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AR(1) Effects in the Dynamic IRTree Model

The AR(1) parameters in Equation 1 can be presented as
)\jir - )\7” + )\1]'7“ + )\22'7’- (]-)

The Aji1 is the model-based conditional log odds ratio between y;;,;4 and y(,_;y,;;; at Node 1:
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The Aji2 is the model-based conditional log odds ratio between y;;,,o and y;_;y,;;, at Node 2:
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In Aj; (r=1,2), own-lag (TC — T&C; T — T) and cross-lag (T&C — O; T — C) effects
were considered, presented in the following diagram. Paths from time point ¢ — 1 to time

point ¢ indicate the comparison structure in the log odds ratio.
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Figure A.1-1 Graphical representation for Aj;,.

Note. T, C, and O indicates “Target”, “Competitor”, and “Unrelated Objects”

respectively.




The AR(1) parameters in Equation 2 can be presented as
ATjir = Arr + Arijr + Aroir (4)

and

Acjir = Acr + Acijr + Ac2ir- (5)

The Arji is the model-based conditional log odds ratio between vy, and x7—1y;; at Node
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The Acgji1 is the model-based conditional log odds ratio between yj;.;; and xc -1y at Node
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The Arjiz is the model-based conditional log odds ratio between y;;,1 and z7 -1y at Node

2:
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The A¢jio is the model-based conditional log odds ratio between Y and rc(—1y;; at Node

2:
Py 0=12r0—1)17:=0,2c(—1)1:=1timew;:,X,015i2, 152,052, A2i2,8i2)
Py o=z -1)1;=0,Tc(t—1)1j:=—1timewu;i, X, 0152, 152,052, 2i2,8i2)

(9)

P '
Tjil P(y:0=0l27(t-1)151=0,2c(t—1)15: =L, time i, X,01ji2,M152,052, A2i2,Bi2)

P(y515:0=012T (1 —1)15:=0,20(t—1)15i=—Ltimey;;,X,015i2,A152,052, 242, B42)

In Apjir and Agjir (r = 1,2), own-lag (T — T; C — C; O — O) and cross-lag (e.g., T —
O; O — T&C) effects were considered, presented in the following diagram. Paths from time

point ¢ — 1 to time point ¢ indicate the comparison structure in the log odds ratio.
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Figure A.1-2 Graphical representation for Apj;, and Acjiy.
Note. T, C, and O indicates “Target”, “Competitor”, and “Unrelated Objects”
respectively.




Trend and Autocorrelations in an Empirical Study
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Figure A.2 Trend over time (indicated on z-axis) (top) and autocorrelations of empirical
logit at Node 1 as a function of lag (indicated on z-axis) (bottom)



Linear and Polynomial Trends in an Empirical Study
Fitted lines over time are presented below for the linear function and Kernel-weighted

local polynomial smoothing function:
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Figure A.3 Linear and polynomial trends over time.

Fitted lines over time were similar between the linear function and Kernel-weighted local

polynomial smoothing function and small deviations from the linear trend were observed.



Trend by Trials in an Empirical Study

To explore whether the trend pattern is similar across 288 trials graphically, we plot

Ptlr .

the logit-transformed proportion measures for each trial I at each time point ¢ (In= ot

Py, = (Z}]:1 ST Yijir)/JI) against time at each node. As shown in Figures A.3, the linear

trend pattern is similar across the 288 trials in each node.
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Figure A.4-1 Linear trend by trials and data (empirical logit) over time at Node 1.
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Figure A.4}-2 Linear trend by trials and data (empirical logit) over time at Node 2.



