed by the 2^J different response patterns $\boldsymbol{r} = (r_1, \ldots, r_J)^\top \in \{0, 1\}^J$, and columns by attribute patterns $\boldsymbol{\alpha} \in \{0,1\}^K$, while the $(\boldsymbol{r}, \boldsymbol{\alpha})$ th entry of $T(\boldsymbol{\Theta})$, denoted by $T_{r,\alpha}(\Theta)$, represents the marginal probability that subjects with latent pattern α provide

Email: yuqi.gu@columbia.edu. Address: Department of Statistics, Columbia University, Room 928 SSW, 1255 Amsterdam Avenue, New York, NY 10027, USA.

positive responses to the set of items $\{j : r_j = 1\}$, namely

$$
T_{\boldsymbol{r},\boldsymbol{\alpha}}(\boldsymbol{\Theta}) = \mathbb{P}(\mathbf{R} \succeq \boldsymbol{r} \mid \boldsymbol{\Theta},\boldsymbol{\alpha}) = \prod_{j=1}^J \theta_{j,\boldsymbol{\alpha}}^{r_j}.
$$

We denote the α th column vector and the rth row vector of the T-matrix by $T_{:,\alpha}(\Theta)$ and $T_{\bm{r},:}(\bm{\Theta})$, respectively. The \bm{r} th element of the 2^J -dimensional vector $T(\bm{\Theta})\bm{p}$ is

$$
T_{r,:}(\Theta)\mathbf{p} = \sum_{\alpha \in \{0,1\}^K} T_{r,\alpha}(\Theta)p_\alpha = \mathbb{P}(\mathbf{R} \succeq \mathbf{r} \mid \Theta, \mathbf{p}).
$$

Based on the T-matrix, there is an equivalent definition of identifiability of (Θ, p) (equivalently, identifiability of (s, g, p) . Further, the T-matrix has a nice property that will facilitate proving the identifiability results. We summarize them in the following lemma, whose proof can be found in [Xu](#page-26-2) (2017) .

Lemma 1. Consider the DINA model defined in (1) .

(a) The parameters (s, g, p) are identifiable if and only if there does not exist $(\bar{s}, \bar{g}, \bar{p}) \neq$ (s, g, p) such that

$$
T(\Theta)\mathbf{p} = T(\bar{\Theta})\bar{\mathbf{p}}.
$$

(b) For any vector $\boldsymbol{\theta}^* = (\theta_1^*, \dots, \theta_J^*)^\top \in \mathbb{R}^J$, there exists an $2^J \times 2^J$ invertible matrix $D(\boldsymbol{\theta}^*)$ which depends only on θ^* such that

$$
T(\mathbf{\Theta} - \boldsymbol{\theta}^* \cdot \mathbf{1}_{2^K}^{\top}) = D(\boldsymbol{\theta}^*) \cdot T(\mathbf{\Theta}).
$$

Lemma [1](#page-1-0) (a) and (b) imply that for any vector $\boldsymbol{\theta}^* = (\theta_1^*, \dots, \theta_J^*)^\top$, there holds

$$
T(\Theta - \theta^* \cdot \mathbf{1}_{2^K}^{\top})\mathbf{p} = D(\theta^*)T(\Theta)\mathbf{p} = D(\theta^*)T(\bar{\Theta})\bar{\mathbf{p}} = T(\bar{\Theta} - \theta^* \cdot \mathbf{1}_{2^K}^{\top})\bar{\mathbf{p}} \tag{S.1}
$$

The above equality will be frequently used throughout the proof of our identifiability results. In the following proofs, we sometimes will denote $\boldsymbol{c} := \boldsymbol{1}_J - \boldsymbol{s} = (1 - s_1, \dots, 1 - s_J)^{\top}$ for notational convenience. Using this notation, the DINA model parameters can be equivalently expressed as (c, g, p) .

S.1 Proof of Proposition [1](#page-0-0)

We rewrite Eq. [\(4\)](#page-6-0) in the main text below,

$$
\mathbb{P}(\mathbf{R} = r | s, g, p) = \sum_{\alpha \in \{0,1\}^K} p_{\alpha} \cdot \mathbb{P}(\mathbf{R} = r | \mathbf{A} = \alpha, s, g)
$$

=
$$
\sum_{\alpha \in \{0,1\}^K} p_{\alpha} \cdot \mathbb{P}(\mathbf{R} = r | \xi_{:, \mathbf{A}} = \xi_{:, \alpha}, s, g)
$$

=
$$
\sum_{\alpha \in \mathcal{R}} \Big(\sum_{\substack{\beta \in \{0,1\}^K, \\ \xi_{:, \beta} = \xi_{:, \alpha}}} p_{\alpha} \Big) \mathbb{P}(\mathbf{R} = r | \xi_{:, \mathbf{A}} = \xi_{:, \alpha}, s, g),
$$

where the notation $\mathcal{R} \subseteq \{0,1\}^K$ denotes a collection of representative latent attribute patterns, such that $\{\boldsymbol{\xi}_{:,\alpha}: \alpha \in \mathcal{R}\}$ contains mutually distinct ideal response vectors and also covers all the possible ideal response vectors under the \mathbf{Q} -matrix. Because of [\(4\)](#page-6-0), for any $\alpha \in \mathcal{R}$, those patterns $\beta \in \{0,1\}^K$ with $\boldsymbol{\xi}_{:,\beta} = \boldsymbol{\xi}_{:,\alpha}$ can be considered to be equivalent to α under the DINA model with the considered Q-matrix. For $\alpha \in \mathcal{R}$, define the equivalence class of latent attribute patterns by

$$
[\boldsymbol{\alpha}] := \{ \boldsymbol{\beta} \in \{0,1\}^K : \boldsymbol{\xi}_{:,\boldsymbol{\beta}} = \boldsymbol{\xi}_{:,\boldsymbol{\alpha}} \}.
$$

We next show that if for some $\alpha \in \{0,1\}^K$, the set $[\alpha]$ contains multiple elements, say α and $\alpha' \in [\alpha]$ with $\alpha \neq \alpha'$, then their corresponding proportion parameters p_{α} and $p_{\alpha'}$ will always be unidentifiable, no matter what values p_{α} and $p_{\alpha'}$ take. Specifically, if two sets of parameters (s, g, p) and $(\bar{s}, \bar{g}, \bar{p})$ satisfy that $\mathbb{P}(\mathbf{R} = r | s, g, p) = \mathbb{P}(\mathbf{R} = r | \bar{s}, \bar{g}, \bar{p})$ for all

 $r \in \{0,1\}^J$ under a same Q-matrix, then [\(4\)](#page-6-0) gives

$$
\sum_{\alpha\in\mathcal{R}}\Big(\sum_{\substack{\beta\in\{0,1\}^K:\\\xi_{:, \beta}=\xi_{:,\alpha}}}p_{\alpha}\Big)\mathbb{P}(\mathbf{R}=\boldsymbol{r}\mid\boldsymbol{\xi}_{:, \mathbf{A}}=\boldsymbol{\xi}_{:,\alpha},\boldsymbol{s},\boldsymbol{g})=\sum_{\alpha\in\mathcal{R}}\Big(\sum_{\substack{\beta\in\{0,1\}^K:\\\xi_{:, \beta}=\xi_{:,\alpha}}}\bar{p}_{\alpha}\Big)\mathbb{P}(\mathbf{R}=\boldsymbol{r}\mid\boldsymbol{\xi}_{:, \mathbf{A}}=\boldsymbol{\xi}_{:,\alpha},\bar{\boldsymbol{s}},\bar{\boldsymbol{g}});
$$

and even if $(s, g) = (\bar{s}, \bar{g})$, the identifiability equations $\mathbb{P}(\mathbf{R} \mid s, g, p) = \mathbb{P}(\mathbf{R} \mid \bar{s}, \bar{g}, \bar{p})$ only give the following,

$$
\sum_{\alpha \in \mathcal{R}} \Big(\sum_{\substack{\beta \in \{0,1\}^K, \\ \xi_{:, \beta} = \xi_{:, \alpha}}} p_{\alpha} - \sum_{\substack{\beta \in \{0,1\}^K, \\ \xi_{:, \beta} = \xi_{:, \alpha}}} \bar{p}_{\alpha} \Big) \mathbb{P}(\mathbf{R} = \boldsymbol{r} \mid \boldsymbol{\xi}_{:, \mathbf{A}} = \boldsymbol{\xi}_{:, \alpha}, \boldsymbol{s}, \boldsymbol{g}) = 0, \quad \forall \boldsymbol{r} \in \{0,1\}^J.
$$

From the above equations, one can not identify individual parameters p_{β} for those β belonging to a same equivalence class $[\alpha]$. Next we will show that if Q violates the Completeness Condition (C), then some equivalence class $[\alpha]$ will contain multiple elements, leading to the aforementioned non-identifiability consequence.

According to [Gu and Xu](#page-26-3) [\(2020\)](#page-26-3), the set of representative patterns \mathcal{R} in [\(4\)](#page-6-0) can be obtained using the row vectors of the Q-matrix as follows,

$$
\mathcal{R} = \left\{ \bigvee_{j \in S} \mathbf{q}_j : S \subseteq \{1, \dots, J\} \text{ is an arbitrary subset of item indices} \right\},\tag{S.2}
$$

where $\bigvee_{j\in S} q_j =: \alpha$ denotes the elementwise maximum of the set of vectors $\{q_j : j \in S\}$ and the kth entry of the resultant vector α is $\alpha_k = \max_{j \in S} \{q_{j,k}\}\$. So $\bigvee_{j \in S} q_j$ is also a K-dimensional binary vector and hence $\mathcal{R} \succeq \{0,1\}^K$. In fact, $\mathcal{R} = \{0,1\}^K$ if and only if Q contains a submatrix \mathbf{I}_K after some row permutation. To see this, consider if the row vectors of Q do not include a certain standard basis vector e_k (which has a "1" in the kth entry and "0" otherwise), then e_k does not belong to R defined in [\(S.2\)](#page-3-0) because e_k cannot be written in the form of $\bigvee_{j\in S} q_j$ for any subset $S \subseteq [J]$. Therefore, if Q violates the Completeness Condition (C), then $\mathcal R$ is a proper subset of $\{0,1\}^K$, which implies certain attribute patterns become equivalent under such a Q-matrix. In summary, if a Q-matrix does not contain a submatrix \mathbf{I}_K , certain proportion parameters p_{α} 's will always be unidentifiable regardless of the values of these p_{α} 's. This implies the failure of generic identifiability of the DINA model parameters (s, g, p) according to Definition [2](#page-0-0) and proves Proposition [1.](#page-0-0) \Box

S.2 Proof of Proposition [2](#page-0-0)

The construction for non-identifiable parameters in this setting is the same as that in the proof of Theorem 1 in [Xu and Zhang](#page-26-0) [\(2016\)](#page-26-0). We next elaborate on this construction to make clear the failure of generic identifiability. Since Q satisfies Condition (C), we can write the form of Q as follows without loss of generality,

$$
\mathbf{Q} = \begin{pmatrix} 1 & \mathbf{0}^\top \\ \mathbf{0} & \mathbf{Q}^\star \end{pmatrix},
$$

where the first attribute A_1 is required by only one item, the first item. Next construct two different sets of DINA model parameters (s, g, p) and $(\bar{s}, \bar{g}, \bar{p})$ which lead to the same distribution of **R**. In particular, if setting $s_j = \bar{s}_j$ and $g_j = \bar{g}_j$ for all $j \geq 2$, then the identifiability equations $\mathbb{P}(\mathbf{R} = r \mid s, g, p) = \mathbb{P}(\mathbf{R} = r \mid \bar{s}, \bar{g}, \bar{p})$ for all $r \in \{0, 1\}^J$ will exactly reduce to the following set of equations,

$$
\forall \alpha^* \in \{0, 1\}^{K-1}, \quad\n \begin{cases}\n p_{(0,\alpha^*)} + p_{(1,\alpha^*)} = \bar{p}_{(0,\alpha^*)} + \bar{p}_{(1,\alpha^*)}; \\
 g_1 p_{(0,\alpha^*)} + (1-s_1) p_{(1,\alpha^*)} = \bar{g}_1 \bar{p}_{(0,\alpha^*)} + (1-\bar{s}_1) \bar{p}_{(1,\alpha^*)}.\n \end{cases}
$$

