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Before presenting the proofs of the identifiability results, we introduce a useful technical

tool, the T -matrix of marginal response probabilities. This technical tool was proposed by

Xu and Zhang (2016) and also used in Gu and Xu (2019) to study the identifiability of the

DINA model. First, consider a general notation Θ = (θj,α)J×2K collecting all of the item

parameters under the DINA model. The J × 2K matrix Θ has rows indexed by the J items

and rows by all of the |{0, 1}K | = 2K configurations of the binary latent attribute pattern,

where the (j,α)th entry θj,α = P(Rj = 1 | A = α) denotes the probability of a positive

response to the jth item given the latent attribute pattern α. Then under the conjunctive

assumption of DINA, we can write θj,α as

θj,α =


1− sj, if ξj,α =

∏K
k=1 α

qj,k
k = 1;

gj, otherwise.

Note that given a Q-matrix, there is a one-to-one mapping between the matrix Θ and the

item parameters (s, g). We next define a 2J × 2K matrix T (Θ) based on Θ. The rows of

T (Θ) are indexed by the 2J different response patterns r = (r1, . . . , rJ)> ∈ {0, 1}J , and

columns by attribute patterns α ∈ {0, 1}K , while the (r,α)th entry of T (Θ), denoted by

Tr,α(Θ), represents the marginal probability that subjects with latent pattern α provide
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positive responses to the set of items {j : rj = 1}, namely

Tr,α(Θ) = P(R � r | Θ,α) =
J∏
j=1

θ
rj
j,α.

We denote the αth column vector and the rth row vector of the T -matrix by T:,α(Θ) and

Tr,:(Θ), respectively. The rth element of the 2J -dimensional vector T (Θ)p is

Tr,:(Θ)p =
∑

α∈{0,1}K
Tr,α(Θ)pα = P(R � r | Θ,p).

Based on the T -matrix, there is an equivalent definition of identifiability of (Θ,p) (equiv-

alently, identifiability of (s, g,p)). Further, the T -matrix has a nice property that will

facilitate proving the identifiability results. We summarize them in the following lemma,

whose proof can be found in Xu (2017).

Lemma 1. Consider the DINA model defined in (1).

(a) The parameters (s, g,p) are identifiable if and only if there does not exist (s̄, ḡ, p̄) 6=

(s, g,p) such that

T (Θ)p = T (Θ̄)p̄.

(b) For any vector θ∗ = (θ∗1, . . . , θ
∗
J)> ∈ RJ , there exists an 2J×2J invertible matrix D(θ∗)

which depends only on θ∗ such that

T (Θ− θ∗ · 1>2K ) = D(θ∗) · T (Θ).

Lemma 1 (a) and (b) imply that for any vector θ∗ = (θ∗1, . . . , θ
∗
J)>, there holds

T (Θ− θ∗ · 1>2K )p = D(θ∗)T (Θ)p = D(θ∗)T (Θ̄)p̄ = T (Θ̄− θ∗ · 1>2K )p̄ (S.1)
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The above equality will be frequently used throughout the proof of our identifiability results.

In the following proofs, we sometimes will denote c := 1J − s = (1 − s1, . . . , 1 − sJ)> for

notational convenience. Using this notation, the DINA model parameters can be equivalently

expressed as (c, g,p).

S.1 Proof of Proposition 1

We rewrite Eq. (4) in the main text below,

P(R = r | s, g,p) =
∑

α∈{0,1}K
pα · P(R = r | A = α, s, g)

=
∑

α∈{0,1}K
pα · P(R = r | ξ:,A = ξ:,α, s, g)

=
∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα

)
P(R = r | ξ:,A = ξ:,α, s, g),

where the notation R ⊆ {0, 1}K denotes a collection of representative latent attribute pat-

terns, such that {ξ:,α : α ∈ R} contains mutually distinct ideal response vectors and also

covers all the possible ideal response vectors under the Q-matrix. Because of (4), for any

α ∈ R, those patterns β ∈ {0, 1}K with ξ:,β = ξ:,α can be considered to be equivalent to α

under the DINA model with the considered Q-matrix. For α ∈ R, define the equivalence

class of latent attribute patterns by

[α] := {β ∈ {0, 1}K : ξ:,β = ξ:,α}.

We next show that if for some α ∈ {0, 1}K , the set [α] contains multiple elements, say α

and α′ ∈ [α] with α 6= α′, then their corresponding proportion parameters pα and pα′ will

always be unidentifiable, no matter what values pα and pα′ take. Specifically, if two sets of

parameters (s, g,p) and (s̄, ḡ, p̄) satisfy that P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all
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r ∈ {0, 1}J under a same Q-matrix, then (4) gives

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα

)
P(R = r | ξ:,A = ξ:,α, s, g) =

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

p̄α

)
P(R = r | ξ:,A = ξ:,α, s̄, ḡ);

and even if (s, g) = (s̄, ḡ), the identifiability equations P(R | s, g,p) = P(R | s̄, ḡ, p̄) only

give the following,

∑
α∈R

( ∑
β∈{0,1}K :
ξ:,β=ξ:,α

pα −
∑

β∈{0,1}K :
ξ:,β=ξ:,α

p̄α

)
P(R = r | ξ:,A = ξ:,α, s, g) = 0, ∀r ∈ {0, 1}J .

From the above equations, one can not identify individual parameters pβ for those β belong-

ing to a same equivalence class [α]. Next we will show that if Q violates the Completeness

Condition (C), then some equivalence class [α] will contain multiple elements, leading to the

aforementioned non-identifiability consequence.

According to Gu and Xu (2020), the set of representative patterns R in (4) can be

obtained using the row vectors of the Q-matrix as follows,

R =

{∨
j∈S

qj : S ⊆ {1, . . . , J} is an arbitrary subset of item indices

}
, (S.2)

where
∨
j∈S qj =: α denotes the elementwise maximum of the set of vectors {qj : j ∈ S}

and the kth entry of the resultant vector α is αk = maxj∈S{qj,k}. So
∨
j∈S qj is also a

K-dimensional binary vector and hence R � {0, 1}K . In fact, R = {0, 1}K if and only if Q

contains a submatrix IK after some row permutation. To see this, consider if the row vectors

of Q do not include a certain standard basis vector ek (which has a “1” in the kth entry and

“0” otherwise), then ek does not belong to R defined in (S.2) because ek cannot be written

in the form of
∨
j∈S qj for any subset S ⊆ [J ]. Therefore, if Q violates the Completeness

Condition (C), then R is a proper subset of {0, 1}K , which implies certain attribute patterns

become equivalent under such a Q-matrix. In summary, if a Q-matrix does not contain a

submatrix IK , certain proportion parameters pα’s will always be unidentifiable regardless of
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the values of these pα’s. This implies the failure of generic identifiability of the DINA model

parameters (s, g,p) according to Definition 2 and proves Proposition 1.