Models Considered in Model Selection Regarding Random Effects
in an Empirical Study (Shown in Table 3)
Models with Yir-1)i
e Model B*

Netjir = Y1r + yal_l)lji)\r + time;ljigr + 6lji2 + er + 52’7’7

where 05,2 is a random trial effect at Node 2.

e Model B*-Person

Ngir = Yir + ya,—l)ljir)‘r + time;lji@ + Oijiz + yzkt,—nljir)‘ljr + 05 + Bir
e Model B*-Item

Mejir = Y1r + yEkt/_nljir)‘r + time;ljig“ + Oijiz + 05 + yzkt/—l)ljir)‘%T + Bir
e Model B*-Person&Item

Nijir = Y1r + yikt—1)ljir>\r + timetljicr + 5lji2 + ya_l)ljir)\ljr + er + ya_l)ljir)\zir + Bir
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(10)

(11)

(12)

(13)



Models with z7;_1y;; and zpg_1y;;

e Model B*

Ngir = Y1r + x,T(t—l)lji)‘T?“ + 517/0@—1)1]'@')\07* + timey;i G + Oigio + 00 + Bir, (14)

where 05,2 is a random trial effect at Node 2.

e Model B*-Person
Majir = Yir + Tpe 1)y e + To-rgidor + timey;Ce + iz + Y1y Mjr + 05 + Bir (15)
e Model B*-Item

Mjir = Vir + -1y e + Tog—tygider + tmey ;G + Oz + Y1y Mjr + 0 + Bir (16)
e Model B*-Person&Item

Nijir = 71T+xlT(t—1)lji)\T7“+I,C’(t—1)ljj)\0r+t'ém€;lji<7“+5lji2+yz<t/—1)ljir)‘1j7“+9j7’+yz<t/—1)ljir)‘2i7’+6i7“
(17)
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R Code for the Dynamic IRTree Model

In this section, we describe how to estimate the dynamic IRTree model using the glmer

function in 1me4 version 1.1.15 R package. The following is the R code for Model 2 in the

paper for which we interpreted parameter estimates (see results in Table 4 of the paper):

1.
2.
3.

© 00N O O

data <- read.table("C:\\data.txt",header=T,fill=T)

data <- na.omit(data)

data$item <- as.factor(data$item)

data$subject <- as.factor(data$subject)

data$trialnum <- as.factor(data$trialnum)

data$node <- as.factor(data$node)

data$node2 <- as.factor(data$node2)

data$ctimel <- as.numeric(data$ctimel)

data$clagl <- as.numeric(data$clagl)

data$privilegedl <- as.numeric(data$privilegedl)

data$contrast <- as.numeric(data$contrast)

Modell <- glmer(y ~

-1 + node + cylagl:node + privilegedl:node + contrast:node + ctimel:node +
(-1+node2|trialnum) + (-1+cylagl:node+node|subject) + (-1+nodelitem),
family = binomial,

data = data)

summary (Model1)

Each line is explained in more detail below:
Line 1. A file, data.txt, is read in table format and a data frame is created from it.

Line 2. Missing values coded in NA in the data are deleted in the data. As we described
in the paper, the lagged response at the first time point (¢ = 0), Yo Was treated as
a missing variable and its subsequent response variable y7,;; was not modelled. Note
that there are no missing values in the other variables including the outcome variable

vy i in our illustrative data.

Line 3. The experimental factors (item, subject, and trialnum) and nodes in the tree
model (node and node2) are coded as factors, and the covariates (the lagged response
cylagl and trend ctimel) and two experimental condition contrasts privilegedl and

contrast) are coded as numeric.

12



Line 4. The binary variable called y (y;;;) is specified in the glmer function and the model

name is assigned as Model 2.

Line 5. The fixed effects of the model are specified: node is for the intercept v, cylagl is
for the fixed lagged effect A\, ctimel is for the fixed trend effect (, and privileged1

and contrast are for the two experimental condition effects ~.

Line 6. The random effects of the model are specified: (-1+node2|trialnum) is for the
trial random effect at Node 2 052, (-1+cylagl:node+node|subject) are for person

random effects [6;1,0;2, A1j1, A1j2)', and (-1+node|item) are for item random effects

[62'17 52/2

Line 7. The linking component for binomial data is specified as family = binomial.
Because the logistic link is the default, the specification ¢ ‘logit’’ argument of family

= binomial () is omitted.
Line 8. The data set called data is specified.