The above system of equations involve $|\{\bar{g}_1,\bar{s}_1\}\cup \{\bar{p}_{\alpha}; \ \alpha \in \{0,1\}^K\}| = 2^K + 2$ free unknown variables regarding $(\bar{s}, \bar{g}, \bar{p})$, while there are only 2^K equations, so there exist infinitely many different solutions to $(\bar{s}, \bar{g}, \bar{p})$. In particular, we can let $\bar{g}_1 = g_1$ and arbitrarily set \bar{s}_1 in a small neighborhood of s_1 with $\bar{s}_1 \neq s_1$. Then correspondingly solve for the proportion parameters \bar{p} as

$$
\forall \alpha^* \in \{0,1\}^{K-1}, \quad \bar{p}_{(1,\alpha^*)} = \frac{1-s_1}{1-\bar{s}_1} p_{(1,\alpha^*)}, \quad \bar{p}_{(0,\alpha^*)} = p_{(0,\alpha^*)} + \left(1 - \frac{1-s_1}{1-\bar{s}_1}\right) p_{(1,\alpha^*)}.
$$

Since \bar{s}_1 can vary arbitrarily in the neighborhood of s_1 without changing the distribution of \mathbf{R} , we have shown that the parameter s_1 is always unidentifiable in the parameter space. The parameter g_1 can be similarly shown to be always unidentifiable. The fact that item parameters (s_1, g_1) are always unidentifiable whatever their values are indicates the failure of generic identifiability. This proves the conclusion of Proposition [2.](#page-0-0) \Box

S.3 Proof of Theorem [1](#page-0-0) and Theorem [4](#page-0-0)

Proof of Theorem [1.](#page-0-0) Below we rewrite the form of the Q-matrix stated in the theorem,

$$
\mathbf{Q} = \begin{pmatrix} 1 & \mathbf{0} \\ 1 & \mathbf{u} \\ 0 & \mathbf{Q}^{\star} \end{pmatrix}.
$$

By Lemma [1,](#page-1-0) if parameters (Θ, p) and (Θ, \bar{p}) give rise to the same distribution of the observed responses, then the following equality holds,

$$
T_{\mathbf{r},:}(\Theta)\mathbf{p} = T_{\mathbf{r},:}(\bar{\Theta})\bar{\mathbf{p}} \quad \text{for all} \quad \mathbf{r} \in \{0,1\}^J,
$$
\n(S.3)

Note that the last $J - 2$ rows of Q has the first column being an all-zero column, and has the other $K - 1$ columns forming a sub-matrix \mathbf{Q}^* which satisfies the C-R-D conditions. Since the C-R-D conditions are sufficient for identifiability of DINA model parameters by [Gu and Xu](#page-26-1) [\(2019\)](#page-26-1), the last $J - 2$ rows of the Q-matrix implies a nice identifiability result for a subset of the model parameters (c, g, p) . We next elaborate on this observation.

For notational convenience, denote by $\mathbb{P}(\cdot)$ the probability under the true parameters (c, g, p) , and denote by $\overline{P}(\cdot)$ the probability under the alternative parameters $(\overline{c}, \overline{g}, \overline{p})$. For a $\alpha^* \in \{0,1\}^{K-1}$, let $(0,\alpha^*)$, $(1,\alpha^*) \in \{0,1\}^K$ denote two K-dimensional binary vectors. Since $\mathbf{Q}_{1,3:J}$ is an all-zero vector, it is always true that $\theta_{j,(1,\alpha^*)} = \theta_{j,(0,\alpha^*)}$ for $j \geq 3$ and $\boldsymbol{\alpha}^* \in \{0,1\}^{K-1}$. Therefore, for any response pattern $\boldsymbol{r} = (r_1, r_2, \boldsymbol{r}^*) \in \{0,1\}^J$, Eq. [\(S.3\)](#page-5-0) for

r implies the following,

$$
\sum_{(z,\alpha^*)\in\{0,1\}^K} \prod_{j>2: r_j=1} \theta_{j,(0,\alpha^*)} \cdot \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, A_1 = z, \mathbf{A}_{2:K} = \alpha^*)
$$
\n
$$
\sum_{\alpha^*\in\{0,1\}^{K-1}} \prod_{j>2: r_j=1} \theta_{j,(0,\alpha^*)} \cdot [\mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, A_1 = 1, \mathbf{A}_{2:K} = \alpha^*)
$$
\n
$$
+ \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, A_1 = 0, \mathbf{A}_{2:K} = \alpha^*)]
$$
\n
$$
= \sum_{\alpha^*\in\{0,1\}^{K-1}} \prod_{j>2: r_j=1} \bar{\theta}_{j,(0,\alpha^*)} \cdot [\mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, A_1 = 1, \mathbf{A}_{2:K} = \alpha^*)
$$
\n
$$
+ \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, A_1 = 0, \mathbf{A}_{2:K} = \alpha^*)];
$$

which can be further simplified to be

$$
\sum_{\alpha^* \in \{0,1\}^{K-1}} \prod_{j>2: r_j=1} \theta_{j,(0,\alpha^*)} \cdot \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, \mathbf{A}_{2:K} = \alpha^*)
$$
\n
$$
= \sum_{\alpha^* \in \{0,1\}^{K-1}} \prod_{j>2: r_j=1} \bar{\theta}_{j,(0,\alpha^*)} \cdot \overline{\mathbb{P}}(R_1 \ge r_1, R_2 \ge r_2, \mathbf{A}_{2:K} = \alpha^*).
$$
\n(S.4)

Note that fixing an arbitrary (r_1, r_2) and varying $r^* \in \{0, 1\}^{J-1}$, the above systems of equations [\(S.4\)](#page-6-0) can be viewed as surrogate identifiability equations $T(\Theta^*)p^* = T(\bar{\Theta}^*)\bar{p}^*$ for the last $J-2$ items in the test, where those $\theta_{j,(0,\alpha^*)} =: \theta_{j,\alpha^*}^*$ serve as surrogate item parameters $\mathbf{\Theta}^* = \{\theta_{j,\alpha^*}^*: j = 3,\ldots,J; \ \alpha^* \in \{0,1\}^{K-1}\};\$ and those $\mathbb{P}(R_1 \geq r_1, R_2 \geq r_2, \mathbf{A}_{2:K} =$ α^* = $p_{\alpha^*}^*$ serve as surrogate proportion parameters $p^* = \{p_{\alpha^*}^* : \alpha^* \in \{0,1\}^{K-1}\}.$ An important observation is that the parameters (Θ^*, p^*) can be viewed as associated with the matrix \mathbf{Q}^* under a DINA model with $J-2$ items and $K-1$ latent attributes. Now that Q^* satisfies the C-R-D conditions (which are sufficient for identifiability), we obtain the following "identifiability conclusions" for the parameters $(\mathbf{\Theta}^*, \mathbf{p}^*)$,

$$
\begin{cases}\n\theta_{j,(0,\alpha^*)} = \bar{\theta}_{j,(0,\alpha^*)}; \\
\mathbb{P}(R_1 \ge r_1, R_2 \ge r_2, \mathbf{A}_{2:K} = \alpha^*) = \overline{\mathbb{P}}(R_1 \ge r_1, R_2 \ge r_2, \mathbf{A}_{2:K} = \alpha^*); \n\end{cases} (S.5)
$$

which hold for any $j \in \{3, ..., J\}$ and $\boldsymbol{\alpha}^* \in \{0,1\}^{K-1}$. Recall that for any item $j \geq 3$, the parameter $\theta_{j,(0,\alpha^*)}$ ranges over both item parameters c_j and g_j) when α^* ranges in $\{0,1\}^{K-1}$, so the first part of [\(S.5\)](#page-6-1) implies

$$
c_j = \bar{c}_j, \quad g_j = \bar{g}_j, \quad \forall j \in \{3, \dots, J\}.
$$
\n(S.6)

Recall the form of Q and the vector u stated in the theorem, for any $\alpha^* \in \{0,1\}^{K-1}$ and $\alpha^* \succeq u$ (i.e. vector α is elementwisely greater than or equal to vector u), the second part of [\(S.5\)](#page-6-1) implies the following must hold,

$$
(r_1, r_2) = \begin{cases} (0, 0) \implies p_{(0,\alpha^*)} + p_{(1,\alpha^*)} = \bar{p}_{(0,\alpha^*)} + \bar{p}_{(1,\alpha^*)};\\ (1, 0) \implies g_1 \cdot p_{(0,\alpha^*)} + c_1 \cdot p_{(1,\alpha^*)} = \bar{g}_1 \cdot \bar{p}_{(0,\alpha^*)} + \bar{c}_1 \cdot \bar{p}_{(1,\alpha^*)};\\ (0, 1) \implies g_2 \cdot p_{(0,\alpha^*)} + c_2 \cdot p_{(1,\alpha^*)} = \bar{g}_2 \cdot \bar{p}_{(0,\alpha^*)} + \bar{c}_2 \cdot \bar{p}_{(1,\alpha^*)};\\ (1, 1) \implies g_1 g_2 \cdot p_{(0,\alpha^*)} + c_1 c_2 \cdot p_{(1,\alpha^*)} = \bar{g}_1 \bar{g}_2 \cdot \bar{p}_{(0,\alpha^*)} + \bar{c}_1 \bar{c}_2 \cdot \bar{p}_{(1,\alpha^*)}. \end{cases} (S.7)
$$

First, we transform the system of equations [\(S.7\)](#page-7-0) to obtain

$$
\begin{cases}\n(g_1 - c_1) \cdot (g_2 - \bar{c}_2) \cdot p_{(0,\alpha^*)} = (\bar{g}_1 - c_1) \cdot (\bar{g}_2 - \bar{c}_2) \cdot \bar{p}_{(0,\alpha^*)}; \\
(g_2 - \bar{c}_2) \cdot p_{(0,\alpha^*)} + (c_2 - \bar{c}_2) \cdot p_{(1,\alpha^*)} = (\bar{g}_2 - \bar{c}_2) \cdot \bar{p}_{(0,\alpha^*)}.\n\end{cases}
$$

Note that the right hand sides of both the above equations are nonzero. So we can take the ratio of the two equations to obtain

$$
f_1(\boldsymbol{\alpha}^*) := \frac{(g_1 - c_1) \cdot (g_2 - \bar{c}_2)}{(g_2 - \bar{c}_2) + (c_2 - \bar{c}_2) \cdot p_{(1,\boldsymbol{\alpha}^*)}/p_{(0,\boldsymbol{\alpha}^*)}} = \bar{g}_1 - c_1.
$$

So for two arbitrary patterns $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \in \{0,1\}^{K-1}$ with $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u}$, our above deduction gives $f_1(\boldsymbol{\alpha}_1^*) = f_1(\boldsymbol{\alpha}_2^*) = \bar{g}_1 - c_1$. This equality of $f_1(\boldsymbol{\alpha}_1^*)$ and $f_1(\boldsymbol{\alpha}_2^*)$ implies

$$
(c_2 - \bar{c}_2) \cdot \frac{p_{(1,\alpha_1^*)}}{p_{(0,\alpha_1^*)}} = (c_2 - \bar{c}_2) \cdot \frac{p_{(1,\alpha_2^*)}}{p_{(0,\alpha_2^*)}};
$$

$$
\implies (c_2 - \bar{c}_2) \cdot \left(\frac{p_{(1,\alpha_1^*)}}{p_{(0,\alpha_1^*)}} - \frac{p_{(1,\alpha_2^*)}}{p_{(0,\alpha_2^*)}} \right) = 0. \tag{S.8}
$$