S.2 Proof of Proposition 2

The construction for non-identifiable parameters in this setting is the same as that in the

proof of Theorem 1 in Xu and Zhang (2016). We next elaborate on this construction to

make clear the failure of generic identifiability. Since Q satisfies Condition (C), we can write

the form of Q as follows without loss of generality,

Q =

1 0>

0 Q?

 ,

where the first attribute A1 is required by only one item, the first item. Next construct

two different sets of DINA model parameters (s, g,p) and (s̄, ḡ, p̄) which lead to the same

distribution of R. In particular, if setting sj = s̄j and gj = ḡj for all j ≥ 2, then the

identifiability equations P(R = r | s, g,p) = P(R = r | s̄, ḡ, p̄) for all r ∈ {0, 1}J will

exactly reduce to the following set of equations,

∀α∗ ∈ {0, 1}K−1,


p(0,α∗) + p(1,α∗) = p̄(0,α∗) + p̄(1,α∗);

g1p(0,α∗) + (1− s1)p(1,α∗) = ḡ1p̄(0,α∗) + (1− s̄1)p̄(1,α∗).

The above system of equations involve |{ḡ1, s̄1}∪{p̄α; α ∈ {0, 1}K}| = 2K + 2 free unknown

variables regarding (s̄, ḡ, p̄), while there are only 2K equations, so there exist infinitely many

different solutions to (s̄, ḡ, p̄). In particular, we can let ḡ1 = g1 and arbitrarily set s̄1 in

a small neighborhood of s1 with s̄1 6= s1. Then correspondingly solve for the proportion

parameters p̄ as

∀α∗ ∈ {0, 1}K−1, p̄(1,α∗) =
1− s1

1− s̄1

p(1,α∗), p̄(0,α∗) = p(0,α∗) +

(
1− 1− s1

1− s̄1

)
p(1,α∗).
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Since s̄1 can vary arbitrarily in the neighborhood of s1 without changing the distribution of

R, we have shown that the parameter s1 is always unidentifiable in the parameter space.

The parameter g1 can be similarly shown to be always unidentifiable. The fact that item

parameters (s1, g1) are always unidentifiable whatever their values are indicates the failure

of generic identifiability. This proves the conclusion of Proposition 2.

S.3 Proof of Theorem 1 and Theorem 4

Proof of Theorem 1. Below we rewrite the form of the Q-matrix stated in the theorem,

Q =


1 0

1 u

0 Q?

 .

By Lemma 1, if parameters (Θ,p) and (Θ̄, p̄) give rise to the same distribution of the

observed responses, then the following equality holds,

Tr,:(Θ)p = Tr,:(Θ̄)p̄ for all r ∈ {0, 1}J , (S.3)

Note that the last J − 2 rows of Q has the first column being an all-zero column, and has

the other K − 1 columns forming a sub-matrix Q? which satisfies the C-R-D conditions.

Since the C-R-D conditions are sufficient for identifiability of DINA model parameters by

Gu and Xu (2019), the last J − 2 rows of the Q-matrix implies a nice identifiability result

for a subset of the model parameters (c, g,p). We next elaborate on this observation.

For notational convenience, denote by P(·) the probability under the true parameters

(c, g,p), and denote by P(·) the probability under the alternative parameters (c̄, ḡ, p̄). For

a α∗ ∈ {0, 1}K−1, let (0,α∗), (1,α∗) ∈ {0, 1}K denote two K-dimensional binary vectors.

Since Q1, 3:J is an all-zero vector, it is always true that θj, (1,α∗) = θj, (0,α∗) for j ≥ 3 and

α∗ ∈ {0, 1}K−1. Therefore, for any response pattern r = (r1, r2, r
∗) ∈ {0, 1}J , Eq. (S.3) for
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r implies the following,

∑
(z,α∗)∈{0,1}K

∏
j>2: rj=1

θj, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A1 = z, A2:K = α∗)

∑
α∗∈{0,1}K−1

∏
j>2: rj=1

θj, (0,α∗) · [P(R1 ≥ r1, R2 ≥ r2, A1 = 1, A2:K = α∗)

+ P(R1 ≥ r1, R2 ≥ r2, A1 = 0, A2:K = α∗)]

=
∑

α∗∈{0,1}K−1

∏
j>2: rj=1

θ̄j, (0,α∗) · [P(R1 ≥ r1, R2 ≥ r2, A1 = 1, A2:K = α∗)

+ P(R1 ≥ r1, R2 ≥ r2, A1 = 0, A2:K = α∗)];

which can be further simplified to be

∑
α∗∈{0,1}K−1

∏
j>2: rj=1

θj, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗)

=
∑

α∗∈{0,1}K−1

∏
j>2: rj=1

θ̄j, (0,α∗) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗).

(S.4)

Note that fixing an arbitrary (r1, r2) and varying r∗ ∈ {0, 1}J−1, the above systems of

equations (S.4) can be viewed as surrogate identifiability equations T (Θ∗)p∗ = T (Θ̄
∗
)p̄∗ for

the last J−2 items in the test, where those θj,(0,α∗) =: θ∗j,α∗ serve as surrogate item parameters

Θ∗ = {θ∗j,α∗ : j = 3, . . . , J ; α∗ ∈ {0, 1}K−1}; and those P(R1 ≥ r1, R2 ≥ r2, A2:K =

α∗) =: p∗α∗ serve as surrogate proportion parameters p∗ = {p∗α∗ : α∗ ∈ {0, 1}K−1}. An

important observation is that the parameters (Θ∗,p∗) can be viewed as associated with the

matrix Q? under a DINA model with J − 2 items and K − 1 latent attributes. Now that

Q? satisfies the C-R-D conditions (which are sufficient for identifiability), we obtain the

following “identifiability conclusions” for the parameters (Θ∗,p∗),


θj,(0,α∗) = θ̄j,(0,α∗);

P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗) = P(R1 ≥ r1, R2 ≥ r2, A2:K = α∗);

(S.5)
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which hold for any j ∈ {3, . . . , J} and α∗ ∈ {0, 1}K−1. Recall that for any item j ≥ 3, the

parameter θj,(0,α∗) ranges over both item parameters cj and gj) when α∗ ranges in {0, 1}K−1,

so the first part of (S.5) implies

cj = c̄j, gj = ḡj, ∀j ∈ {3, . . . , J}. (S.6)

Recall the form of Q and the vector u stated in the theorem, for any α∗ ∈ {0, 1}K−1 and

α∗ � u (i.e. vector α is elementwisely greater than or equal to vector u), the second part

of (S.5) implies the following must hold,

(r1, r2) =



(0, 0) =⇒ p(0,α∗) + p(1,α∗) = p̄(0,α∗) + p̄(1,α∗);

(1, 0) =⇒ g1 · p(0,α∗) + c1 · p(1,α∗) = ḡ1 · p̄(0,α∗) + c̄1 · p̄(1,α∗);

(0, 1) =⇒ g2 · p(0,α∗) + c2 · p(1,α∗) = ḡ2 · p̄(0,α∗) + c̄2 · p̄(1,α∗);

(1, 1) =⇒ g1g2 · p(0,α∗) + c1c2 · p(1,α∗) = ḡ1ḡ2 · p̄(0,α∗) + c̄1c̄2 · p̄(1,α∗).