Line 9. The results of Model2 are provided.

13



Node 1: Trial ID=250 and Person ID=1 Node 2: Trial ID=250 and Person ID=1
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Model-Data Fit for Model 2 in an Empirical Study
Figure A.5 Model prediction from Model 2 over 111 time-point data, for a person (top)
and an item (bottom) at Node 1 (lexico-semantic processing) and at Node 2 (ambiguity

resolution).
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Model Comparisons regrading Different Change Processes in an Empirical Study
For comparison purposes, Model 2 (also reported in Table 4 of the manuscript), Model

2 without a trend effect, and Model 2 without AR(1) effects were fit to the empirical data.
Results are presented in Table A.1. Statistical inference for the experimental condition
effects did not differ between Model 2 and Model 2 without the trend effect, although Model 2
(AIC=180262; BIC=180554) fits better than Model 2 without the trend effect (AIC=182397;
BIC=182664). However, statistical inference differs between Model 2 and Model 2 without
the AR effects and Model 2 (AIC=180262; BIC=180554) fits much better than Model 2
without the AR effects (AIC=1711679; BIC=1711861). Compared to the results of Model
2, Model 2 without AR effects exhibited larger effects of trend and experimental condition,

and a significant effect of the second condition contrast (Privileged covariate).
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Table A.1 Estimates (Standard Errors) of the Dynamic IRTree Model for an Empirical Study

91

Model 2

Model 2 without trend

Model 2 without AR(1)

Node 1 Node 2

Node 1

Node 2

Node 1

Node 2

Fixed Effects

Intercept|vy1]
AR(1)ylag[A]
Trend[(]
Privileged[vy2]
Contrast[vs]

0.095(0.021)
4.181(0.013)
0.006(0.000)

0.005(0.021)
0.050(0.013)

1.813(0.052)
5.173(0.031)
0.031(0.001)
0.071(0.046)
-0.386(0.034)

0.100(0.020)
4.210(0.013)

0.005(0.021)
0.048(0.013)

1.150(0.038)
5.070(0.028)

0.073(0.046)
-0.314(0.033)

-0.259(0.041)

0.016(0.000)
0.018(0.005)
0.132(0.003)

1.211(0.071)

0.021(0.000)
0.188(0.009)
-0.607(0.007)

Model 1 Model 2 Model 3

SD Corr SD Corr SD Corr
Random Effects
Trial (X1)
Node 1(87;41) - - -
Node 2(8;;42) 0.094 - 0.000 - 0.436
Person (X3)
Node 1:Intercept[6;1]) 0.172 0.167 0.356
Node 2:Intercept[6;2]) 0.267 0.705 0.167 0.945 0.368 0.358
Node 1:AR(1)ylag[A1,1] 0.115  -0.360  -0.180 0.112  -0.279  -0.045 - -
Node 2:AR(1)ylag[A1 ;2] 0.227  -0.141  -0.246  0.927 0.204  0.033  0.265  0.950 - -
Item (X3)
Node 1:Intercept[B;1]) 0.127 0.120 0.280
Node 2:Intercept[B;2]) 0.383 0.410 0.256 0.439 0.578 0.305
AIC 180287 182397 1711679
BIC 180579 182664 1711861

Note. - indicates that an effect is not modelled; Values in bold indicates significance at the 5% level for fixed effects.



Model Comparisons regarding Linear and Quadratic Trend Effects in an Empirical Study
We added a quadratic effect to Model 2 (called Model 2-Quadratic) to investigate un-
modelled trend effects with the linear trend effect only. As presented in Table A.2, results of
Model 2 and Model 2-Quadratic are similar and the fixed quadratic trend estimate is near
0.