The above equation indicates that as long as there exist one pair of patterns $\alpha_1^*, \alpha_2^* \in$ $\{0,1\}^{K-1}$ with $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u}$ and $\boldsymbol{\alpha}_1^* \neq \boldsymbol{\alpha}_2^*$ such that

$$
p_{(1,\alpha_1^*)}p_{(0,\alpha_2^*)} - p_{(0,\alpha_1^*)}p_{(1,\alpha_2^*)} \neq 0,
$$
\n(S.9)

then $p_{(1,\alpha_1^*)}/p_{(0,\alpha_1^*)} \neq p_{(1,\alpha_2^*)}/p_{(0,\alpha_2^*)}$ and we must have $c_2 = \bar{c}_2$ from [\(S.8\)](#page-8-0). Under the assump-tion stated in Theorem [1](#page-0-0) that $u \neq 1_{K-1}$, there indeed exist such two distinct vectors α_1^*, α_2^* satisfying $\alpha_1^*, \alpha_2^* \succeq u$. Therefore, $c_2 = \bar{c}_2$ (i.e., c_2 is identifiable) as long as $p \notin \mathcal{N}_{R,1}$, where the set $\mathcal{N}_{R,1}$ is defined in the statement of Theorem [4:](#page-0-0)

$$
\mathcal{N}_{R,1} = \{ \boldsymbol{p} \text{ satisfies } p_{(1,\boldsymbol{\alpha}_1^*)} p_{(0,\boldsymbol{\alpha}_2^*)} - p_{(0,\boldsymbol{\alpha}_1^*)} p_{(1,\boldsymbol{\alpha}_2^*)} = 0 \text{ for any } \boldsymbol{\alpha}_1^* \neq \boldsymbol{\alpha}_2^* \text{ with } \boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u} \}.
$$

Next, we transform the system of equations [\(S.7\)](#page-7-0) in another way to obtain

$$
\begin{cases}\n(c_1 - g_1) \cdot (c_2 - \bar{g}_2) \cdot p_{(1,\alpha^*)} = (\bar{c}_1 - g_1) \cdot (\bar{c}_2 - \bar{g}_2) \cdot \bar{p}_{(1,\alpha^*)}; \n(g_2 - \bar{g}_2) \cdot p_{(0,\alpha^*)} + (c_2 - \bar{g}_2) \cdot p_{(1,\alpha^*)} = (\bar{c}_2 - \bar{g}_2) \cdot \bar{p}_{(1,\alpha^*)}.\n\end{cases}
$$

The ratio of the above two equations gives

$$
f_2(\boldsymbol{\alpha}^*) := \frac{(c_1 - g_1) \cdot (c_2 - \bar{g}_2)}{(g_2 - \bar{g}_2) \cdot p_{(0,\boldsymbol{\alpha}^*)}/p_{(1,\boldsymbol{\alpha}^*)} + (c_2 - \bar{g}_2)} = \bar{c}_1 - g_1.
$$

Again we have $f_2(\boldsymbol{\alpha}_1^*) = f_2(\boldsymbol{\alpha}_2^*)$ for any $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u}$ with $\boldsymbol{\alpha}_1^* \neq \boldsymbol{\alpha}_2^*$. Such an equality implies

$$
(g_2 - \bar{g}_2) \cdot \frac{p_{(0,\alpha_1^*)}}{p_{(1,\alpha_1^*)}} = (g_2 - \bar{g}_2) \cdot \frac{p_{(0,\alpha_2^*)}}{p_{(1,\alpha_2^*)}}, \quad \Longrightarrow \quad (g_2 - \bar{g}_2) \cdot \left(\frac{p_{(0,\alpha_1^*)}}{p_{(1,\alpha_1^*)}} - \frac{p_{(0,\alpha_2^*)}}{p_{(1,\alpha_2^*)}}\right) = 0.
$$

Therefore, as long as $p \notin \mathcal{N}_{R,1}$, we also have $g_2 = \bar{g}_2$ and g_2 is identifiable.

Now note that the systems of equations [\(S.7\)](#page-7-0) are symmetric about (c_1, g_1) and (c_2, g_2) . Since we have already obtained $c_2 = \bar{c}_2$ and $g_2 = \bar{g}_2$ if $p \notin \mathcal{N}_{R,1}$, we also have $c_1 = \bar{c}_1$ and $g_1 = \bar{g}_1$ if $p \notin \mathcal{N}_{R,1}$ following the same argument. Thus far we have already established $c = \bar{c}$ and $g = \bar{g}$, i.e., have shown the identifiability of all the item parameters in Θ .

Since the item parameters (c, g) (equivalently, Θ) are already identified, and we have $T(\Theta)\mathbf{p} = T(\bar{\Theta})\bar{\mathbf{p}} = T(\Theta)\bar{\mathbf{p}}$. Since Q contains a submatrix \mathbf{I}_K , the matrix $T(\Theta)$ has full column rank from a statement in [Xu and Zhang](#page-26-0) [\(2016\)](#page-26-0), and hence we obtain $p = \bar{p}$. This means all the parameters (s, g, p) are identifiable as long as p satisfies $(S.9)$. More precisely, we have that the DINA model parameters are identifiable if $(s, g, p) \in \mathcal{T} \setminus \mathcal{N}_{R,1}$ where the set $\mathcal{N}_{R,1}$ is defined by [\(8\)](#page-0-0) in the main text in Theorem [4.](#page-0-0) We rewrite the definition of $\mathcal{N}_{R,1}$, The above set $\mathcal{N}_{R,1}$ has measure zero with respect to the Lebesgue measure defined on the parameter space \mathcal{T} . This is because $\mathcal{N}_{R,1}$ is characterized by the zero set of a polynomial equation about entries of p , and by basic algebraic geometry, $\mathcal{N}_{R,1}$ necessarily has measure zero in the parameter space of \boldsymbol{p} . This completes the proof of Theorem [1.](#page-0-0)

Proof of Theorem [4.](#page-0-0) We next examine the statistical interpretation of the null set $\mathcal{N}_{R,1}$ defined in [\(8\)](#page-0-0) where identifiability breaks down. Recall the definition of the population proportion parameter $p_{\alpha} = \mathbb{P}(\mathbf{A} = \alpha)$, where $\mathbf{A} = (A_1, \dots, A_K)$ denotes a random attribute profile. For an arbitrary attribute pattern $\alpha = (\alpha_1, \alpha^*)$ where the subvector satisfies $\alpha^* \in$ $\{0,1\}^{K-1}$ and $\boldsymbol{\alpha}^* \succeq \boldsymbol{u}$, we have

$$
\mathbb{P}(A_{1} = \alpha_{1})\mathbb{P}(\mathbf{A}_{2:K} = \boldsymbol{\alpha}^{*})
$$
\n
$$
= \left(\sum_{\beta \in \{0,1\}^{K-1}} p_{(\alpha_{1},\beta)}\right) (p_{(\alpha_{1},\boldsymbol{\alpha}^{*})} + p_{(1-\alpha_{1},\boldsymbol{\alpha}^{*})})
$$
\n
$$
= \sum_{\beta \in \{0,1\}^{K-1}} p_{(\alpha_{1},\beta)} p_{(\alpha_{1},\boldsymbol{\alpha}^{*})} + \sum_{\beta \in \{0,1\}^{K-1}} p_{(\alpha_{1},\beta)} p_{(1-\alpha_{1},\boldsymbol{\alpha}^{*})}
$$
\n
$$
= \sum_{\beta \in \{0,1\}^{K-1}} p_{(\alpha_{1},\beta)} p_{(\alpha_{1},\boldsymbol{\alpha}^{*})} + \sum_{\beta \in \{0,1\}^{K-1}} p_{(1-\alpha_{1},\beta)} p_{(\alpha_{1},\boldsymbol{\alpha}^{*})} \quad \text{(because } \boldsymbol{p} \in \mathcal{N}_{R,1})
$$
\n
$$
= \left(\sum_{\beta \in \{0,1\}^{K-1}} p_{(\alpha_{1},\beta)} + \sum_{\beta \in \{0,1\}^{K-1}} p_{(1-\alpha_{1},\beta)}\right) p_{(\alpha_{1},\boldsymbol{\alpha}^{*})}
$$
\n
$$
= p_{(\alpha_{1},\boldsymbol{\alpha}^{*})} = \mathbb{P}(\mathbf{A} = \boldsymbol{\alpha}).
$$

The third equality above follows from the fact that for $p \in \mathcal{N}_{R,1}$, the $p_{(\alpha_1,\beta)}p_{(1-\alpha_1,\alpha^*)}$ $p_{(1-\alpha_1,\beta)}p_{(\alpha_1,\alpha^*)}$ holds for any $\alpha_1 \in \{0,1\}$ and $\alpha^*, \beta \in \{0,1\}^{K-1}$. Now we obtain that if $p \in \mathcal{N}_{R,1}$, then $\mathbb{P}(\mathbf{A} = (\alpha_1, \boldsymbol{\alpha}^*)) = \mathbb{P}(A_1 = \alpha_1)\mathbb{P}(\mathbf{A}_{2:K} = \boldsymbol{\alpha}^*)$ for any $\alpha_1 \in \{0,1\}$ and $\alpha^* \succeq u$. This implies if $p \in \mathcal{N}_{R,1}$, then latent attribute A_1 is conditionally independent of latent attributes $\mathbf{A}_{2:K}$ given $\mathbf{A}_{2:K} \succeq \boldsymbol{u}$.

On the other hand, if latent variables A_1 and $\mathbf{A}_{2:K}$ are conditionally independent given $\mathbf{A}_{2:K} \succeq \boldsymbol{u}$, then for any $\boldsymbol{\alpha}^* \succeq \boldsymbol{u}$ we have

$$
\frac{p_{(1,\alpha^*)}}{p_{(0,\alpha^*)}}=\frac{\mathbb{P}(\mathbf{A}=(1,\alpha^*))}{\mathbb{P}(\mathbf{A}=(0,\alpha^*))}=\frac{\mathbb{P}(A_1=1)\mathbb{P}(\mathbf{A}_{2:K}=\alpha^*)}{\mathbb{P}(A_1=0)\mathbb{P}(\mathbf{A}_{2:K}=\alpha^*)}=\frac{\mathbb{P}(A_1=1)}{\mathbb{P}(A_1=0)}=:\rho.
$$

This means for any $\alpha_1^* \neq \alpha_2^*$ with $\alpha_1^*, \alpha_2^* \geq u$, the equality $p_{(1,\alpha_1^*)}/p_{(0,\alpha_1^*)}-p_{(1,\alpha_2^*)}/p_{(0,\alpha_2^*)}=$ $\rho - \rho = 0$ must hold, which is equivalent to $p_{(1,\alpha_1^*)}p_{(0,\alpha_2^*)} - p_{(0,\alpha_1^*)}p_{(1,\alpha_2^*)} = 0$ for any $\alpha_1^* \neq \alpha_2^*$ with $\alpha_1^*, \alpha_2^* \succeq u$. This means if $A_1 \perp \!\!\! \perp A_{2:K} \mid A_{2:K} \succeq u$ holds, then we must have $p \in \mathcal{N}_{R,1}$ with $\mathcal{N}_{R,1}$ defined in [\(8\)](#page-0-0) in Theorem [4.](#page-0-0)

Now we have proved the statement that

$$
A_1 \perp \!\!\! \perp \mathbf{A}_{2:K} | \mathbf{A}_{2:K} \succeq \mathbf{u},
$$

is exactly equivalent to the statement that

$$
\boldsymbol{p}\in\mathcal{N}_{R,1}=\{p_{(1,\boldsymbol{\alpha}_1^*)}p_{(0,\boldsymbol{\alpha}_2^*)}-p_{(0,\boldsymbol{\alpha}_1^*)}p_{(1,\boldsymbol{\alpha}_2^*)}=0\,\,\text{holds for any}\,\,\boldsymbol{\alpha}_1^*\neq\boldsymbol{\alpha}_2^*\,\,\text{with}\,\,\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*\geq\boldsymbol{u}\}.
$$

This completes the proof of Theorem [4.](#page-0-0)

 \Box

S.4 Proof of Theorem [2](#page-0-0) and Theorem [5](#page-0-0)

Proof of Theorem [2.](#page-0-0) We rewrite the form of Q in (6) below,

$$
\mathbf{Q} = \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{1} & \mathbf{u}_1 \\ \hline \mathbf{0} & \mathbf{Q}^{(1)} \end{array}\right), \quad \mathbf{Q}^{(1)} = \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{1} & \mathbf{u}_2 \\ \hline \mathbf{0} & \mathbf{Q}^{(2)} \end{array}\right), \quad \cdots , \quad \mathbf{Q}^{(m)} = \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{1} & \mathbf{u}_{m+1} \\ \hline \mathbf{0} & \mathbf{Q}^{(m+1)} \end{array}\right).
$$