(S.7)

First, we transform the system of equations (S.7) to obtain


(g1 − c1) · (g2 − c̄2) · p(0,α∗) = (ḡ1 − c1) · (ḡ2 − c̄2) · p̄(0,α∗);

(g2 − c̄2) · p(0,α∗) + (c2 − c̄2) · p(1,α∗) = (ḡ2 − c̄2) · p̄(0,α∗).

Note that the right hand sides of both the above equations are nonzero. So we can take the

ratio of the two equations to obtain

f1(α∗) :=
(g1 − c1) · (g2 − c̄2)

(g2 − c̄2) + (c2 − c̄2) · p(1,α∗)/p(0,α∗)
= ḡ1 − c1.

So for two arbitrary patterns α∗1, α∗2 ∈ {0, 1}K−1 with α∗1,α
∗
2 � u, our above deduction

gives f1(α∗1) = f1(α∗2) = ḡ1 − c1. This equality of f1(α∗1) and f1(α∗2) implies

(c2 − c̄2) ·
p(1,α∗1)

p(0,α∗1)

= (c2 − c̄2) ·
p(1,α∗2)

p(0,α∗2)

;
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=⇒ (c2 − c̄2) ·
(
p(1,α∗1)

p(0,α∗1)

−
p(1,α∗2)

p(0,α∗2)

)
= 0. (S.8)

The above equation indicates that as long as there exist one pair of patterns α∗1, α∗2 ∈

{0, 1}K−1 with α∗1,α
∗
2 � u and α∗1 6= α∗2 such that

p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) 6= 0, (S.9)

then p(1,α∗1)/p(0,α∗1) 6= p(1,α∗2)/p(0,α∗2) and we must have c2 = c̄2 from (S.8). Under the assump-

tion stated in Theorem 1 that u 6= 1K−1, there indeed exist such two distinct vectors α∗1, α∗2

satisfying α∗1,α
∗
2 � u. Therefore, c2 = c̄2 (i.e., c2 is identifiable) as long as p 6∈ NR,1, where

the set NR,1 is defined in the statement of Theorem 4:

NR,1 = {p satisfies p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1, α
∗
2 � u}.

Next, we transform the system of equations (S.7) in another way to obtain


(c1 − g1) · (c2 − ḡ2) · p(1,α∗) = (c̄1 − g1) · (c̄2 − ḡ2) · p̄(1,α∗);

(g2 − ḡ2) · p(0,α∗) + (c2 − ḡ2) · p(1,α∗) = (c̄2 − ḡ2) · p̄(1,α∗).

The ratio of the above two equations gives

f2(α∗) :=
(c1 − g1) · (c2 − ḡ2)

(g2 − ḡ2) · p(0,α∗)/p(1,α∗) + (c2 − ḡ2)
= c̄1 − g1.

Again we have f2(α∗1) = f2(α∗2) for any α∗1,α
∗
2 � u with α∗1 6= α∗2. Such an equality implies

(g2 − ḡ2) ·
p(0,α∗1)

p(1,α∗1)

= (g2 − ḡ2) ·
p(0,α∗2)

p(1,α∗2)

, =⇒ (g2 − ḡ2) ·
(
p(0,α∗1)

p(1,α∗1)

−
p(0,α∗2)

p(1,α∗2)

)
= 0.

Therefore, as long as p 6∈ NR,1, we also have g2 = ḡ2 and g2 is identifiable.

Now note that the systems of equations (S.7) are symmetric about (c1, g1) and (c2, g2).

Since we have already obtained c2 = c̄2 and g2 = ḡ2 if p 6∈ NR,1, we also have c1 = c̄1 and
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g1 = ḡ1 if p 6∈ NR,1 following the same argument. Thus far we have already established c = c̄

and g = ḡ, i.e., have shown the identifiability of all the item parameters in Θ.

Since the item parameters (c, g) (equivalently, Θ) are already identified, and we have

T (Θ)p = T (Θ̄)p̄ = T (Θ)p̄. Since Q contains a submatrix IK , the matrix T (Θ) has full

column rank from a statement in Xu and Zhang (2016), and hence we obtain p = p̄. This

means all the parameters (s, g,p) are identifiable as long as p satisfies (S.9). More precisely,

we have that the DINA model parameters are identifiable if (s, g,p) ∈ T \ NR,1 where the

set NR,1 is defined by (8) in the main text in Theorem 4. We rewrite the definition of NR,1,

The above set NR,1 has measure zero with respect to the Lebesgue measure defined on the

parameter space T . This is because NR,1 is characterized by the zero set of a polynomial

equation about entries of p, and by basic algebraic geometry, NR,1 necessarily has measure

zero in the parameter space of p. This completes the proof of Theorem 1.

Proof of Theorem 4. We next examine the statistical interpretation of the null set NR,1

defined in (8) where identifiability breaks down. Recall the definition of the population

proportion parameter pα = P(A = α), where A = (A1, . . . , AK) denotes a random attribute

profile. For an arbitrary attribute pattern α = (α1,α
∗) where the subvector satisfies α∗ ∈

{0, 1}K−1 and α∗ � u, we have

P(A1 = α1)P(A2:K = α∗)

=
( ∑
β∈{0,1}K−1

p(α1,β)

)
(p(α1,α∗) + p(1−α1,α∗))

=
∑

β∈{0,1}K−1

p(α1,β)p(α1,α∗) +
∑

β∈{0,1}K−1

p(α1,β)p(1−α1,α∗)

=
∑

β∈{0,1}K−1

p(α1,β)p(α1,α∗) +
∑

β∈{0,1}K−1

p(1−α1,β)p(α1,α∗) (because p ∈ NR,1)

=
( ∑
β∈{0,1}K−1

p(α1,β) +
∑

β∈{0,1}K−1

p(1−α1,β)

)
p(α1,α∗)

= p(α1,α∗) = P(A = α).
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The third equality above follows from the fact that for p ∈ NR,1, the p(α1,β)p(1−α1,α∗) =

p(1−α1,β)p(α1,α∗) holds for any α1 ∈ {0, 1} and α∗,β ∈ {0, 1}K−1. Now we obtain that if

p ∈ NR,1, then P(A = (α1,α
∗)) = P(A1 = α1)P(A2:K = α∗) for any α1 ∈ {0, 1} and

α∗ � u. This implies if p ∈ NR,1, then latent attribute A1 is conditionally independent of

latent attributes A2:K given A2:K � u.

On the other hand, if latent variables A1 and A2:K are conditionally independent given

A2:K � u, then for any α∗ � u we have

p(1,α∗)

p(0,α∗)
=

P(A = (1,α∗))

P(A = (0,α∗))
=

P(A1 = 1)P(A2:K = α∗)

P(A1 = 0)P(A2:K = α∗)
=

P(A1 = 1)

P(A1 = 0)
=: ρ.

This means for any α∗1 6= α∗2 with α∗1,α
∗
2 � u, the equality p(1,α∗1)/p(0,α∗1) − p(1,α∗2)/p(0,α∗2) =

ρ− ρ = 0 must hold, which is equivalent to p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 for any α∗1 6= α∗2

with α∗1,α
∗
2 � u. This means if A1 ⊥⊥ A2:K | A2:K � u holds, then we must have p ∈ NR,1

with NR,1 defined in (8) in Theorem 4.

