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1. Technical proofs

Proof of Proposition 1. By the assumed conditional independence, we

have for x1, x2, . . . , xd ∈ {0, 1} that

P (∩1≤i≤d{Xi = xi}) = EP (∩1≤i≤d{Xi = xi}|f) = E
∏

1≤i≤d

P (Xi = xi|f).

By Assumption 1 (2), we have

(1) πi(f) = H(ζi) =

∫
R
I{z ≤ ζi}h(z) dz.

For xi ∈ {0, 1}, we have

P (Xi = xi|f) =

{
πi(f), if xi = 1

1− πi(f), if xi = 0
.

Using eq. (1) and that
∫
R h(z) dz = 1, we see

1−πi(f) =

∫
R
[1−I{z ≤ ζi}]h(z) dz =

∫
R
I{z > ζi}h(z) dz =

∫
R
I{z ≥ ζi}h(z) dz

where the last equality follows since h is a density. With the standard

convention that the product over the empty set is the multiplicative
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identity, we therefore have that

∏
1≤i≤d

P (Xi = xi|f) =

( ∏
i:xi=1

πi(f)

) ∏
j:xj=0

[1− πj(f)]


=

( ∏
i:xi=1

∫
R
I{zi ≤ ζi}h(zi) dzi

) ∏
j:xj=0

∫
R
I{zj ≥ ζj}h(zj) dzj


=

( ∏
i:xi=1

∫
R
I{(−1)1−xizi ≤ (−1)1−xiζi}h(zi) dzi

)

×

 ∏
j:xj=0

∫
R
I{(−1)1−xjzj ≤ (−1)1−xiζj}h(zj) dzj


=

d∏
i=1

∫
R
I{(−1)1−xizi ≤ (−1)1−xiζi}h(zi) dzi

where the second to last equality uses that for xj = 0 we have (−1)1−xjzj ≤
(−1)1−xiζj ⇐⇒ (−1)zj ≤ (−1)ζj ⇐⇒ zj ≥ ζj.

Hence,

E
∏

1≤i≤d

P (Xi = xi|f) = E
d∏

i=1

∫
R
I{(−1)1−xizi ≤ (−1)1−xiζi}h(zi) dzi

= E
∫
Rd

[
d∏

i=1

I{(−1)1−xizi ≤ (−1)1−xiζi}][
d∏

i=1

h(zi)] [
d∏

i=1

dzi]

=

∫
Rd

∫
Rd

[
d∏

i=1

I{(−1)1−xizi ≤ (−1)1−xiyi}][
d∏

i=1

h(zi)] [
d∏

i=1

dzi]dG(y1, . . . , yd)

where G is the CDF of (ζ1, . . . , ζd)
′. Recall that Z1, Z2, . . . , Zd are inde-

pendent from ζ, and further that Z1, Zd, . . . , Zd are IID with marginal

distribution H. Considering the above integral, we have

E
∏

1≤i≤d

P (Xi = xi|f) = P (∩1≤i≤d{(−1)1−xiZi ≤ (−1)1−xiζi})

= P (∩1≤i≤d{(−1)1−xiZi − (−1)1−xiζi ≤ 0})

= P (∩1≤i≤d{(−1)1−xi(Zi − ζi) ≤ 0}).
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Now consider

X = (X1, . . . , Xd)
′ = (I{Z1 − ζ1 ≤ 0}, . . . , I{Zd − ζd ≤ 0})′ .

We have

X1 = 0 ⇐⇒ Z1 − ζ1 > 0 ⇐⇒ (−1)(Z1 − ζ1) < 0,

X1 = 1 ⇐⇒ Z1 − ζ1 ≤ 0,

which shows thatX is a stochastic representation of the IRT model. �

We now prove Lemma 2 and 3 in detail. Please note that the length

of the following proofs is mainly due to our desire to give a as reader

friendly presentation as possible. The material applies standard prob-

ability theory, and does not contain technical innovations.

Complete proof of Lemma 2. The start of the proof consists of setting

up and understanding certain structures that will be used in construct-

ing a density with the required properties. These structures are illus-

trated in a simple setting in an example given immediately after the

present proof.

By Lemma 1, we may without loss of generality assume that ξ = X,

and that the thresholds are x1, x2, . . . , xK for each coordinate. Let

us here note, since it will be relevant later in the proof, that since

we use the same thresholds for all coordinates, there may be certain

combinations of values that occur with zero probability. For example,

if e.g. X1 is dichotomous, while X2 is trichotomous, we would still

have thresholds x1 = 0, x2 = 1, x3 = 2, but there is no probability that

X1 = 2.

Each Xi may take on values in the set SX = {x1, x2 . . . , xK}, so

that X = (X1, X2, . . . , Xd)
′ only takes on values in the set Sd

X , the

d-times Cartesian product of SX , given by Sd
X = ⊗d

j=1SX . Note again

that we do not assume that X takes on all values in Sd
X with positive

probability. Despite this, we will refer to Sd
X as the support of X.