Under the assumption that the first $m + 1$ latent attributes are each required by only two items, we know $u_{1,1:m} = 0$, $u_{2,1:(m-1)} = 0$, ..., $u_{m,1} = 0$. First consider the last $J - m - 2$ items corresponding to the bottom $(J - m - 2) \times K$ submatrix of Q ,

$$
(\mathbf{0}, \ \mathbf{Q}^{(m+1)}) =: \widetilde{\mathbf{Q}}^{(m+1)}
$$

The $(J - m - 2) \times (K - m - 1)$ matrix $\mathbf{Q}^{(m+1)}$ satisfies the C-R-D conditions under the assumption stated in the corollary, and that the first $m+1$ columns of the $\widetilde{\mathbf{Q}}^{(m+1)}$ are all-zero columns. Next we use an argument similar to the proof of Theorem [1.](#page-0-0) Consider a true set of parameters (Θ, p) and an alternative set (Θ, \bar{p}) with $T(\Theta)p = T(\Theta)\bar{p}$. Then the following equations must hold for an arbitrary fixed response pattern $\boldsymbol{r} = (r_1, \ldots, r_{m+2}, \boldsymbol{r}^*),$

$$
\sum_{\substack{\alpha^*\in\{0,1\}^{K-m-2} \ j>m+2: r_j=1}} \prod_{j>m+2: r_j=1} \theta_{j,(0,\alpha^*)}\cdot \mathbb{P}(\mathbf{R}_{1:(m+2)} \geq r_{1:(m+2)}, \mathbf{A}_{(m+2):K} = \alpha^*)
$$

=
$$
\sum_{\substack{\alpha^*\in\{0,1\}^{K-m-2} \ j>m+2: r_j=1}} \bar{\theta}_{j,(0,\alpha^*)}\cdot \overline{\mathbb{P}}(\mathbf{R}_{1:(m+2)} \geq r_{1:(m+2)}, \mathbf{A}_{(m+2):K} = \alpha^*).
$$

Similar to the argument in the proof of Theorem [1,](#page-0-0) the fact that $\mathbf{Q}^{(m)}$ satisfies the C-R-D conditions imply $c_{(J-m-1):J} = \bar{c}_{(J-m-1):J}$ and $g_{(J-m-1):J} = \bar{g}_{(J-m-1):J}$, and also imply the following for all $\boldsymbol{\alpha}^* \in \{0,1\}^{K-m-2}$,

$$
\mathbb{P}(\mathbf{R}_{1:(m+2)} \geq r_{1:(m+2)}, \mathbf{A}_{(m+2):K} = \boldsymbol{\alpha}^*) = \overline{\mathbb{P}}(\mathbf{R}_{1:(m+2)} \geq r_{1:(m+2)}, \mathbf{A}_{(m+2):K} = \boldsymbol{\alpha}^*).
$$
 (S.10)

Define surrogate (grouped) proportion parameters to be

$$
p_{(z,\alpha^*)}^{(m)} = \mathbb{P}(A_{m+1} = z, \mathbf{A}_{(m+2):K} = \alpha^*), \quad z = 0, 1; \tag{S.11}
$$

and define $\bar{p}_{(z,\alpha)}^{(m)}$ $\binom{m}{z,\alpha^*}$ similarly based on the alternative set of parameters $(\bar{\mathbf{\Theta}}, \bar{\mathbf{p}})$. Now fixing (r_1, \ldots, r_m) ^T = 0 and varying $(r_{m+1}, r_{m+2}) \in \{0, 1\}^2$, the equality in [\(S.10\)](#page-11-0) becomes

$$
\mathbb{P}((R_{m+1}, R_{m+2}) \ge (r_{m+1}, r_{m+2}), \mathbf{A}_{(m+2):K} = \boldsymbol{\alpha}^*)
$$

= $\overline{\mathbb{P}}((R_{m+1}, R_{m+2}) \ge (r_{m+1}, r_{m+2}), \mathbf{A}_{(m+2):K} = \boldsymbol{\alpha}^*).$

This implies the following equations for any fixed $\boldsymbol{\alpha}^* \succeq \boldsymbol{u}^{(m+1)}$ when (r_{m+1}, r_{m+2}) vary,

$$
(r_{m+1}, r_{m+2}) = \begin{cases} (0, 0) \implies p_{(0,\alpha^{*})}^{(m)} + p_{(1,\alpha^{*})}^{(m)} = \bar{p}_{(0,\alpha^{*})}^{(m)} + \bar{p}_{(1,\alpha^{*})}^{(m)}; \\ (1, 0) \implies g_{m+1} \cdot p_{(0,\alpha^{*})}^{(m)} + c_{m+1} \cdot p_{(1,\alpha^{*})}^{(m)} = \bar{g}_{m+1} \cdot \bar{p}_{(0,\alpha^{*})} + \bar{c}_{m+1} \cdot \bar{p}_{(1,\alpha^{*})}^{(m)}; \\ (0, 1) \implies g_{m+2} \cdot p_{(0,\alpha^{*})}^{(m)} + c_{m+2} \cdot p_{(1,\alpha^{*})}^{(m)} = \bar{g}_{m+2} \cdot \bar{p}_{(0,\alpha^{*})}^{(m)} + \bar{c}_{m+2} \cdot \bar{p}_{(1,\alpha^{*})}^{(m)}; \\ (1, 1) \implies g_{m+1}g_{m+2} \cdot p_{(0,\alpha^{*})}^{(m)} + c_{m+1}c_{m+2} \cdot p_{(1,\alpha^{*})}^{(m)} \\ = \bar{g}_{m+1}\bar{g}_{m+2} \cdot \bar{p}_{(0,\alpha^{*})}^{(m)} + \bar{c}_{m+1}\bar{c}_{m+2} \cdot \bar{p}_{(1,\alpha^{*})}^{(m)}. \end{cases}
$$
\n(S.12)

The above system of four equations are similar in form to Eq. [\(S.7\)](#page-7-0) in the proof of Theorem [1.](#page-0-0) So following a similar argument as before, we obtain that (c_{m+1}, c_{m+2}) and (g_{m+1}, g_{m+2}) and all the $p_{(z,\alpha)}^{(m)}$ $\binom{m}{(z,\alpha^*)}$'s are identifiable as long as $p \in \mathcal{T} \setminus \mathcal{N}_m$ where

$$
\mathcal{N}_m = \{ p_{(1,\alpha_1^*)}^{(m)} p_{(0,\alpha_2^*)}^{(m)} - p_{(0,\alpha_1^*)}^{(m)} p_{(1,\alpha_2^*)}^{(m)} = 0 \text{ for any } \alpha_1^* \neq \alpha_2^* \text{ with } \alpha_1^*, \alpha_2^* \geq \boldsymbol{u}^{(m+1)} \}. \tag{S.13}
$$

Note the definition [\(S.11\)](#page-12-0) implies that each surrogate proportion $p_{(z,\alpha)}^{(m)}$ $\binom{m}{(z,\boldsymbol{\alpha}^*)}$ is a sum of certain individual proportion parameters in that

$$
p_{(z,\alpha^*)}^{(m)} = \sum_{\beta \in \{0,1\}^m} p_{(\beta,z,\alpha^*)}.
$$

Note that the $p_{(z,\alpha)}^{(m)}$ $\binom{m}{z,\alpha^*}$ defined above exactly characterizes the joint distribution of latent attributes A_m and $\mathbf{A}_{(m+1):K}$. Now we have that the set \mathcal{N}_m defined in [\(S.13\)](#page-12-1) corresponds to the zero set of certain polynomials about the proportion parameters p , so \mathcal{N}_m has Lebesgue measure zero in the parameter space \mathcal{T} . Therefore we have shown $(c_{m+1}, c_{m+2}), (g_{m+1}, g_{m+2}),$ and $\bm{p}^{(m)} := (p_{(z,\bm{q})}^{(m)}$ $\binom{m}{(z,\alpha^*)}$; $(z,\alpha^*) \in \{0,1\}^{K-m}$ are generically identifiable.

Moreover, we go back to the equality in [\(S.10\)](#page-11-0) and define surrogate proportions alternatively as

$$
p_{(z,\alpha^*)}^{(m),r} = \mathbb{P}(\mathbf{R}_{1:m} \succeq r_{1:m}, A_{m+1} = z, \mathbf{A}_{(m+2):K} = \alpha^*), \quad x = 0,1;
$$

and define $\bar{p}_{\ell z}^{(m),r}$ $\sum_{(z,\alpha^*)}^{(m),r}$ similarly. Fixing $r_{1:m}$ and varying $(r_{m+1}, r_{m+2}) \in \{0,1\}^2$, Eq. [\(S.10\)](#page-11-0) can be written in a similar form as the four equations in [\(S.12\)](#page-12-2), with $p_{(x,\alpha)}^{(m)}$ $\binom{m}{z,\boldsymbol{\alpha}^*}$ there replaced by $p_{\left(z,\,\boldsymbol{\alpha}^*\right)}^{\left(m\right),\boldsymbol{r}}$ $\sum_{(z,\alpha^*)}^{(m),r}$ now. Since when $p \in \mathcal{T} \setminus \mathcal{N}_m$, we already have the item parameters (c_{m+1}, c_{m+2}) and (g_{m+1}, g_{m+2}) are identifiable, based on the equations about (c_{m+1}, c_{m+2}) , (g_{m+1}, g_{m+2}) , and $p^{(m),r}$, the parameters $p^{(m),r}$ are also identifiable. Now we write out the equality $p^{(m),r}$ = $\bar{\boldsymbol{p}}^{(m),\boldsymbol{r}}$ by their definitions as

$$
\mathbb{P}(\mathbf{R}_{1:m} \geq r_{1:m}, A_{m+1} = z, \mathbf{A}_{(m+2):K} = \alpha^*) = \overline{\mathbb{P}}(\mathbf{R}_{1:m} \geq r_{1:m}, A_{m+1} = z, \mathbf{A}_{(m+2):K} = \alpha^*),
$$

where $(z, \alpha^*) \in \{0,1\}^{K-m}$. Therefore the above equation can be equivalently written as follows, with the new α^* defined to be $(K - m)$ -dimensional,

$$
\mathbb{P}(\mathbf{R}_{1:m} \geq r_{1:m}, \mathbf{A}_{(m+1):K} = \alpha^*) = \mathbb{\overline{P}}(\mathbf{R}_{1:m} \geq r_{1:m}, \mathbf{A}_{(m+1):K} = \alpha^*).
$$
 (S.14)

Comparing the above [\(S.14\)](#page-13-0) to the previous [\(S.10\)](#page-11-0) give an immediate similarity, with the difference being only the changes of subscripts of \bf{R} and \bf{A} . Therefore, we can proceed in the same way as before, and show the identifiability of (c_{m-1}, c_m) and (g_{m-1}, g_m) and all the $p_{(z,\alpha^*)}^{(m-1)}$ when p satisfies $p \in \mathcal{T} \setminus (\mathcal{N}_m \cup \mathcal{N}_{m-1}),$ where

$$
\mathcal{N}_{m-1} = \{p_{(1,\alpha_1^*)}^{(m-1)}p_{(0,\alpha_2^*)}^{(m-1)} - p_{(0,\alpha_1^*)}^{(m-1)}p_{(1,\alpha_2^*)}^{(m-1)} = 0 \text{ for any } \alpha_1^* \neq \alpha_2^* \text{ with } \alpha_1^*, \alpha_2^* \geq \boldsymbol{u}^{(m)} \vee (0, \boldsymbol{u}^{(m+1)})\}.
$$

In the definition of \mathcal{N}_{m-1} , we have $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u}^{(m)} \vee (0, \boldsymbol{u}^{(m+1)}) = \widetilde{\boldsymbol{u}}^{(m)} \vee \widetilde{\boldsymbol{u}}^{(m+1)}$ because the α_1^*, α_2^* first need to satisfy the previous requirement before [\(S.12\)](#page-12-2) and hence $\alpha_{1,-1}^*, \alpha_{2,-1}^* \succeq$ $u^{(m+1)}$ (equivalently, $\alpha_1^*, \alpha_2^* \succeq (0, u^{(m+1)})$); and additionally they also need to satisfy the new requirement $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \boldsymbol{u}^{(m)}$.