Now we have proved the statement that

A1 ⊥⊥ A2:K | A2:K � u,

is exactly equivalent to the statement that

p ∈ NR,1 = {p(1,α∗1)p(0,α∗2) − p(0,α∗1)p(1,α∗2) = 0 holds for any α∗1 6= α∗2 with α∗1,α
∗
2 � u}.

This completes the proof of Theorem 4.
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S.4 Proof of Theorem 2 and Theorem 5

Proof of Theorem 2. We rewrite the form of Q in (6) below,

Q =


1 0

1 u1

0 Q(1)

 , Q(1) =


1 0

1 u2

0 Q(2)

 , · · · , Q(m) =


1 0

1 um+1

0 Q(m+1)

 .

Under the assumption that the first m + 1 latent attributes are each required by only two

items, we know u1, 1:m = 0, u2, 1:(m−1) = 0, . . ., um, 1 = 0. First consider the last J −m− 2

items corresponding to the bottom (J −m− 2)×K submatrix of Q,

(0, Q(m+1)) =: Q̃(m+1)

The (J − m − 2) × (K − m − 1) matrix Q(m+1) satisfies the C-R-D conditions under the

assumption stated in the corollary, and that the first m+1 columns of the Q̃(m+1) are all-zero

columns. Next we use an argument similar to the proof of Theorem 1. Consider a true set of

parameters (Θ,p) and an alternative set (Θ̄, p̄) with T (Θ)p = T (Θ̄)p̄. Then the following

equations must hold for an arbitrary fixed response pattern r = (r1, . . . , rm+2, r
∗),

∑
α∗∈{0,1}K−m−2

∏
j>m+2: rj=1

θj, (0,α∗) · P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗)

=
∑

α∗∈{0,1}K−m−2

∏
j>m+2: rj=1

θ̄j, (0,α∗) · P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗).

Similar to the argument in the proof of Theorem 1, the fact that Q(m) satisfies the C-R-D

conditions imply c(J−m−1):J = c̄(J−m−1):J and g(J−m−1):J = ḡ(J−m−1):J , and also imply the

following for all α∗ ∈ {0, 1}K−m−2,

P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗) = P(R1:(m+2) ≥ r1:(m+2), A(m+2):K = α∗). (S.10)
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Define surrogate (grouped) proportion parameters to be

p
(m)
(z,α∗) = P(Am+1 = z, A(m+2):K = α∗), z = 0, 1; (S.11)

and define p̄
(m)
(z,α∗) similarly based on the alternative set of parameters (Θ̄, p̄). Now fixing

(r1, . . . , rm)> = 0 and varying (rm+1, rm+2) ∈ {0, 1}2, the equality in (S.10) becomes

P((Rm+1, Rm+2) ≥ (rm+1, rm+2), A(m+2):K = α∗)

= P((Rm+1, Rm+2) ≥ (rm+1, rm+2), A(m+2):K = α∗).

This implies the following equations for any fixed α∗ � u(m+1) when (rm+1, rm+2) vary,

(rm+1, rm+2) =



(0, 0) =⇒ p
(m)
(0,α∗) + p

(m)
(1,α∗) = p̄

(m)
(0,α∗) + p̄

(m)
(1,α∗);

(1, 0) =⇒ gm+1 · p(m)
(0,α∗) + cm+1 · p(m)

(1,α∗) = ḡm+1 · p̄(0,α∗) + c̄m+1 · p̄(m)
(1,α∗);

(0, 1) =⇒ gm+2 · p(m)
(0,α∗) + cm+2 · p(m)

(1,α∗) = ḡm+2 · p̄(m)
(0,α∗) + c̄m+2 · p̄(m)

(1,α∗);

(1, 1) =⇒ gm+1gm+2 · p(m)
(0,α∗) + cm+1cm+2 · p(m)

(1,α∗)

= ḡm+1ḡm+2 · p̄(m)
(0,α∗) + c̄m+1c̄m+2 · p̄(m)

(1,α∗).

(S.12)

The above system of four equations are similar in form to Eq. (S.7) in the proof of Theorem

1. So following a similar argument as before, we obtain that (cm+1, cm+2) and (gm+1, gm+2)

and all the p
(m)
(z,α∗)’s are identifiable as long as p ∈ T \ Nm where

Nm = {p(m)
(1,α∗1)p

(m)
(0,α∗2) − p

(m)
(0,α∗1)p

(m)
(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1,α

∗
2 � u(m+1)}. (S.13)
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Note the definition (S.11) implies that each surrogate proportion p
(m)
(z,α∗) is a sum of certain

individual proportion parameters in that

p
(m)
(z,α∗) =

∑
β∈{0,1}m

p(β,z,α∗).

Note that the p
(m)
(z,α∗) defined above exactly characterizes the joint distribution of latent

attributes Am and A(m+1):K . Now we have that the set Nm defined in (S.13) corresponds to

the zero set of certain polynomials about the proportion parameters p, so Nm has Lebesgue

measure zero in the parameter space T . Therefore we have shown (cm+1, cm+2), (gm+1, gm+2),

and p(m) := (p
(m)
(z,α∗); (z,α∗) ∈ {0, 1}K−m) are generically identifiable.

Moreover, we go back to the equality in (S.10) and define surrogate proportions alterna-

tively as

p
(m),r
(z,α∗) = P(R1:m � r1:m, Am+1 = z, A(m+2):K = α∗), x = 0, 1;

and define p̄
(m),r
(z,α∗) similarly. Fixing r1:m and varying (rm+1, rm+2) ∈ {0, 1}2, Eq. (S.10) can

be written in a similar form as the four equations in (S.12), with p
(m)
(z,α∗) there replaced by

p
(m),r
(z,α∗) now. Since when p ∈ T \Nm, we already have the item parameters (cm+1, cm+2) and

(gm+1, gm+2) are identifiable, based on the equations about (cm+1, cm+2), (gm+1, gm+2), and

p(m),r, the parameters p(m),r are also identifiable. Now we write out the equality p(m),r =

p̄(m),r by their definitions as

P(R1:m ≥ r1:m, Am+1 = z, A(m+2):K = α∗) = P(R1:m ≥ r1:m, Am+1 = z, A(m+2):K = α∗),

where (z,α∗) ∈ {0, 1}K−m. Therefore the above equation can be equivalently written as

follows, with the new α∗ defined to be (K −m)-dimensional,

P(R1:m ≥ r1:m, A(m+1):K = α∗) = P(R1:m ≥ r1:m, A(m+1):K = α∗). (S.14)
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Comparing the above (S.14) to the previous (S.10) give an immediate similarity, with the

difference being only the changes of subscripts of R and A. Therefore, we can proceed in

the same way as before, and show the identifiability of (cm−1, cm) and (gm−1, gm) and all the

p
(m−1)
(z,α∗) when p satisfies p ∈ T \ (Nm ∪Nm−1), where

Nm−1 = {p(m−1)
(1,α∗1)p

(m−1)
(0,α∗2) − p

(m−1)
(0,α∗1)p

(m−1)
(1,α∗2) = 0 for any α∗1 6= α∗2 with α∗1,α

∗
2 � u(m) ∨ (0,u(m+1))}.