Table A.2 Estimates (Standard Errors) of the Dynamic IRTree Model for an Empirical Study
with a Quadratic Trend Effect

Model 2 Model 2-Quadratic
Node 1 Node 2 Node 1 Node 2
Fixed Effects
Intercept|y1] 0.095(0.021) 1.313(0.052) 0.190(0.023) 1.135(0.055)
AR(1)ylag[A] 4.181(0.013) 5.173(0.031) 4.181(0.013) 5.151(0.031)
LinearTrend[(1] 0.006(0.000) 0.031(0.001) 0.006(0.000) 0.030(0.001)
QuadraticTrend[(2] - - -0.00009(0.00001) 0.00023(0.00002)
Privileged|[vys] 0.005(0.021) 0.071(0.046) 0.005(0.021) 0.064(0.047)
Contrast[ys] 0.050(0.013) -0.386(0.034) 0.050(0.013) -0.386(0.034)
Model 2 Model 2-Quadratic
SD Corr SD Corr
Random Effects
Trial (31)
Node 1(67541) - -
Node 2(8;2) 0.094 0.126
Person (Xg)
Node 1:Intercept[6;1]) 0.172 0.172
Node 2:Intercept[6;2]) 0.267 0.71 0.275 0.67
Node 1:AR(1)ylag[X1,1] 0.115 -0.36  -0.18 0.115 -0.37  -0.15
Node 2:AR(1)ylag[A1}z] 0.227 -0.14  -0.25  0.93 0.233 -0.14  -0.26  0.91
Item (X3)
Node 1:Intercept[8;1]) 0.127 0.127
Node 2:Intercept[B3;2]) 0.383 0.41 0.389 0.38

Note. - indicates that an effect is not modelled; Values in bold indicates significance at the 5% level for fixed effects.

17



Results of the Simulation Study
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Table A.3 Results of the Dynamic IRTree Model for the Simulation Study: Question (c)

Model 3 (True) Model 2 (Misspecified)

Bias RMSE  SD M(SE) Bias RMSE SD  M(SE)
Fixed Effects
Node 1:Intercept[y11] 0.000 0.019 0.019 0.019 0.000 0.019 0.019 0.019
Node 2:Intercept|y12] 0.006 0.046  0.046 0.045 0.004 0.045 0.045 0.045
Node 1:AR(1)ylag[A1] - 0.000  0.002 0.002  0.002
Node 2:AR(1)ylag[2] - 0.000  0.005 0.005  0.004
Node 1:Trend[¢1] - 0.000 0.000 0.000 0.000
Node 2:Trend[(2] - 0.000 0.000 0.000 0.000
Node 1:Privileged[y21] 0.001 0.005  0.005 0.005 0.001 0.005 0.005 0.005
Node 2:Privileged[y22] 0.001 0.009  0.009 0.009 0.001 0.009 0.009 0.009
Node 1:Contrast[vy31] 0.000 0.003  0.003 0.003 0.001 0.003 0.003 0.003
Node 2:Contrast[y32] 0.001 0.007  0.007 0.007 0.001 0.007 0.007 0.007
Random Effects
Trial (X1)
Node 2:Intercept[d;;;2] -0.085 0.085 -0.085 0.085
Person (32)
Node 1:Intercept[f;1]) 0.000 0.004 0.000 0.004
Node 2:Intercept[f;2]) -0.001 0.009 0.000 0.009
Node 1:AR(1)ylag[A11] - 0.000 0.000
Node 2:AR(1)ylag[Aj2] - 0.000  0.000
Covariance(s) 0.000 0.005 0.000 0.001
Item (33)
Node 1:Intercept[B;1]) 0.000 0.002 0.000 0.002
Node 2:Intercept[B;2]) 0.000 0.018 -0.001 0.018
Covariance 0.000 0.005 0.000 0.005

Note. - indicates that an effect is not modelled; SD indicates the standard deviations of the estimates across 200 replications;
SE indicates the mean standard error estimates across 200 replications, which are available for the fixed effects; average bias
and RMSE across covariances of random person effects are reported.
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Table A.4 Results of the Dynamic IRTree Model for the Simulation Study: Question (d)

Model 4 (True) Model 2 (Misspecified)