Recall the definition that $\widetilde{\boldsymbol{u}}^{(\ell)} = (0, \boldsymbol{u}^{(\ell)})$ is a $(K-1)$ -dimensional vector for $\ell = 2, \ldots, m+$ 1, and $\tilde{\mathbf{u}}^{(1)} = \mathbf{u}^{(1)}$ is also a $(K-1)$ -dimensional vector. Proceeding in an iterative manner as done in the previous paragraphs, we obtain that as long as p satisfies the following condition, then all the item parameters c, g and all the proportion parameters p are identifiable.

$$
\mathbf{p} \in \mathcal{T} \setminus \left\{ \bigcup_{\ell=0}^{m} \mathcal{N}_{\ell} \right\},
$$

$$
\mathcal{N}_{\ell} = \left\{ p_{(1,\boldsymbol{\alpha}_1^*)}^{(\ell)} p_{(0,\boldsymbol{\alpha}_2^*)}^{(\ell)} - p_{(0,\boldsymbol{\alpha}_1^*)}^{(\ell)} p_{(1,\boldsymbol{\alpha}_2^*)}^{(\ell)} = 0 \text{ for any } \boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \succeq \bigvee_{t=\ell+1}^{m+1} \widetilde{\boldsymbol{u}}^{(t)} \right\};
$$

with the definition $p_{(z,\boldsymbol{\alpha}^*)}^{(\ell)} = \mathbb{P}(A_{\ell+1} = z, \mathbf{A}_{(\ell+2):K} = \boldsymbol{\alpha}^*),$

Because of the assumption

$$
\bigvee_{t=1}^{m+1} \widetilde{\boldsymbol{u}}^{(t)} \neq \mathbf{1}_{K-1}^{\top} \tag{S.15}
$$

stated in the theorem, we claim that the set $\mathcal{T} \setminus \{\bigcup_{\ell=0}^m \mathcal{N}_{\ell}\}\)$ is nonempty. To see this, note that $\bigvee_{t=\ell+1}^{m+1} \tilde{u}^{(t)} \neq \mathbf{1}_{K-1}^{\top}$ for each $\ell = 0, \ldots, m$ follows from [\(S.15\)](#page-14-0). This means there must exist two distinct patterns $\boldsymbol{\alpha}_{1,\ell}^* \neq \boldsymbol{\alpha}_{2,\ell}^*$ with $\boldsymbol{\alpha}_{1,\ell}^*, \boldsymbol{\alpha}_{2,\ell}^* \succeq \bigvee_{t=\ell+1}^{m+1} \widetilde{\boldsymbol{u}}^{(t)}$. Therefore as long as p satisfies $p_{(1)}^{(\ell)}$ $_{(1,\boldsymbol{\alpha}_{1,\ell}^*)}^{(\ell)} p_{(0,\cdot)}^{(\ell)}$ $\frac{(\ell)}{(0,\bm{\alpha}_{2,\ell}^*)} - p_{(0,\bm{\alpha}_{2,\ell})}^{(\ell)}$ ${}^{(\ell)}_{(0,\boldsymbol{\alpha}_{1,\ell}^*)}p_{(1,}^{(\ell)}$ $\binom{(\ell)}{(1,\alpha_{2,\ell}^*)}\neq 0$ for each $\ell=0,\ldots,m$, such \boldsymbol{p} does not belong to $\bigcup_{\ell=0}^m \mathcal{N}_\ell$ and hence $p \in \mathcal{T} \setminus \{\bigcup_{\ell=0}^m \mathcal{N}_\ell\}.$ This proves the earlier claim that the subset of the identifiable parameters $\mathcal{T} \setminus \{\bigcup_{\ell=0}^m \mathcal{N}_\ell\}$ is nonempty.

Now note that the subset of the parameter space where identifiability may break down $\bigcup_{\ell=0}^m \mathcal{N}_\ell$ is a finite union of several zero sets of polynomial equations about entries of p , so it necessarily has Lebesgue measure zero in $\mathcal T$. This proves the generic identifiability of parameters (c, g, p) and completes the proof of Theorem [2.](#page-0-0) Furthermore, note that the \mathcal{N}_{ℓ} in the last paragraph gives the form of the non-identifiable null sets in Theorem [5.](#page-0-0) Recall that the notation $p_{\ell z}^{(\ell)}$ $\sum_{(z,\alpha^*)}^{(\ell)}$ exactly corresponds to the marginal distribution of the $K-\ell$ latent attributes $A_{\ell+1}, \ldots, A_K$. So each set \mathcal{N}_{ℓ} can be equivalently written as

$$
\mathcal{N}_{\ell} = \Big\{ A_{\ell} \perp \!\!\! \perp \mathbf{A}_{(\ell+1):K} \; \Big| \; \Big\{ \mathbf{A}_{(\ell+1):K} \succeq \bigvee_{t=\ell+1}^{m+1} \widetilde{\mathbf{u}}^{(t)} \Big\} \Big\}.
$$

The above set \mathcal{N}_{ℓ} carries the statistical interpretation of latent conditional independence. This completes the proof Theorem [5.](#page-0-0) \Box

S.5 Proof of Theorem [3](#page-0-0) and Theorem [6](#page-0-0)

We rewrite the form of the **Q**-matrix in the theorem below,

$$
\mathbf{Q} = \begin{pmatrix} 1 & 0 & \mathbf{0} \\ 0 & 1 & \mathbf{0} \\ \mathbf{v} & \mathbf{v} & \mathbf{Q}^{\star} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \mathbf{0} \\ 0 & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Q}' \\ 1 & 1 & \mathbf{Q}'' \end{pmatrix}
$$

.

Denote the size of the above submatrix \mathbf{Q}' by $J_1 \times (K - 2)$, then \mathbf{Q}'' has size $(J - 2 - J_1) \times$ $(K-2)$. By Remark [4,](#page-0-0) we have $J-2-J_1 \geq 2$. Consider two sets of DINA model parameters (c, g, p) and $(\bar{c}, \bar{g}, \bar{p})$ that lead to the same distribution of **R** so we have $T(\Theta) p = T(\bar{\Theta}) \bar{p}$. Theorem 4 in [Xu and Zhang](#page-26-0) [\(2016\)](#page-26-0) established that if \bf{Q} satisfies Conditions (C) and (R), then the guessing parameters associated with those items requiring more than one attribute

(i.e., $\{g_j: \sum_{k=1}^K q_{j,k} > 1\}$) and all the slipping parameters (i.e., $\{c_1, \ldots, c_J\}$) are identifiable. Since the considered Q-matrix satisfies Conditions (C) and (R) by the assumption in the theorem, we have $\boldsymbol{c} = \bar{\boldsymbol{c}}$ and $\boldsymbol{g}_{(3+J_1):J} = \bar{\boldsymbol{g}}_{(3+J_1):J}$.

Next consider an arbitrary $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$. The form of the **Q**-matrix implies

$$
\theta_{j,(0,0,\alpha^*)}=\theta_{j,(0,1,\alpha^*)}=\theta_{j,(1,0,\alpha^*)}=\theta_{j,(1,1,\alpha^*)},\quad \forall j\in\{2,\ldots,2+J_1\}.
$$

So for a response pattern r with $r_{(3+J_1):J} = 0$, we can write $T_{r,:}(\Theta)p$ as follows,

$$
T_{r,:}(\Theta)p
$$
\n
$$
= \sum_{\substack{\alpha \in \{0,1\}^K \\ \alpha = (\alpha_1, \alpha_2, \alpha^*)}} p_{\alpha} \cdot \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2 | \mathbf{A} = \alpha) \prod_{j=3}^{2+J_1} \theta_{j,(0,0,\alpha^*)}
$$
\n
$$
= \sum_{\substack{\alpha^* \in \{0,1\}^{K-2} \\ \alpha^* \in \{0,1\}^{K-2}}} \left[\sum_{(\alpha_1, \alpha_2) \in \{0,1\}^2} p_{(\alpha_1, \alpha_2, \alpha^*)} \cdot \mathbb{P}(R_1 \ge r_1, R_2 \ge r_2 | \mathbf{A}_{1:2} = (\alpha_1, \alpha_2)) \right] \prod_{j=3}^{2+J_1} \theta_{j,(0,0,\alpha^*)}.
$$
\ndefine this to be $p_{\alpha^*}^{(r_1,r_2)}$

Now define surrogate DINA model parameters: surrogate proportions $p^{(r_1,r_2)} = (p_{\alpha^*}^{(r_1,r_2)} :$ $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$ and surrogate item parameters $\boldsymbol{\Theta}^* = \{\theta_{j,(0,0,\boldsymbol{\alpha}^*)}: j = 3,\ldots,2+J_1; \boldsymbol{\alpha}^* \in$ $\{0,1\}^{K-2}\}$. These surrogate parameters $p^{(r_1,r_2)}$ and Θ^* can be viewed as associated with the $J_1 \times (K-2)$ matrix Q'. Since Q' satisfies the C-R-D conditions, we obtain the identifiability of $p^{(r_1,r_2)}$ and Θ^* . Note that Θ^* includes all the item parameters associated with items with indices $3, \ldots, J$; i.e., we have established the identifiability of $\{c_3, \ldots, c_{2+J_1}, g_3, \ldots, g_{2+J_1}\}.$ So far we have obtained $c = \bar{c}$ and $g_{3:J} = \bar{g}_{3:J}$. It only remains to identify p and (g_1, g_2) .

The identifiability of $p^{(r_1,r_2)}$ means $p^{(r_1,r_2)} = \bar{p}^{(r_1,r_2)}$ for $(r_1,r_2) \in \{0,1\}^2$, which gives

$$
(0,0): p_{(0,0,\alpha^{*})} + p_{(1,0,\alpha^{*})} + p_{(0,1,\alpha^{*})} + p_{(1,1,\alpha^{*})}
$$
\n
$$
= \bar{p}_{(0,0,\alpha^{*})} + \bar{p}_{(1,0,\alpha^{*})} + \bar{p}_{(0,1,\alpha^{*})} + \bar{p}_{(1,1,\alpha^{*})};
$$
\n
$$
(1,0): g_1[p_{(0,0,\alpha^{*})} + p_{(0,1,\alpha^{*})}] + c_1[p_{(1,0,\alpha^{*})} + p_{(1,1,\alpha^{*})}]
$$
\n
$$
= \bar{g}_1[\bar{p}_{(0,0,\alpha^{*})} + \bar{p}_{(0,1,\alpha^{*})}] + c_1[\bar{p}_{(1,0,\alpha^{*})} + \bar{p}_{(1,1,\alpha^{*})}];
$$
\n
$$
(0,1): g_2[p_{(0,0,\alpha^{*})} + p_{(1,0,\alpha^{*})}] + c_2[p_{(0,1,\alpha^{*})} + p_{(1,1,\alpha^{*})}]
$$
\n
$$
= \bar{g}_2[\bar{p}_{(0,0,\alpha^{*})} + \bar{p}_{(1,0,\alpha^{*})}] + c_2[\bar{p}_{(0,1,\alpha^{*})} + \bar{p}_{(1,1,\alpha^{*})}];
$$
\n
$$
(1,1): g_1g_2p_{(0,0,\alpha^{*})} + c_1g_2p_{(1,0,\alpha^{*})} + g_1c_2p_{(0,1,\alpha^{*})} + c_1c_2p_{(1,1,\alpha^{*})}
$$
\n
$$
= \bar{g}_1\bar{g}_2\bar{p}_{(0,0,\alpha^{*})} + c_1\bar{g}_2\bar{p}_{(1,0,\alpha^{*})} + \bar{g}_1c_2\bar{p}_{(0,1,\alpha^{*})} + c_1c_2\bar{p}_{(1,1,\alpha^{*})}.
$$
\n
$$
(S.16)
$$