In the definition of Nm−1, we have α∗1,α
∗
2 � u(m) ∨ (0,u(m+1)) = ũ(m) ∨ ũ(m+1) because the

α∗1,α
∗
2 first need to satisfy the previous requirement before (S.12) and hence α∗1,−1,α

∗
2,−1 �

u(m+1) (equivalently, α∗1,α
∗
2 � (0,u(m+1))); and additionally they also need to satisfy the

new requirement α∗1,α
∗
2 � u(m).

Recall the definition that ũ(`) = (0,u(`)) is a (K−1)-dimensional vector for ` = 2, . . . ,m+

1, and ũ(1) = u(1) is also a (K−1)-dimensional vector. Proceeding in an iterative manner as

done in the previous paragraphs, we obtain that as long as p satisfies the following condition,

then all the item parameters c, g and all the proportion parameters p are identifiable.

p ∈ T \

{
m⋃
`=0

N`

}
,

N` =
{
p

(`)
(1,α∗1)p

(`)
(0,α∗2) − p

(`)
(0,α∗1)p

(`)
(1,α∗2) = 0 for any α∗1,α

∗
2 �

m+1∨
t=`+1

ũ(t)
}

;

with the definition p
(`)
(z,α∗) = P(A`+1 = z, A(`+2):K = α∗),

Because of the assumption
m+1∨
t=1

ũ(t) 6= 1>K−1 (S.15)

stated in the theorem, we claim that the set T \ {
⋃m
`=0N`} is nonempty. To see this, note

that
∨m+1
t=`+1 ũ

(t) 6= 1>K−1 for each ` = 0, . . . ,m follows from (S.15). This means there must

exist two distinct patterns α∗1,` 6= α∗2,` with α∗1,`, α
∗
2,` �

∨m+1
t=`+1 ũ

(t). Therefore as long as p

satisfies p
(`)
(1,α∗1,`)

p
(`)
(0,α∗2,`)

− p(`)
(0,α∗1,`)

p
(`)
(1,α∗2,`)

6= 0 for each ` = 0, . . . ,m, such p does not belong to
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⋃m
`=0N` and hence p ∈ T \ {

⋃m
`=0N`}. This proves the earlier claim that the subset of the

identifiable parameters T \ {
⋃m
`=0N`} is nonempty.

Now note that the subset of the parameter space where identifiability may break down⋃m
`=0N` is a finite union of several zero sets of polynomial equations about entries of p,

so it necessarily has Lebesgue measure zero in T . This proves the generic identifiability of

parameters (c, g,p) and completes the proof of Theorem 2. Furthermore, note that the N`

in the last paragraph gives the form of the non-identifiable null sets in Theorem 5. Recall

that the notation p
(`)
(z,α∗) exactly corresponds to the marginal distribution of the K− ` latent

attributes A`+1, . . . , AK . So each set N` can be equivalently written as

N` =
{
A` ⊥⊥ A(`+1):K

∣∣∣ {A(`+1):K �
m+1∨
t=`+1

ũ(t)
}}

.

The above set N` carries the statistical interpretation of latent conditional independence.

This completes the proof Theorem 5.

S.5 Proof of Theorem 3 and Theorem 6

We rewrite the form of the Q-matrix in the theorem below,

Q =


1 0 0

0 1 0

v v Q?

 =



1 0 0

0 1 0

0 0 Q′

1 1 Q′′


.

Denote the size of the above submatrix Q′ by J1× (K − 2), then Q′′ has size (J − 2− J1)×

(K−2). By Remark 4, we have J−2−J1 ≥ 2. Consider two sets of DINA model parameters

(c, g,p) and (c̄, ḡ, p̄) that lead to the same distribution of R so we have T (Θ)p = T (Θ̄)p̄.

Theorem 4 in Xu and Zhang (2016) established that if Q satisfies Conditions (C) and (R),

then the guessing parameters associated with those items requiring more than one attribute
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(i.e., {gj :
∑K

k=1 qj,k > 1}) and all the slipping parameters (i.e., {c1, . . . , cJ}) are identifiable.

Since the considered Q-matrix satisfies Conditions (C) and (R) by the assumption in the

theorem, we have c = c̄ and g(3+J1):J = ḡ(3+J1):J .

Next consider an arbitrary α∗ ∈ {0, 1}K−2. The form of the Q-matrix implies

θj, (0,0,α∗) = θj, (0,1,α∗) = θj, (1,0,α∗) = θj, (1,1,α∗), ∀j ∈ {2, . . . , 2 + J1}.

So for a response pattern r with r(3+J1):J = 0, we can write Tr,:(Θ)p as follows,

Tr,:(Θ)p

=
∑

α∈{0,1}K
α=(α1,α2,α

∗)

pα · P(R1 ≥ r1, R2 ≥ r2 | A = α)

2+J1∏
j=3

θj, (0,0,α∗)

=
∑

α∗∈{0,1}K−2

 ∑
(α1,α2)∈{0,1}2

p(α1,α2,α∗) · P(R1 ≥ r1, R2 ≥ r2 | A1:2 = (α1, α2))


︸ ︷︷ ︸

define this to be p
(r1,r2)

α∗

2+J1∏
j=3

θj, (0,0,α∗).

Now define surrogate DINA model parameters: surrogate proportions p(r1,r2) = (p
(r1,r2)
α∗ :

α∗ ∈ {0, 1}K−2) and surrogate item parameters Θ∗ = {θj, (0,0,α∗) : j = 3, . . . , 2 + J1; α∗ ∈

{0, 1}K−2}. These surrogate parameters p(r1,r2) and Θ∗ can be viewed as associated with the

J1× (K−2) matrix Q′. Since Q′ satisfies the C-R-D conditions, we obtain the identifiability

of p(r1,r2) and Θ∗. Note that Θ∗ includes all the item parameters associated with items with

indices 3, . . . , J ; i.e., we have established the identifiability of {c3, . . . , c2+J1 , g3, . . . , g2+J1}.

So far we have obtained c = c̄ and g3:J = ḡ3:J . It only remains to identify p and (g1, g2).
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The identifiability of p(r1,r2) means p(r1,r2) = p̄(r1,r2) for (r1, r2) ∈ {0, 1}2, which gives

(r1, r2) =



(0, 0) : p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) + p(1,1,α∗)

= p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗) + p̄(1,1,α∗);

(1, 0) : g1[p(0,0,α∗) + p(0,1,α∗)] + c1[p(1,0,α∗) + p(1,1,α∗)]

= ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + c1[p̄(1,0,α∗) + p̄(1,1,α∗)];

(0, 1) : g2[p(0,0,α∗) + p(1,0,α∗)] + c2[p(0,1,α∗) + p(1,1,α∗)]

= ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + c2[p̄(0,1,α∗) + p̄(1,1,α∗)];

(1, 1) : g1g2p(0,0,α∗) + c1g2p(1,0,α∗) + g1c2p(0,1,α∗) + c1c2p(1,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + c1ḡ2p̄(1,0,α∗) + ḡ1c2p̄(0,1,α∗) + c1c2p̄(1,1,α∗).