Bias RMSE  SD M(SE) Bias RMSE SD  M(SE)
Fixed Effects
Node 1:Intercept[y11] 20.001  0.025 0.025  0.023 20106 0.108 0022  0.021
Node 2:Intercept[y12] -0.003 0.055  0.056 0.054 0.182 0.191 0.058 0.051
Node 1:AR(1)ylag[A1] -0.002  0.012 0.012  0.013 -0.016  0.020 0.012  0.012
Node 2:AR(1)ylag[A2] -0.002 0.033 0.033 0.034 0.052 0.063 0.035 0.034
Node 1:LinearTrend[¢11] 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000
Node 2:LinearTrend[¢12] 0.000 0.001  0.001 0.001 0.003 0.003 0.001 0.001
Node 1:QuadraticTrend[¢21] 0.000 0.000  0.000 0.000 -
Node 2:QuadraticTrend[(22] 0.000 0.000  0.000 0.000 -
Node 1:Privileged[y21] 0.003 0.020  0.020 0.020 0.003 0.018 0.018 0.020
Node 2:Privileged[y22] 0.008 0.033  0.032 0.035 0.006 0.034 0.034 0.034
Node 1:Contrast[vy31] 0.001 0.013 0.013 0.013 0.001 0.013 0.013 0.013
Node 2:Contrast[ys2] 0.002  0.022 0.022  0.022 0.003  0.026 0.022  0.022
Random Effects
Trial (X1) -0.086 0.086 -0.087 0.087
Node 2:Intercept[d;;;2]
Person (22)
Node 1:Intercept[f;1]) 0.000 0.005 0.000 0.006
Node 2:Intercept[f;2]) 0.001 0.021 -0.007 0.021
Node 1:AR(1)ylag{A11] 0.000  0.003 0.000  0.003
Node 2:AR(1)ylag[A1 2] 0.007  0.020 0.010  0.024
Covariances 0.000 0.007 0.001 0.006
Item (23)
Node 1:Intercept[B;1]) 0.000 0.003 0.000 0.003
Node 2:Intercept[B;2]) -0.003 0.026 -0.006 0.024
Covariance 0.001 0.007 0.000 0.006

Note. - indicates that an effect is not modelled; SD indicates the standard deviations of the estimates across 200 replications;
SE indicates the mean standard error estimates across 200 replications, which are available for the fixed effects; average bias
and RMSE across covariances of random person effects are reported.
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Patterns of Trends, Autocorrelations, and Partial Autocorrelations
We provided the patterns of the trend, autocorrelation, and partial autocorrelation in
the presence of trend and AR(1) (Model 2 in Table 4 of the manuscript), trend only (Model
2 without the AR(1) effects), and AR(1) only (Model 2 without the trend effect) using
50 simulated data sets under the dynamic IRTree model. Estimates reported in Table A.1

were considered true parameters. In order to explore change processes, logit-transformed

Pyjr
1_Ptjr'

proportion measures for each person j at a time point ¢ (In ) and logit-transformed

measures (called empirical logit) for each item i at a time point ¢ (ln%) were calculated

based on binary response y;‘ljir for each node in the tree. The P, and P, were calculated
as follows: Py, = (3F SO0, Yijir)/ L1 and Py, = (>F Z}]:1 Yijir)/LJ. We found similar
patterns in the trend, autocorrelation, and partial autocorrelation for persons, items, and
nodes, across 50 replications. Thus, below, we present the patterns for persons at Node
1 from one replication data set. Individual differences in the trend, autocorrelation, and
partial autocorrelation were presented using box plots on the figure. For example, in the
figures on the top panel, there are 112 box plots (for 112 time points).