Since Q' satisfies Condition (C) and contains a submatrix I_{K-2} , we can assume without loss of generality that the first $K - 2$ rows of \mathbf{Q}' form \mathbf{I}_{K-2} ; namely, the first K rows of \mathbf{Q} forms an identity matrix \mathbf{I}_K . According to the form of **Q**, let $\boldsymbol{q}_m = (1, 1, 0, \dots, 0)$ for some $m \in \{3 + J_1, \ldots, J\}$. Given an arbitrary pattern $\boldsymbol{\alpha}^* = (\alpha_3, \ldots, \alpha_K) \in \{0, 1\}^{K-2}$, define

$$
\boldsymbol{\theta}^* = \sum_{\substack{3 \leq k \leq K:\\ \alpha_k = 1}} g_k \boldsymbol{e}_k + \sum_{\substack{3 \leq k \leq K:\\ \alpha_k = 0}} c_k \boldsymbol{e}_k + g_m \boldsymbol{e}_m.
$$

Then $T_{\bm{r},:}(\bm{\Theta}-\bm{\theta}^* \cdot \bm{1}_{2^K})\bm{p} = T_{\bm{r},:}(\bar{\bm{\Theta}}-\bm{\theta}^* \cdot \bm{1}_{2^K})\bar{\bm{p}}$ gives

$$
p_{(1,1,\alpha^*)} \prod_{\substack{3 \le k \le K:\\ \alpha_k = 1}} (c_k - g_k) \prod_{\substack{3 \le k \le K:\\ \alpha_k = 0}} (g_k - c_k)(c_m - g_m)
$$

= $\bar{p}_{(1,1,\alpha^*)} \prod_{\substack{3 \le k \le K:\\ \alpha_k = 1}} (c_k - g_k) \prod_{\substack{3 \le k \le K:\\ \alpha_k = 0}} (g_k - c_k)(c_m - g_m),$

which implies $p_{(1,1,\alpha^*)} = \bar{p}_{(1,1,\alpha^*)}$. Note that this identifiability conclusion holds for any $\alpha^* \in \{0,1\}^K$. Plugging the $p_{(1,1,\alpha^*)} = \bar{p}_{(1,1,\alpha^*)}$ into [\(S.16\)](#page-15-0) gives the following equations about undetermined parameters \bar{g}_1 , \bar{g}_2 , and $\{p_{(0,0,\boldsymbol{\alpha}^*)}, p_{(0,1,\boldsymbol{\alpha}^*)}, p_{(1,0,\boldsymbol{\alpha}^*)}: \boldsymbol{\alpha}^* \in \{0,1\}^{K-2}\},$

$$
(r_1, r_2) = \begin{cases} (0, 0) \implies p_{(0,0,\alpha^*)} + p_{(1,0,\alpha^*)} + p_{(0,1,\alpha^*)} = \bar{p}_{(0,0,\alpha^*)} + \bar{p}_{(1,0,\alpha^*)} + \bar{p}_{(0,1,\alpha^*)};\\ (1, 0) \implies g_1[p_{(0,0,\alpha^*)} + p_{(0,1,\alpha^*)}] + c_1p_{(1,0,\alpha^*)} = \bar{g}_1[\bar{p}_{(0,0,\alpha^*)} + \bar{p}_{(0,1,\alpha^*)}] + c_1\bar{p}_{(1,0,\alpha^*)};\\ (0, 1) \implies g_2[p_{(0,0,\alpha^*)} + p_{(1,0,\alpha^*)}] + c_2p_{(0,1,\alpha^*)} = \bar{g}_2[\bar{p}_{(0,0,\alpha^*)} + \bar{p}_{(1,0,\alpha^*)}] + c_2\bar{p}_{(0,1,\alpha^*)};\\ (1, 1) \implies g_1g_2p_{(0,0,\alpha^*)} + c_1g_2p_{(1,0,\alpha^*)} + g_1c_2p_{(0,1,\alpha^*)}\\ = \bar{g}_1\bar{g}_2\bar{p}_{(0,0,\alpha^*)} + c_1\bar{g}_2\bar{p}_{(1,0,\alpha^*)} + \bar{g}_1c_2\bar{p}_{(0,1,\alpha^*)}. \end{cases} (S.17)
$$

After some transformation, [\(S.17\)](#page-18-0) yields

$$
\begin{cases}\n(g_1 - \bar{g}_1)(p_{(0,0,\alpha^*)} + p_{(0,1,\alpha^*)}) + (c_1 - \bar{g}_1)p_{(1,0,\alpha^*)} = (c_1 - \bar{g}_1)\bar{p}_{(1,0,\alpha^*)}, \\
(g_1 - \bar{g}_1)(g_2 - c_2)p_{(0,0,\alpha^*)} + (c_1 - \bar{g}_1)(g_2 - c_2)p_{(1,0,\alpha^*)} = (c_1 - \bar{g}_1)(\bar{g}_2 - c_2)\bar{p}_{(1,0,\alpha^*)}.\n\end{cases}
$$
\n(S.18)

The right hand sides of both of the above equations are nonzero. So we can take the ratio of these two equations to obtain

$$
\frac{(g_1 - \bar{g}_1)p_{(0,0,\alpha^*)}/p_{(1,0,\alpha^*)} + (c_1 - \bar{g}_1)}{(g_1 - \bar{g}_1)[p_{(0,0,\alpha^*)} + p_{(0,1,\alpha^*)}]/p_{(1,0,\alpha^*)} + (c_1 - \bar{g}_1)}(g_2 - c_2) = \bar{g}_2 - c_2.
$$

Define $f(\boldsymbol{\alpha}^*) = p_{(0,0,\boldsymbol{\alpha}^*)}/p_{(1,0,\boldsymbol{\alpha}^*)}$, $g(\boldsymbol{\alpha}^*) = [p_{(0,0,\boldsymbol{\alpha}^*)}+p_{(0,1,\boldsymbol{\alpha}^*)}]/p_{(1,0,\boldsymbol{\alpha}^*)}$ as functions of $\boldsymbol{\alpha}^*$, then the above equation can be written as

$$
\frac{A \cdot f(\boldsymbol{\alpha}^*) + B}{A \cdot g(\boldsymbol{\alpha}^*) + B} = C,
$$

where $A = g_1 - \bar{g}_1$, $B = c_1 - \bar{g}_1$, and $C = \bar{g}_2 - c_2$. So we have

$$
A \cdot (f(\boldsymbol{\alpha}^*) - C \cdot g(\boldsymbol{\alpha}^*)) = BC - B,
$$

which is equivalent to

$$
(g_1 - \bar{g}_1) \cdot \left[\frac{p_{(0,0,\alpha^*)}}{p_{(1,0,\alpha^*)}} - (\bar{g}_2 - c_2) \frac{p_{(0,0,\alpha^*)} + p_{(0,1,\alpha^*)}}{p_{(1,0,\alpha^*)}} \right] = (c_1 - \bar{g}_1)(\bar{g}_2 - c_2) - (c_1 - \bar{g}_1).
$$

Consider α_1^*, α_2^* , we further obtain the following function $h(\alpha^*)$ does not depend on α^* ,

$$
h(\boldsymbol{\alpha}^*) := (g_1 - \bar{g}_1) \cdot \left[\frac{p_{(0,0,\boldsymbol{\alpha}^*)}}{p_{(1,0,\boldsymbol{\alpha}^*)}} - (\bar{g}_2 - c_2) \frac{p_{(0,0,\boldsymbol{\alpha}^*)} + p_{(0,1,\boldsymbol{\alpha}^*)}}{p_{(1,0,\boldsymbol{\alpha}^*)}} \right]
$$

=
$$
(g_1 - \bar{g}_1) \cdot \frac{p_{(0,0,\boldsymbol{\alpha}^*)} + (c_2 - \bar{g}_2) (p_{(0,0,\boldsymbol{\alpha}^*)} + p_{(0,1,\boldsymbol{\alpha}^*)})}{p_{(1,0,\boldsymbol{\alpha}^*)}};
$$

therefore we have

$$
0 = h(\boldsymbol{\alpha}_{1}^{*}) - h(\boldsymbol{\alpha}_{2}^{*})
$$

\n
$$
= (g_{1} - \bar{g}_{1}) \cdot \Big[\frac{p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} + (c_{2} - \bar{g}_{2})(p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} + p_{(0,1,\boldsymbol{\alpha}_{1}^{*})})}{p_{(1,0,\boldsymbol{\alpha}_{1}^{*})}}
$$

\n
$$
- \frac{p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} + (c_{2} - \bar{g}_{2})(p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} + p_{(0,1,\boldsymbol{\alpha}_{2}^{*})})}{p_{(1,0,\boldsymbol{\alpha}_{2}^{*})}} \Big]
$$

\n
$$
= (g_{1} - \bar{g}_{1}) \frac{1}{p_{(1,0,\boldsymbol{\alpha}_{1}^{*})}p_{(1,0,\boldsymbol{\alpha}_{2}^{*})}} \Big\{ [p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} + (c_{2} - \bar{g}_{2})(p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} + p_{(0,1,\boldsymbol{\alpha}_{1}^{*})})]p_{(1,0,\boldsymbol{\alpha}_{2}^{*})}
$$

\n
$$
- [p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} + (c_{2} - \bar{g}_{2})(p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} + p_{(0,1,\boldsymbol{\alpha}_{2}^{*})})]p_{(1,0,\boldsymbol{\alpha}_{1}^{*})} \Big\}.
$$

According to the above equality, if $g_1 - \bar{g}_1 \neq 0$, then $h(\alpha_1^*) - h(\alpha_2^*) = 0$ gives

$$
p_{(0,0,\alpha_1^*)}p_{(1,0,\alpha_2^*)} - p_{(0,0,\alpha_2^*)}p_{(1,0,\alpha_1^*)}
$$
\n
$$
+ (c_2 - \bar{g}_2)[(p_{(0,0,\alpha_1^*)} + p_{(0,1,\alpha_1^*)})p_{(1,0,\alpha_2^*)} - (p_{(0,0,\alpha_2^*)} + p_{(0,1,\alpha_2^*)})p_{(1,0,\alpha_1^*)}] = 0.
$$
\n(S.19)

We rewrite below the definitions of the functions m_1, m_2, m_3 stated in [\(11\)](#page-12-0) in the theorem,

$$
\begin{cases}\nm_1(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*) = p_{(0,1,\boldsymbol{\alpha}_1^*)}p_{(1,0,\boldsymbol{\alpha}_2^*)} - p_{(0,1,\boldsymbol{\alpha}_2^*)}p_{(1,0,\boldsymbol{\alpha}_1^*)}, \\
m_2(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*) = p_{(0,0,\boldsymbol{\alpha}_1^*)}p_{(1,0,\boldsymbol{\alpha}_2^*)} - p_{(0,0,\boldsymbol{\alpha}_2^*)}p_{(1,0,\boldsymbol{\alpha}_1^*)}, \\
m_3(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*) = p_{(0,0,\boldsymbol{\alpha}_1^*)}p_{(0,1,\boldsymbol{\alpha}_2^*)} - p_{(0,0,\boldsymbol{\alpha}_2^*)}p_{(0,1,\boldsymbol{\alpha}_1^*)}.\n\end{cases}
$$

Then [\(S.19\)](#page-19-0) can be written as

$$
m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) + (c_2 - \bar{g}_2)[m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) + m_1(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*)] = 0.
$$
 (S.20)

Note that $c_2 - \bar{g}_2 \neq 0$. If $m_2(\alpha_1^*, \alpha_2^*) \neq 0$ holds for some α_1^* and α_2^* , then we can obtain the following from [\(S.20\)](#page-20-0),

$$
\frac{m_1(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*)}{m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*)} := \frac{p_{(0,1,\boldsymbol{\alpha}_1^*)} p_{(1,0,\boldsymbol{\alpha}_2^*)} - p_{(0,1,\boldsymbol{\alpha}_2^*)} p_{(1,0,\boldsymbol{\alpha}_1^*)}}{p_{(0,0,\boldsymbol{\alpha}_1^*)} p_{(1,0,\boldsymbol{\alpha}_2^*)} - p_{(0,0,\boldsymbol{\alpha}_2^*)} p_{(1,0,\boldsymbol{\alpha}_1^*)}} = \frac{1}{\bar{g}_2 - c_2} - 1.
$$
\n(S.21)

Therefore, as long as there exist $\boldsymbol{\alpha}_1^*$, $\boldsymbol{\alpha}_2^*$, $\boldsymbol{\beta}_1^*$ ^{*}₁, $\boldsymbol{\beta}_2^* \in \{0, 1\}^{K-2}$ such that **p** satisfies

$$
\frac{m_1(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)}{m_2(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)} \neq \frac{m_1(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*)}{m_2(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*)}, \quad m_2(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*) \neq 0, \quad m_2(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*) \neq 0,
$$

then [\(S.21\)](#page-20-1) cannot hold true; such a contradiction implies the earlier assumption $g_1 - \bar{g}_1 \neq 0$ is incorrect, and we should have $g_1 = \bar{g}_1$. Equivalently, we have shown that if there exist $\boldsymbol{\alpha}_1^*,\;\boldsymbol{\alpha}_2^*,\;\boldsymbol{\beta}_1^*$ ^{*}₁, $\beta_2^* \in \{0,1\}^{K-2}$ such that

$$
m_1(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)m_2(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*)-m_2(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)m_1(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*)\neq 0, \quad m_2(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)\neq 0, \quad m_2(\boldsymbol{\beta}_1^*,\boldsymbol{\beta}_2^*)\neq 0,
$$

then $g_1 = \bar{g}_1$ and hence parameter g_1 is identifiable.