(S.16)

Since Q′ satisfies Condition (C) and contains a submatrix IK−2, we can assume without

loss of generality that the first K − 2 rows of Q′ form IK−2; namely, the first K rows of Q

forms an identity matrix IK . According to the form of Q, let qm = (1, 1, 0, . . . , 0) for some

m ∈ {3 + J1, . . . , J}. Given an arbitrary pattern α∗ = (α3, . . . , αK) ∈ {0, 1}K−2, define

θ∗ =
∑

3≤k≤K:
αk=1

gkek +
∑

3≤k≤K:
αk=0

ckek + gmem.

Then Tr,:(Θ− θ∗ · 12K )p = Tr,:(Θ̄− θ∗ · 12K )p̄ gives

p(1,1,α∗)

∏
3≤k≤K:
αk=1

(ck − gk)
∏

3≤k≤K:
αk=0

(gk − ck)(cm − gm)

= p̄(1,1,α∗)

∏
3≤k≤K:
αk=1

(ck − gk)
∏

3≤k≤K:
αk=0

(gk − ck)(cm − gm),

which implies p(1,1,α∗) = p̄(1,1,α∗). Note that this identifiability conclusion holds for any

α∗ ∈ {0, 1}K . Plugging the p(1,1,α∗) = p̄(1,1,α∗) into (S.16) gives the following equations
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about undetermined parameters ḡ1, ḡ2, and {p(0,0,α∗), p(0,1,α∗), p(1,0,α∗) : α∗ ∈ {0, 1}K−2},

(r1, r2) =



(0, 0) =⇒ p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗);

(1, 0) =⇒ g1[p(0,0,α∗) + p(0,1,α∗)] + c1p(1,0,α∗) = ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + c1p̄(1,0,α∗);

(0, 1) =⇒ g2[p(0,0,α∗) + p(1,0,α∗)] + c2p(0,1,α∗) = ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + c2p̄(0,1,α∗);

(1, 1) =⇒ g1g2p(0,0,α∗) + c1g2p(1,0,α∗) + g1c2p(0,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + c1ḡ2p̄(1,0,α∗) + ḡ1c2p̄(0,1,α∗).

(S.17)

After some transformation, (S.17) yields


(g1 − ḡ1)(p(0,0,α∗) + p(0,1,α∗)) + (c1 − ḡ1)p(1,0,α∗) = (c1 − ḡ1)p̄(1,0,α∗),

(g1 − ḡ1)(g2 − c2)p(0,0,α∗) + (c1 − ḡ1)(g2 − c2)p(1,0,α∗) = (c1 − ḡ1)(ḡ2 − c2)p̄(1,0,α∗).

(S.18)

The right hand sides of both of the above equations are nonzero. So we can take the ratio

of these two equations to obtain

(g1 − ḡ1)p(0,0,α∗)/p(1,0,α∗) + (c1 − ḡ1)

(g1 − ḡ1)[p(0,0,α∗) + p(0,1,α∗)]/p(1,0,α∗) + (c1 − ḡ1)
(g2 − c2) = ḡ2 − c2.

Define f(α∗) = p(0,0,α∗)/p(1,0,α∗), g(α∗) = [p(0,0,α∗) + p(0,1,α∗)]/p(1,0,α∗) as functions of α∗,

then the above equation can be written as

A · f(α∗) +B

A · g(α∗) +B
= C,

where A = g1 − ḡ1, B = c1 − ḡ1, and C = ḡ2 − c2. So we have

A · (f(α∗)− C · g(α∗)) = BC −B,
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which is equivalent to

(g1 − ḡ1) ·
[
p(0,0,α∗)

p(1,0,α∗)
− (ḡ2 − c2)

p(0,0,α∗) + p(0,1,α∗)

p(1,0,α∗)

]
= (c1 − ḡ1)(ḡ2 − c2)− (c1 − ḡ1).

Consider α∗1,α
∗
2, we further obtain the following function h(α∗) does not depend on α∗,

h(α∗) := (g1 − ḡ1) ·
[
p(0,0,α∗)

p(1,0,α∗)
− (ḡ2 − c2)

p(0,0,α∗) + p(0,1,α∗)

p(1,0,α∗)

]

= (g1 − ḡ1) ·
p(0,0,α∗) + (c2 − ḡ2)(p(0,0,α∗) + p(0,1,α∗))

p(1,0,α∗)
;

therefore we have

0 = h(α∗1)− h(α∗2)

= (g1 − ḡ1) ·
[p(0,0,α∗1) + (c2 − ḡ2)(p(0,0,α∗1) + p(0,1,α∗1))

p(1,0,α∗1)

−
p(0,0,α∗2) + (c2 − ḡ2)(p(0,0,α∗2) + p(0,1,α∗2))

p(1,0,α∗2)

]
= (g1 − ḡ1)

1

p(1,0,α∗1)p(1,0,α∗2)

{
[p(0,0,α∗1) + (c2 − ḡ2)(p(0,0,α∗1) + p(0,1,α∗1))]p(1,0,α∗2)

− [p(0,0,α∗2) + (c2 − ḡ2)(p(0,0,α∗2) + p(0,1,α∗2))]p(1,0,α∗1)

}
.

According to the above equality, if g1 − ḡ1 6= 0, then h(α∗1)− h(α∗2) = 0 gives

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1) (S.19)

+(c2 − ḡ2)[(p(0,0,α∗1) + p(0,1,α∗1))p(1,0,α∗2) − (p(0,0,α∗2) + p(0,1,α∗2))p(1,0,α∗1)] = 0.
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We rewrite below the definitions of the functions m1,m2,m3 stated in (11) in the theorem,


m1(α∗1,α

∗
2) = p(0,1,α∗1)p(1,0,α∗2) − p(0,1,α∗2)p(1,0,α∗1),

m2(α∗1,α
∗
2) = p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1),

m3(α∗1,α
∗
2) = p(0,0,α∗1)p(0,1,α∗2) − p(0,0,α∗2)p(0,1,α∗1).

Then (S.19) can be written as

m2(α∗1,α
∗
2) + (c2 − ḡ2)[m2(α∗1,α

∗
2) +m1(α∗1,α

∗
2)] = 0. (S.20)

Note that c2 − ḡ2 6= 0. If m2(α∗1,α
∗
2) 6= 0 holds for some α∗1 and α∗2, then we can obtain the

following from (S.20),

m1(α∗1,α
∗
2)

m2(α∗1,α
∗
2)

:=
p(0,1,α∗1)p(1,0,α∗2) − p(0,1,α∗2)p(1,0,α∗1)

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1)

=
1

ḡ2 − c2

− 1. (S.21)

Therefore, as long as there exist α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2 such that p satisfies

m1(α∗1,α
∗
2)

m2(α∗1,α
∗
2)
6= m1(β∗1,β

∗
2)

m2(β∗1,β
∗
2)
, m2(α∗1,α

∗
2) 6= 0, m2(β∗1,β

∗
2) 6= 0,

then (S.21) cannot hold true; such a contradiction implies the earlier assumption g1− ḡ1 6= 0

is incorrect, and we should have g1 = ḡ1. Equivalently, we have shown that if there exist

α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2 such that

m1(α∗1,α
∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2) 6= 0, m2(α∗1,α

∗
2) 6= 0, m2(β∗1,β

∗
2) 6= 0,

then g1 = ḡ1 and hence parameter g1 is identifiable.