When there is trend in time series, the autocorrelations for small lags tend to be large
and positive because observations nearby in time are also close by in size (Chatfield, 2004).
Thus, they have positive values that slowly decrease as the lags increase. We observed the
same pattern in our study. The partial autocorrelations can be used to investigate the order
of AR. As shown in Figure A.5, there are distinct patterns in the trend, autocorrelation,
and partial autocorrelation in the presence of trend and AR(1), trend only, and AR(1) only.

e When there are trend and AR(1) (as in our empirical study), the following is observed:
(a) the linear pattern is observed in the time series plot (although there is some deviance
from the linear function in the first few time points), (b) the autocorrelations for small lags

are large and positive and they slowly decreased, and (c) the partial autocorrelations with



the order of 1 are clearly larger than 0 and those with a larger lag are nearly 0.

e When there is trend only, the following patterns are evident: (a) the linear pattern is
observed in the time series plot, (b) the autocorrelations are large and positive and slowly
decreases, and (c) the partial autocorrelations are large and positive for small lags (unlike
in the presence of AR).

e When there is AR only, the patterns are: (a) although there is some increasing pattern
in first few time points, overall pattern is that there is no clear increasing or decreasing
pattern over time, (b) the autocorrelation exponentially decreases to 0 as the lag increases
(unlike in the presence of trend), and (c) the partial autocorrelations with the order of 1
are clearly larger than 0 and those with a larger lag are nearly 0 (unlike in the presence of
trend).

Although these results are based on a limited condition similar to our empirical study,
similar patterns in the autocorrelation and partial autocorrelations were found regarding the
presence of trend and AR (e.g., Chatfield, 2004) corroborating our diagnostic approach. In
the time series plot, the shape of the change pattern can be observed. As shown in the
simulation study, ignoring small deviations from the overall trend pattern (i.e., the linear

pattern) did not lead to biased results for the experimental condition effects.
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Figure A.6 Patterns of trends, autocorrelati

ons, and partial autocorrelations.



Comparability between Laplace Approximation and Bayesian Analysis
for the Dynamic IRTree Model

In this section, we provide comparability of estimates and statistical inference between
Laplace approximation implemented in the glmer function and Bayesian analysis using Stan
(Carpenter et al., 2017).
Bayesian analysis. The rStan (an R package that interfaces with Stan in R) is recently
developed software implementing the no-U-turn sampler (Hoffman & Gelman, 2014), which
is an extension to the Hamiltonian Monte Carlo (HMC; Neal, 2011) algorithm. Prior and

hyper-prior distributions were specified in rStan as follows:

Ar ~ N(0,1,000),

¢, ~ N(0,1,000),

v ~ N(0,1,000),
Yiaxy ~ Cauchy(0,5),

Youxay ~ Inverse — Wishart(4,14),
and
Y3x2) ~ Inverse — Wishart(2,I5).

In the inverse-Wishart distributions, Ip indicates the unit matrix of size D and the degrees
of freedom v is set to D as the rank of the random effects to represent vague prior knowledge.

Stan code for Model 2 is written as follows:

data {

int R // number of observations
int T; // number of trials

int J; // number of persons

int I; // number of items

int trialnum[R]; // trial indicator
int subject[R]; // person indicator
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int item1[R]; // item indicator

int nodel[R]; // Node 1 indicator

int node2[R]; // Node 2 indicator

real privilegedi[R]; // independent variable
real contrast([R]; // independent variable
real ctimel[R]; // independent variable
int clagl[R]; // lag

int<lower=0, upper=1> c[R]; // dependent variable

vector[4] Zerol;
matrix[4,4] Omegal;

vector[2] Zero2;
matrix[2,2] Omega2;
}

parameters {
//fixed
vector[2] zeta;
vector[2] gammal;
vector[2] gamma2;
vector[2] gamma3;
vector[2] gamma4;