Define a subset $\mathcal{N}_{D,1}$ of the parameter space $\mathcal T$ to be

$$
\mathcal{N}_{D,1} = \{ \text{For all } \boldsymbol{\alpha}_1^*, \ \boldsymbol{\alpha}_2^*, \ \boldsymbol{\beta}_1^*, \ \boldsymbol{\beta}_2^* \in \{0,1\}^{K-2},
$$
\n
$$
\text{Either } m_1(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) m_2(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*) - m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) m_1(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*) = 0,
$$

Or
$$
m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) = 0
$$
, Or $m_2(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*) = 0$.}
\n= {For all $\boldsymbol{\alpha}_1^*, \ \boldsymbol{\alpha}_2^*, \ \boldsymbol{\beta}_1^*, \ \boldsymbol{\beta}_2^* \in \{0, 1\}^{K-2}$,
\n $m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) \cdot m_2(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*) \cdot [m_1(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*)m_2(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*) - m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*)m_1(\boldsymbol{\beta}_1^*, \boldsymbol{\beta}_2^*)] = 0$. }.

Then we have established that as long as $p \in \mathcal{T} \setminus \mathcal{N}_{D,1}$, then $g_1 = \bar{g}_1$ and parameter g_1 is identifiable. By the symmetry between g_1 and g_2 , we similarly obtain that if $p \in \mathcal{T} \setminus \mathcal{N}_{D,2}$, then $g_2 = \bar{g}_2$ and parameter g_2 is identifiable, where $\mathcal{N}_{D,2}$ takes the following form,

$$
\mathcal{N}_{D,2} = \{ \text{For all } \alpha_1^*, \ \alpha_2^*, \ \beta_1^*, \ \beta_2^* \in \{0,1\}^{K-2},
$$

$$
m_3(\alpha_1^*, \alpha_2^*) \cdot m_3(\beta_1^*, \beta_2^*) \cdot [m_1(\alpha_1^*, \alpha_2^*)m_3(\beta_1^*, \beta_2^*) - m_3(\alpha_1^*, \alpha_2^*)m_1(\beta_1^*, \beta_2^*)] = 0. \}.
$$

The function $m_3(\cdot, \cdot)$ has been defined earlier together with $m_1(\cdot, \cdot)$ and $m_2(\cdot, \cdot)$. In summary, if $p \in \mathcal{T} \setminus (\mathcal{N}_{D,1} \cup \mathcal{N}_{D,2})$, then g_1 and g_2 are identifiable.

Recall that we previously have already proved the identifiability of all the other item parameters and also identifiability of $\{p_{(1,1,\alpha^*)}: \alpha^* \in \{0,1\}^{K-2}\}\$. Now we can replace \bar{g}_1 by g_1 in the first equation in [\(S.18\)](#page-18-1) and obtain $\bar{p}_{(1,0,\alpha^*)} = p_{(1,0,\alpha^*)}$; similarly, replacing \bar{g}_2 by g_2 in [\(S.17\)](#page-18-0) gives $\bar{p}_{(0,1,\alpha^*)} = p_{(0,1,\alpha^*)}$. With $\bar{p}_{(1,0,\alpha^*)}$ and $\bar{p}_{(0,1,\alpha^*)}$ both determined, (S.17) finally gives $\bar{p}_{(1,1,\alpha^*)} = p_{(1,1,\alpha^*)}$. Noting that the above argument holds for an arbitrary $\alpha^* \in$ $\{0,1\}^{K-2}$, we have established the identifiability of all the parameters under the DINA model under the condition that the true proportion parameters **p** satisfies $p \in \mathcal{T} \setminus (\mathcal{N}_{D,1} \cup \mathcal{N}_{D,2}).$ Note that the set $\mathcal{N}_{D,1} \cup \mathcal{N}_{D,2}$ where identifiability potentially breaks down is characterized by the zero sets of certain nontrivial polynomial equations about the entries of p , and hence necessarily has Lebesgue measure zero in the parameter space $\mathcal T$. This proves the conclusion of generic identifiability and concludes the proof of Theorem [3.](#page-0-0) Further note that the forms of $\mathcal{N}_{D,1}$ and $\mathcal{N}_{D,2}$ defined in the last paragraph are exactly the same as those stated in Theorem [6,](#page-0-0) so we have also proved Theorem [6.](#page-0-0) \Box

S.6 Proof of Proposition [3](#page-0-0)

We introduce some new notation to facilitate understanding the null sets $\mathcal{N}_{D,1}$ and $\mathcal{N}_{D,2}$. Consider the joint distribution of two discrete random variables $Z_1 := (A_1, A_2)$ and $Z_2 :=$ (A_3, \ldots, A_K) , each concatenated from the latent attributes. That is, Z_1 concatenates two variables A_1 and A_2 and takes $|\{0,1\}^2|=4$ possible values, and Z_2 concatenates $K-2$ binary variables and takes $|\{0,1\}^{K-2}| = 2^{K-2}$ possible values. The joint distribution of Z_1 and Z_2 can be written in the form of a $4 \times 2^{K-2}$ contingency table, whose rows are indexed by the possible values Z_1 can take and columns by the possible values Z_2 can take. Each entry in this table represents the probability of a specific configuration of (Z_1, Z_2) . We write out this $4 \times 2^{K-2}$ table below and denote it by \mathcal{B} ,

$$
(10 \cdots 0) (01 \cdots 0) \cdots (11 \cdots 1)
$$
\n
$$
(00) \begin{pmatrix} p_{(00,10\cdots 0)} & p_{(00,01\cdots 0)} & \cdots & p_{(00,11\cdots 1)} \\ p_{(10,10\cdots 0)} & p_{(10,01\cdots 0)} & \cdots & p_{(10,11\cdots 1)} \\ p_{(01,10\cdots 0)} & p_{(01,01\cdots 0)} & \cdots & p_{(01,11\cdots 1)} \\ p_{(11,10\cdots 0)} & p_{(11,01\cdots 0)} & \cdots & p_{(11,11\cdots 1)} \end{pmatrix}
$$
\n(S.22)

Note that when the previously used notation $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$ can indicate the configurations of Z_2 , so the above matrix \mathcal{B} have columns indexed by $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$. The definition of $m_i(\boldsymbol{\alpha}_1^*,\boldsymbol{\alpha}_2^*)$, $i=1,2,3$ can be understood as certain 2×2 minor of the matrix \mathcal{B} . Denote the determinant of a matrix C by $|C|$. In particular, we have the following equalities,

$$
m_{1}(\boldsymbol{\alpha}_{1}^{*},\boldsymbol{\alpha}_{2}^{*}) = p_{(0,1,\boldsymbol{\alpha}_{1}^{*})}p_{(1,0,\boldsymbol{\alpha}_{2}^{*})} - p_{(1,0,\boldsymbol{\alpha}_{1}^{*})}p_{(0,1,\boldsymbol{\alpha}_{2}^{*})} = \begin{vmatrix} p_{(0,1,\boldsymbol{\alpha}_{1}^{*})} & p_{(0,1,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(1,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(1,0,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(1,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(1,0,\boldsymbol{\alpha}_{2}^{*})} \end{vmatrix} = |\mathcal{B}(\{2,3\}, {\{\boldsymbol{\alpha}_{1}^{*}, \boldsymbol{\alpha}_{2}^{*}\}})\rangle|,
$$

\n
$$
m_{2}(\boldsymbol{\alpha}_{1}^{*},\boldsymbol{\alpha}_{2}^{*}) = p_{(0,0,\boldsymbol{\alpha}_{1}^{*})}p_{(1,0,\boldsymbol{\alpha}_{2}^{*})} - p_{(1,0,\boldsymbol{\alpha}_{1}^{*})}p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} = \begin{vmatrix} p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(1,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(1,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(1,0,\boldsymbol{\alpha}_{2}^{*})} \end{vmatrix} = |\mathcal{B}(\{1,2\}, {\{\boldsymbol{\alpha}_{1}^{*}, \boldsymbol{\alpha}_{2}^{*}\}})\rangle|,
$$

\n
$$
m_{3}(\boldsymbol{\alpha}_{1}^{*},\boldsymbol{\alpha}_{2}^{*}) = p_{(0,0,\boldsymbol{\alpha}_{1}^{*})}p_{(0,1,\boldsymbol{\alpha}_{2}^{*})} - p_{(0,1,\boldsymbol{\alpha}_{1}^{*})}p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} = \begin{vmatrix} p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(0,0,\boldsymbol{\alpha}_{1}^{*})} & p_{(0,0,\boldsymbol{\alpha}_{2}^{*})} \\ p_{(0,1,\boldsymbol{\alpha}_{1}^{*})}
$$

In the above display, the $\mathcal{B}(\{1,2\}, \{\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*\})$ denotes the 2×2 submatrix of $\mathcal B$ containing the entries in rows with indices 1, 2 and columns α_1^* , α_2^* .

We can use the technical machinery in the last paragraph to discover some meaningful subsets of the non-identifiable null set $\mathcal{N}_{D,1} \cup \mathcal{N}_{D,2}$. First, define

$$
\mathcal{N}_{1,\text{sub}} = \{m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) = 0 \text{ for all } \boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \in \{0,1\}^{K-2}\},\tag{S.23}
$$

$$
\mathcal{N}_{2,\text{sub}} = \{m_3(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) = 0 \text{ for all } \boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \in \{0,1\}^{K-2}\}.
$$
\n(S.24)

According to the definition of $\mathcal{N}_{D,1}$ and $\mathcal{N}_{D,2}$, it is clear that the two sets defined above satisfy $\mathcal{N}_{1,\text{sub}} \subseteq \mathcal{N}_{D,1}$ and $\mathcal{N}_{2,\text{sub}} \subseteq \mathcal{N}_{D,2}$. First consider the statistical implication of $\mathcal{N}_{1,\text{sub}}$. Since $m_2(\alpha_1^*, \alpha_2^*) = |\mathcal{B}(\{1,2\}, {\{\alpha_1^*, \alpha_2^*\}})|$, when α_1^*, α_2^* range over all the possible patterns in $\{0,1\}^{K-2}$, the $m_2(\alpha_1^*, \alpha_2^*)$ will take on values of all the possible 2×2 minors of the $2 \times 2^{(K-2)}$ matrix $\mathcal{B}(\{1,2\},\cdot)$ (i.e., the submatrix of $\mathcal B$ consisting of its first two rows). The assertion in $\mathcal{N}_{1,\text{sub}}$ that all these determinants equal zero essentially implies the submatrix $\mathcal{B}(\{1,2\},\cdot)$ has rank one, i.e., has the two rows proportional to each other. This means for all $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$, the ratio $p_{(1,0,\boldsymbol{\alpha}^*)}/p_{(0,0,\boldsymbol{\alpha}^*)}$ is a constant δ , which further implies the ratio $p_{(1,0,\alpha^*)}/(p_{(0,0,\alpha^*)}+p_{(1,0,\alpha^*)})$ is also a constant equal to $1/(1+1/\delta)$, which we denote by ρ :

$$
\rho = \frac{p_{(1,0,\alpha^*)}}{p_{(0,0,\alpha^*)} + p_{(1,0,\alpha^*)}} = \frac{\mathbb{P}(A_1 = 1, A_2 = 0, \mathbf{A}_{3:K} = \alpha^*)}{\mathbb{P}(A_2 = 0, \mathbf{A}_{3:K} = \alpha^*)}
$$