Define a subset ND,1 of the parameter space T to be

ND,1 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

Either m1(α∗1,α
∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2) = 0,
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Or m2(α∗1,α
∗
2) = 0, Or m2(β∗1,β

∗
2) = 0.}

= {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

m2(α∗1,α
∗
2) ·m2(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m2(β∗1,β

∗
2)−m2(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.}.

Then we have established that as long as p ∈ T \ ND,1, then g1 = ḡ1 and parameter g1 is

identifiable. By the symmetry between g1 and g2, we similarly obtain that if p ∈ T \ ND,2,

then g2 = ḡ2 and parameter g2 is identifiable, where ND,2 takes the following form,

ND,2 = {For all α∗1, α
∗
2, β

∗
1, β

∗
2 ∈ {0, 1}K−2,

m3(α∗1,α
∗
2) ·m3(β∗1,β

∗
2) · [m1(α∗1,α

∗
2)m3(β∗1,β

∗
2)−m3(α∗1,α

∗
2)m1(β∗1,β

∗
2)] = 0.}.

The function m3(·, ·) has been defined earlier together with m1(·, ·) and m2(·, ·). In summary,

if p ∈ T \ (ND,1 ∪ND,2), then g1 and g2 are identifiable.

Recall that we previously have already proved the identifiability of all the other item

parameters and also identifiability of {p(1,1,α∗) : α∗ ∈ {0, 1}K−2}. Now we can replace ḡ1

by g1 in the first equation in (S.18) and obtain p̄(1,0,α∗) = p(1,0,α∗); similarly, replacing ḡ2

by g2 in (S.17) gives p̄(0,1,α∗) = p(0,1,α∗). With p̄(1,0,α∗) and p̄(0,1,α∗) both determined, (S.17)

finally gives p̄(1,1,α∗) = p(1,1,α∗). Noting that the above argument holds for an arbitrary α∗ ∈

{0, 1}K−2, we have established the identifiability of all the parameters under the DINA model

under the condition that the true proportion parameters p satisfies p ∈ T \ (ND,1 ∪ ND,2).

Note that the set ND,1 ∪ND,2 where identifiability potentially breaks down is characterized

by the zero sets of certain nontrivial polynomial equations about the entries of p, and hence

necessarily has Lebesgue measure zero in the parameter space T . This proves the conclusion

of generic identifiability and concludes the proof of Theorem 3. Further note that the forms

of ND,1 and ND,2 defined in the last paragraph are exactly the same as those stated in

Theorem 6, so we have also proved Theorem 6.
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S.6 Proof of Proposition 3

We introduce some new notation to facilitate understanding the null sets ND,1 and ND,2.

Consider the joint distribution of two discrete random variables Z1 := (A1, A2) and Z2 :=

(A3, . . . , AK), each concatenated from the latent attributes. That is, Z1 concatenates two

variables A1 and A2 and takes |{0, 1}2| = 4 possible values, and Z2 concatenates K − 2

binary variables and takes |{0, 1}K−2| = 2K−2 possible values. The joint distribution of Z1

and Z2 can be written in the form of a 4× 2K−2 contingency table, whose rows are indexed

by the possible values Z1 can take and columns by the possible values Z2 can take. Each

entry in this table represents the probability of a specific configuration of (Z1, Z2). We write

out this 4× 2K−2 table below and denote it by B,

(10 · · · 0) (01 · · · 0) · · · (11 · · · 1)


(00) p(00,10···0) p(00,01···0) · · · p(00,11···1)

(10) p(10,10···0) p(10,01···0) · · · p(10,11···1)

(01) p(01,10···0) p(01,01···0) · · · p(01,11···1)

(11) p(11,10···0) p(11,01···0) · · · p(11,11···1)

(S.22)

Note that when the previously used notation α∗ ∈ {0, 1}K−2 can indicate the configurations

of Z2, so the above matrix B have columns indexed by α∗ ∈ {0, 1}K−2. The definition of

mi(α
∗
1,α

∗
2), i = 1, 2, 3 can be understood as certain 2× 2 minor of the matrix B. Denote the

determinant of a matrix C by |C|. In particular, we have the following equalities,

m1(α∗1,α
∗
2) = p(0,1,α∗1)p(1,0,α∗2) − p(1,0,α∗1)p(0,1,α∗2) =

∣∣∣∣∣∣ p(0,1,α∗1) p(0,1,α∗2)

p(1,0,α∗1) p(1,0,α∗2)

∣∣∣∣∣∣ = |B({2, 3}, {α∗1,α∗2})|,

m2(α∗1,α
∗
2) = p(0,0,α∗1)p(1,0,α∗2) − p(1,0,α∗1)p(0,0,α∗2) =

∣∣∣∣∣∣ p(0,0,α∗1) p(0,0,α∗2)

p(1,0,α∗1) p(1,0,α∗2)

∣∣∣∣∣∣ = |B({1, 2}, {α∗1,α∗2})|,

m3(α∗1,α
∗
2) = p(0,0,α∗1)p(0,1,α∗2) − p(0,1,α∗1)p(0,0,α∗2) =

∣∣∣∣∣∣ p(0,0,α∗1) p(0,0,α∗2)

p(0,1,α∗1) p(0,1,α∗2)

∣∣∣∣∣∣ = |B({1, 3}, {α∗1,α∗2})|.
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In the above display, the B({1, 2}, {α∗1,α∗2}) denotes the 2 × 2 submatrix of B containing

the entries in rows with indices 1, 2 and columns α∗1, α∗2.

We can use the technical machinery in the last paragraph to discover some meaningful

subsets of the non-identifiable null set ND,1 ∪ND,2. First, define

N1,sub = {m2(α∗1,α
∗
2) = 0 for all α∗1,α

∗
2 ∈ {0, 1}K−2}, (S.23)

N2,sub = {m3(α∗1,α
∗
2) = 0 for all α∗1,α

∗
2 ∈ {0, 1}K−2}. (S.24)

According to the definition of ND,1 and ND,2, it is clear that the two sets defined above

satisfy N1,sub ⊆ ND,1 and N2,sub ⊆ ND,2. First consider the statistical implication of N1,sub.