//random
real deltalT];
real<lower=0> sigmat;

vector[4] thetal[J]; // [J,4] dim matrix for theta
cov_matrix[4] Rth;

vector[2] betalIl; // [1,2] dim matrix for beta
cov_matrix[2] Rbe;
}
model {
//priors
zeta  ~ normal(0,1000);

gammal ~ normal(0,1000);
gamma2 ~ normal(0,1000);
gamma3 ~ normal(0,1000);
gamma4 ~ normal(0,1000);

sigmat ~ cauchy(0,5);
Rth ~ inv_wishart(4, Omegal);
Rbe ~ inv_wishart(2, Omega2);
//random effects
for (t in 1:T) deltal[t] ~ normal(0, sigmat);
for (j in 1:J) {
thetal[j] ~ multi_normal(Zerol, Rth);
}
for (i in 1:I){

betal[i]l ~ multi_normal(Zero2, Rbe);
}

for (r in 1:R){
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clrl -~

bernoulli_logit ((
(gammal[1]+gamma2[1]*clagl [r]+gamma3 [1]*privilegedl [r]+gammad [1]*contrast [r]+zeta[1]*ctimel[r])*nodel [r]+
(gammal [2] +gamma2 [2] *clagl [r] +gamma3 [2] *privilegedl [r] +gamma4 [2] *contrast [r]+zeta[2] *ctimel [r])*node2 [r]+
( theta[subject[r],1]+thetalsubject [r],3]*clagl[r]l+betaliteml[r],1])*nodel[r] +
(deltaltrialnum[r]] +theta[subject[r],2]+thetalsubject[r],4]l*clagl[r]+betaliteml[r],2])*node2[r]));

}
}

For convergence diagnostics, the potential scale reduction factor (PSRF; Gelman & Ru-
bin, 1992) was considered with two chains, and the PSRF value of 1.01 was used as a threshold
to indicate model convergence (Gelman et el., 2014). In the selected model, significance of
fixed effects was tested using a 95% highest posterior density (HPD) interval. When the
HPD interval did not include 0, the fixed effects were considered significantly different from
0.

Results. 3,000 iterations were run and the first 100 iterations were discarded as a burn-in
period. About 172 hours (user time in R) were required on a 2.81GHz computer with 16.0
GB of RAM to obtain the 3,000 iterations with the two chains. As posterior moment, the
posterior mean and the standard deviation are reported because the posterior distribution
is symmetric. Because Stan output provides results up to the second decimal points, results
from glmer rounded up to two decimal points are reported. As shown in Table 1, estimates
and statistical inference of fixed effects from Bayesian analysis and Laplace approximation

are comparable.
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Table A.5 Comparability of Estimates (Standard Error) [HPD Interval] and Statistical In-
ference between Bayesian Analysis and Laplace Approximation for Model 2 in Table 4

Bayesian Laplace
Node 1 Node 2 Node 1 Node 2
Fixed Effects
Intercept|vy1] 0.10(0.02)[0.05,0.15] 1.34(0.05)[1.23,1.44] 0.10(0.02) 1.31(0.05)
AR(1)ylag[Ay] 4.19(0.02)[4.16,4.22] 5.23(0.03)[5.16,5.29] 4.18(0.01) 5.17(0.03)
Trend[(] 0.01(0.00)[0.01,0.01] 0.03(0.00)[0.03,0.03] 0.01(0.00) 0.03(0.00)
Privileged|[v2] 0.00(0.02)[-0.04,0.04] 0.07(0.05)[-0.02,0.16] 0.01(0.02) 0.07(0.05)
Contrast[v3] 0.05(0.01)[0.03,0.08]  -0.38(0.03)[-0.45,-0.32] 0.05(0.01) -0.39(0.03)
Bayesian Laplace
SD  Corr SD  Corr
Random Effects
Trial (X1)
Node 1(6ljbl) - -
Node 2(5lji2) 0.11 0.09
Person (22)
Node 1:Intercept[6;1]) 0.20 0.17
Node 2:Intercept[f;2]) 0.30  0.67 0.27  0.71
Node 1:AR(1)ylag[A1;1] 0.17 -0.29 -0.20 0.12 -0.36 -0.18
Node 2:AR(1)ylag[A1;2] 0.26 -0.19 -0.13 0.90 0.23 -0.14 -0.25 0.93
Item (23)
Node 1:Intercept[B;1]) 0.15 0.13
Node 2:Intercept[B;2]) 041  0.42 0.38  0.41

Note. - indicates that an effect is not modelled; Values in bold indicates significance at the 5% level for fixed effects.
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