=
$$
\frac{\mathbb{P}(A_1 = 1, \mathbf{A}_{3:K} = \alpha^* \mid A_2 = 0)}{\mathbb{P}(\mathbf{A}_{3:K} = \alpha^* \mid A_2 = 0)}, \quad \forall \alpha^* \in \{0, 1\}^{K-2}.
$$

So we have the following

$$
\mathbb{P}(A_1 = 1, \mathbf{A}_{3:K} = \boldsymbol{\alpha}^* \mid A_2 = 0) = \rho \cdot \mathbb{P}(\mathbf{A}_{3:K} = \boldsymbol{\alpha}^* \mid A_2 = 0).
$$
 (S.25)

Now summing over the above equation for all $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$, we obtain

$$
\sum_{\alpha^* \in \{0,1\}^{K-2}} \mathbb{P}(A_1 = 1, \mathbf{A}_{3:K} = \alpha^* | A_2 = 0) = \rho \cdot \sum_{\alpha^* \in \{0,1\}^{K-2}} \mathbb{P}(\mathbf{A}_{3:K} = \alpha^* | A_2 = 0),
$$

$$
\implies \mathbb{P}(A_1 = 1 \mid A_2 = 0) = \rho.
$$

Plugging back $\rho = \mathbb{P}(A_1 = 1 \mid A_2 = 0)$ into [\(S.25\)](#page-23-0) gives the following for all $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$,

$$
\mathbb{P}(A_1=1,\mathbf{A}_{3:K}=\boldsymbol{\alpha}^* \mid A_2=0)=\mathbb{P}(A_1=1 \mid A_2=0)\cdot \mathbb{P}(\mathbf{A}_{3:K}=\boldsymbol{\alpha}^* \mid A_2=0);
$$

in a very similar fashion we can also obtain $\mathbb{P}(A_1 = 0, \mathbf{A}_{3:K} = \boldsymbol{\alpha}^* | A_2 = 0) = \mathbb{P}(A_1 = 0)$ $0 \mid A_2 = 0 \rangle \cdot \mathbb{P}(\mathbf{A}_{3:K} = \boldsymbol{\alpha}^* \mid A_2 = 0)$ for all $\boldsymbol{\alpha}^* \in \{0,1\}^{K-2}$. This essentially means attribute A_1 and attributes $\mathbf{A}_{3:K}$ are conditionally independent given $A_2 = 0$. So we have obtained that $p \in \mathcal{N}_{1,sub}$ implies A_1 and $\mathbf{A}_{3:K}$ are conditionally independent given $A_2 = 0$. By symmetry, we similarly have that $p \in \mathcal{N}_{2,sub}$ implies A_2 and $\mathbf{A}_{3:K}$ are conditionally independent given $A_1 = 0$. In summary, we have proved that $\mathcal{N}_{1,\text{sub}}$ and $\mathcal{N}_{2,\text{sub}}$ defined in [\(S.23\)](#page-23-1)-[\(S.24\)](#page-23-2) correspond to the following conditional independence statements,

$$
\mathcal{N}_{1,\text{sub}} = \{ \mathbf{p} \text{ satisfies } (A_1 \perp \!\!\! \perp \mathbf{A}_{3:K} \mid A_2 = 0) \} \subseteq \mathcal{N}_{D,1};
$$

$$
\mathcal{N}_{2,\text{sub}} = \{ \mathbf{p} \text{ satisfies } (A_2 \perp \!\!\! \perp \mathbf{A}_{3:K} \mid A_1 = 0) \} \subseteq \mathcal{N}_{D,2}.
$$

Additionally, by the basic property of marginal independence and conditional independence, if **p** satisfies the marginal independence statement such as " $A_1 \perp \perp A_{3:K}$ ", then it necessarily also satisfies the conditional independence statement " $A_1 \perp \perp A_{3:K}$ | $A_2 = 0$ ". Therefore we have we also have

$$
\mathcal{N}_{1,\text{sub}} = \{ \mathbf{p} \text{ satisfies } (A_1 \perp \!\!\! \perp \mathbf{A}_{3:K} \mid A_2 = 0) \} \supseteq {\{ \mathbf{p} \text{ satisfies } (A_1 \perp \!\!\! \perp \mathbf{A}_{3:K}) \}};
$$
\n
$$
\mathcal{N}_{2,\text{sub}} = \{ \mathbf{p} \text{ satisfies } (A_2 \perp \!\!\! \perp \mathbf{A}_{3:K} \mid A_1 = 0) \} \supseteq {\{ \mathbf{p} \text{ satisfies } (A_2 \perp \!\!\! \perp \mathbf{A}_{3:K}) \}}.
$$

Combining the two conclusions above, we have proved the first two conclusions in [\(12\)](#page-12-2) in Proposition [3.](#page-0-0)

Next we prove the third conclusion in [\(12\)](#page-12-2) in Proposition [3.](#page-0-0) Define

$$
\mathcal{N}_{\text{both}} = \{m_2(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) = m_3(\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^*) = 0 \text{ holds for all } \boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \in \{0, 1\}^{K-2}.\}\
$$
 (S.26)

First note that $\mathcal{N}_{\text{both}} \subseteq \mathcal{N}_{D,1} \cap \mathcal{N}_{D,2}$ obviously holds according to definition of $\mathcal{N}_{D,1}$ and $\mathcal{N}_{D,2}$. We next examine the statistical implication the set $\mathcal{N}_{\text{both}}$. If $p \in \mathcal{N}_{\text{both}}$, then we have the following for all $\boldsymbol{\alpha}_1^*, \boldsymbol{\alpha}_2^* \in \{0, 1\}^{K-2}$,

$$
p_{(0,0,\alpha_1^*)}p_{(1,0,\alpha_2^*)} - p_{(0,0,\alpha_2^*)}p_{(1,0,\alpha_1^*)} = p_{(0,0,\alpha_1^*)}p_{(0,1,\alpha_2^*)} - p_{(0,0,\alpha_2^*)}p_{(0,1,\alpha_1^*)} = 0;
$$

\n
$$
\implies \frac{p_{(1,0,\alpha_1^*)}}{p_{(0,0,\alpha_1^*)}} = \frac{p_{(1,0,\alpha_2^*)}}{p_{(0,0,\alpha_2^*)}}, \quad \frac{p_{(0,1,\alpha_1^*)}}{p_{(0,0,\alpha_1^*)}} = \frac{p_{(0,1,\alpha_2^*)}}{p_{(0,0,\alpha_2^*)}}, \quad \forall \alpha_1^*, \alpha_2^* \in \{0,1\}^{K-2}.
$$

This implies there exist some constants ρ_1, ρ_2 such that

$$
\frac{p_{(1,0,\alpha^*)}}{p_{(0,0,\alpha^*)}} = \rho_1, \quad \frac{p_{(0,1,\alpha^*)}}{p_{(0,0,\alpha^*)}} = \rho_2, \quad \forall \alpha^* \in \{0,1\}^{K-2}.
$$
\n(S.27)

Then for arbitrary $(x, y) \in \{(0, 0), (0, 1), (1, 0)\}\$ and $\boldsymbol{\alpha}^* \in \{0, 1\}^{K-2}$, we will have

$$
\mathbb{P}(\mathbf{A}_{1:2} = (x, y) | \mathbf{A}_{1:2} \neq (1, 1), \mathbf{A}_{3:K} = \boldsymbol{\alpha}^*)
$$
\n
$$
= \frac{\mathbb{P}(\mathbf{A}_{1:2} = (x, y), \mathbf{A}_{3:K} = \boldsymbol{\alpha}^*)}{\mathbb{P}(\mathbf{A}_{1:2} \neq (1, 1), \mathbf{A}_{3:K} = \boldsymbol{\alpha}^*)}
$$
\n
$$
= \frac{p_{(x,y,\boldsymbol{\alpha}^*)}}{p_{(0,0,\boldsymbol{\alpha}^*)} + p_{(0,1,\boldsymbol{\alpha}^*)} + p_{(1,0,\boldsymbol{\alpha}^*)}} = \frac{\frac{p_{(x,y,\boldsymbol{\alpha}^*)}}{p_{(0,1,\boldsymbol{\alpha}^*)}}}{1 + \frac{p_{(0,1,\boldsymbol{\alpha}^*)}}{p_{(0,1,\boldsymbol{\alpha}^*)}} + \frac{p_{(1,0,\boldsymbol{\alpha}^*)}}{p_{(0,1,\boldsymbol{\alpha}^*)}}} \quad (S.28)
$$
\n
$$
= \begin{cases} \frac{1}{1 + \rho_1 + \rho_2}, & \text{if } (x, y) = (0, 0); \\ \frac{\rho_1}{1 + \rho_1 + \rho_2}, & \text{if } (x, y) = (1, 0); \\ \frac{\rho_2}{1 + \rho_1 + \rho_2}, & \text{if } (x, y) = (0, 1). \end{cases}
$$

The above deduction implies that the conditional distribution $\mathbb{P}(\mathbf{A}_{1:2} = (x, y) | \mathbf{A}_{1:2} \neq$

 $(1, 1)$, $\mathbf{A}_{3:K} = \boldsymbol{\alpha}^*$ does not depend on $\mathbf{A}_{3:K}$ and hence can be indeed written as

$$
\mathbb{P}(\mathbf{A}_{1:2}=(x,y)\mid \mathbf{A}_{1:2}\neq (1,1), \mathbf{A}_{3:K}=\boldsymbol{\alpha}^*)=\mathbb{P}(\mathbf{A}_{1:2}=(x,y)\mid \mathbf{A}_{1:2}\neq (1,1)).
$$

Statistically, the above observation means the conditional independence $(A_{1:2} \perp A_{3:K})$ $\mathbf{A}_{1:2} \neq (1, 1)$ holds. Also, note that in order for $\mathbb{P}(\mathbf{A}_{1:2} = (x, y) | \mathbf{A}_{1:2} \neq (1, 1), \mathbf{A}_{3:K} = \boldsymbol{\alpha}^*)$ in [\(S.28\)](#page-25-0) to not depend on α^* , we must have [\(S.27\)](#page-25-1) holds for some constants ρ_1, ρ_2 . In summary, we have shown that $p \in \mathcal{N}_{\text{both}}$ if and only if $(\mathbf{A}_{1:2} \perp \mathbf{A}_{3:K} | \mathbf{A}_{1:2} \neq (1,1))$ holds. Namely, the $\mathcal{N}_{\text{both}}$ defined in [\(S.26\)](#page-25-2) can be equivalently written as

$$
\mathcal{N}_{\text{both}} = \{\boldsymbol{p} \text{ satisfies } (\mathbf{A}_{1:2} \perp \!\!\! \perp \mathbf{A}_{3:K} \mid \mathbf{A}_{1:2} \neq (1,1))\}.
$$

Finally, recall that we have $\mathcal{N}_{\text{both}} \subseteq \mathcal{N}_{D,1} \cap \mathcal{N}_{D,2}$, so

$$
\mathcal{N}_{D,1}\cap\mathcal{N}_{D,2}\supseteq\{\boldsymbol{p}\text{ satisfies }(\mathbf{A}_{1:2}\perp\!\!\!\perp\mathbf{A}_{3:K}\mid\mathbf{A}_{1:2}\ne(1,1))\}\supseteq\{\boldsymbol{p}\text{ satisfies }(\mathbf{A}_{1:2}\perp\!\!\!\perp\mathbf{A}_{3:K})\}.
$$

This completes the proof of Proposition [3.](#page-0-0)

References

- Gu, Y. and Xu, G. (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2):468–483.
- Gu, Y. and Xu, G. (2020). Partial identifiability of restricted latent class models. Annals of Statistics, 48(4):2082–2107.
- Xu, G. (2017). Identifiability of restricted latent class models with binary responses. Annals of Statistics, 45:675–707.
- Xu, G. and Zhang, S. (2016). Identifiability of diagnostic classification models. Psychome $trika$, $81(3):625-649$.

 \Box