Since m2(α∗1,α
∗
2) = |B({1, 2}, {α∗1,α∗2})|, when α∗1,α

∗
2 range over all the possible patterns

in {0, 1}K−2, the m2(α∗1,α
∗
2) will take on values of all the possible 2 × 2 minors of the

2× 2(K−2) matrix B({1, 2}, :) (i.e., the submatrix of B consisting of its first two rows). The

assertion in N1,sub that all these determinants equal zero essentially implies the submatrix

B({1, 2}, :) has rank one, i.e., has the two rows proportional to each other. This means for

all α∗ ∈ {0, 1}K−2, the ratio p(1,0,α∗)/p(0,0,α∗) is a constant δ, which further implies the ratio

p(1,0,α∗)/(p(0,0,α∗) + p(1,0,α∗)) is also a constant equal to 1/(1 + 1/δ), which we denote by ρ:

ρ =
p(1,0,α∗)

p(0,0,α∗) + p(1,0,α∗)
=

P(A1 = 1, A2 = 0,A3:K = α∗)

P(A2 = 0,A3:K = α∗)

=
P(A1 = 1,A3:K = α∗ | A2 = 0)

P(A3:K = α∗ | A2 = 0)
, ∀α∗ ∈ {0, 1}K−2.

So we have the following

P(A1 = 1,A3:K = α∗ | A2 = 0) = ρ · P(A3:K = α∗ | A2 = 0). (S.25)

Now summing over the above equation for all α∗ ∈ {0, 1}K−2, we obtain

∑
α∗∈{0,1}K−2

P(A1 = 1,A3:K = α∗ | A2 = 0) = ρ ·
∑

α∗∈{0,1}K−2

P(A3:K = α∗ | A2 = 0),

24



=⇒ P(A1 = 1 | A2 = 0) = ρ.

Plugging back ρ = P(A1 = 1 | A2 = 0) into (S.25) gives the following for all α∗ ∈ {0, 1}K−2,

P(A1 = 1,A3:K = α∗ | A2 = 0) = P(A1 = 1 | A2 = 0) · P(A3:K = α∗ | A2 = 0);

in a very similar fashion we can also obtain P(A1 = 0,A3:K = α∗ | A2 = 0) = P(A1 =

0 | A2 = 0) · P(A3:K = α∗ | A2 = 0) for all α∗ ∈ {0, 1}K−2. This essentially means

attribute A1 and attributes A3:K are conditionally independent given A2 = 0. So we have

obtained that p ∈ N1,sub implies A1 and A3:K are conditionally independent given A2 = 0.

By symmetry, we similarly have that p ∈ N2,sub implies A2 and A3:K are conditionally

independent given A1 = 0. In summary, we have proved that N1,sub and N2,sub defined in

(S.23)-(S.24) correspond to the following conditional independence statements,

N1,sub = {p satisfies (A1 ⊥⊥ A3:K | A2 = 0)} ⊆ ND,1;

N2,sub = {p satisfies (A2 ⊥⊥ A3:K | A1 = 0)} ⊆ ND,2.

Additionally, by the basic property of marginal independence and conditional independence,

if p satisfies the marginal independence statement such as “A1 ⊥⊥ A3:K”, then it necessarily

also satisfies the conditional independence statement “A1 ⊥⊥ A3:K | A2 = 0”. Therefore we

have we also have

N1,sub = {p satisfies (A1 ⊥⊥ A3:K | A2 = 0)} ⊇ {p satisfies (A1 ⊥⊥ A3:K)};

N2,sub = {p satisfies (A2 ⊥⊥ A3:K | A1 = 0)} ⊇ {p satisfies (A2 ⊥⊥ A3:K)}.

Combining the two conclusions above, we have proved the first two conclusions in (12) in

Proposition 3.
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Next we prove the third conclusion in (12) in Proposition 3. Define

Nboth = {m2(α∗1,α
∗
2) = m3(α∗1,α

∗
2) = 0 holds for all α∗1,α

∗
2 ∈ {0, 1}K−2.} (S.26)

First note that Nboth ⊆ ND,1∩ND,2 obviously holds according to definition of ND,1 and ND,2.

We next examine the statistical implication the set Nboth. If p ∈ Nboth, then we have the

following for all α∗1,α
∗
2 ∈ {0, 1}K−2,

p(0,0,α∗1)p(1,0,α∗2) − p(0,0,α∗2)p(1,0,α∗1) = p(0,0,α∗1)p(0,1,α∗2) − p(0,0,α∗2)p(0,1,α∗1) = 0;

=⇒
p(1,0,α∗1)

p(0,0,α∗1)

=
p(1,0,α∗2)

p(0,0,α∗2)

,
p(0,1,α∗1)

p(0,0,α∗1)

=
p(0,1,α∗2)

p(0,0,α∗2)

, ∀α∗1,α∗2 ∈ {0, 1}K−2.

This implies there exist some constants ρ1, ρ2 such that

p(1,0,α∗)

p(0,0,α∗)
= ρ1,

p(0,1,α∗)

p(0,0,α∗)
= ρ2, ∀α∗ ∈ {0, 1}K−2. (S.27)

Then for arbitrary (x, y) ∈ {(0, 0), (0, 1), (1, 0)} and α∗ ∈ {0, 1}K−2, we will have

P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗)

=
P(A1:2 = (x, y), A3:K = α∗)

P(A1:2 6= (1, 1), A3:K = α∗)

=
p(x,y,α∗)

p(0,0,α∗) + p(0,1,α∗) + p(1,0,α∗)
=

p(x,y,α∗)
p(0,1,α∗)

1 +
p(0,1,α∗)
p(0,1,α∗)

+
p(1,0,α∗)
p(0,1,α∗)

(S.28)

=



1

1 + ρ1 + ρ2

, if (x, y) = (0, 0);

ρ1

1 + ρ1 + ρ2

, if (x, y) = (1, 0);

ρ2

1 + ρ1 + ρ2

, if (x, y) = (0, 1).

The above deduction implies that the conditional distribution P(A1:2 = (x, y) | A1:2 6=

26



(1, 1), A3:K = α∗) does not depend on A3:K and hence can be indeed written as

P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗) = P(A1:2 = (x, y) | A1:2 6= (1, 1)).

Statistically, the above observation means the conditional independence (A1:2 ⊥⊥ A3:K |

A1:2 6= (1, 1)) holds. Also, note that in order for P(A1:2 = (x, y) | A1:2 6= (1, 1), A3:K = α∗)

in (S.28) to not depend on α∗, we must have (S.27) holds for some constants ρ1, ρ2. In

summary, we have shown that p ∈ Nboth if and only if (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1)) holds.

Namely, the Nboth defined in (S.26) can be equivalently written as

Nboth = {p satisfies (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1))}.

Finally, recall that we have Nboth ⊆ ND,1∩ND,2, so

ND,1∩ND,2 ⊇ {p satisfies (A1:2 ⊥⊥ A3:K | A1:2 6= (1, 1))} ⊇ {p satisfies (A1:2 ⊥⊥ A3:K)}.

This completes the proof of Proposition 3.

References

Gu, Y. and Xu, G. (2019). The sufficient and necessary condition for the identifiability and
estimability of the DINA model. Psychometrika, 84(2):468–483.

Gu, Y. and Xu, G. (2020). Partial identifiability of restricted latent class models. Annals of
Statistics, 48(4):2082–2107.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. Annals
of Statistics, 45:675–707.

Xu, G. and Zhang, S. (2016). Identifiability of diagnostic classification models. Psychome-
trika, 81(3):625–649.

27


	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1 and Theorem 4
	Proof of Theorem 2 and Theorem 5
	Proof of Theorem 3 and Theorem 6
	Proof of Proposition 3