Consider the class of subsets of Rd given by

Q = {⊗d
l=1(xjl , xjl+1] : jl ∈ {0, 1, . . . , K − 1} for l = 1, 2, . . . , d},

where x0 = x1− 1. That is, Q contains the hyper-rectangles contained

between the points of the support Sd
X of X. Note that while it may be
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the case that P (X ∈ Qi) = 0 for some i, such as in the above mentioned

case when X1 is dichotomous and X2 is trichotomous, but all Qi will

have non-empty volume in Rd since it is assumed that x1 < x2 < · · ·xK .

Notice that the finite collection of sets in Q are disjoint, and enumer-

ate them by Q1, Q2, . . . , QN . The union of the elements of Q equals

∪Nj=1Qi = ⊗d
l=1(x0, xK ]. Since x0 = x1 − 1 < x1 we have that the

support of X i.e., Sd
X is contained in ∪Nj=1Qi, i.e., Sd

X ⊆ ∪Nj=1Qi.

Please recall that these definitions are illustrated and the above facts

are verified for a specific case in the upcoming Example 1.

We now define a density f̃ , which smears the probability that X is

in Qi uniformly over each Qi. I.e., we let

f̃(x) =
N∑
i=1

P (X ∈ Qi)

Vi
I{x ∈ Qi},

where I{A} is the indicator function of A, which is one if A is true and

zero otherwise, and, for i = 1, 2, . . . , N we let Vi =
∫
Rd I{x ∈ Qi} dx

which is non-zero.

Hence f̃ is finite and non-negative and is therefore a density if it also

integrates to one, which it is seen to do by∫
Rd

f̃(x) dx =

∫
Rd

N∑
i=1

P (X ∈ Qi)

Vi
I{x ∈ Qi} dx

=
N∑
i=1

P (X ∈ Qi)

Vi

∫
Rd

I{x ∈ Qi} dx =
N∑
i=1

P (X ∈ Qi)

(a)
= P (X ∈ ∪Ni=1Qi) = P (X ∈ ⊗d

j=1(x0, xK ])
(b)
= P (X ∈ Sd

X) = 1,

where (a) uses that (Qi) forms a disjoint sequence and additivity of

probability measures, and (b) uses that X only takes values in Sd
X ,

which is contained in ⊗d
j=1(x0, xK ].

Let ξ̃ have density f̃ . Since ξ̃ has a density with respect to Lebesgue

measure, it is a continuous random vector. We complete the proof

by showing that ξ̃ has the same probability of being in an element in

Q as X does. That is, we show that P (ξ̃ ∈ Qk) = P (X ∈ Qk) for

k = 1, 2, . . . , N . Then ξ̃ is discretize equivalent to ξ = X, since ξ̃ has
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the same probability of being in thresholds defined by the limits of the

rectangles in Qk for k = 1, 2, . . . , N .

Indeed, we have∫
Qk

f̃(x) dx =

∫
Rd

I{x ∈ Qk}
N∑
i=1

P (X ∈ Qi)

Vi
I{x ∈ Qi} dx

=
N∑
i=1

P (X ∈ Qi)

Vi

∫
Rd

I{x ∈ Qk, x ∈ Qi} dx.

Since (Qi) is a disjoint sequence, we have that I{x ∈ Qk, x ∈ Qi} =

I{x ∈ Qk}I{i = k}, showing∫
Qk

f̃(x) dx =
N∑
i=1

I{i = k}P (X ∈ Qi)

Vi

∫
Rd

I{x ∈ Qk} dx

=
P (X ∈ Qk)

Ik

∫
Rd

I{x ∈ Qk} dx = P (X ∈ Qk).

Hence, ξ̃ has the same probability of being in Qk as X and the proof

is complete. �

Example 1. We here include an illustration of the quantities de-

fined in Lemma 2 for the bivariate case d = 2 with dichotomous obser-

vations, i.e., K = 2, and, say, x1 = 0, x2 = 1. Then Q contains sets

of the form (xj1 , xj1+1]⊗ (xj1 , xj1+1] where j1 ∈ {0, 1} and j2 ∈ {0, 1}.
This means Q = {Q1, Q2, Q3, Q4} with

Q1 = (−1, 0]⊗ (−1, 0], Q2 = (−1, 0]⊗ (0, 1]

Q3 = (0, 1]⊗ (−1, 0], Q4 = (0, 1]⊗ (0, 1].

Note that (Qi) forms a disjoint sequence. Indeed, suppose x ∈ Q1.

Then x = (x1, x2) where −1 < x1 ≤ 0 and −1 < x2 ≤ 0. Clearly x

cannot be in either Q2, Q3 or Q4, since at least one of the coordinate

values are incompatible with such a membership. Indeed, consider Q2.

While the value of x1 is compatible with being in Q2, the value of x2
implies that it is impossible that x is a member of Q2.

The support of X is S2
X = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and

we see the correspondence between Q and S2
X given by

(0, 0) ∈ Q1, (0, 1) ∈ Q2, (1, 0) ∈ Q3, (1, 1) ∈ Q4.
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It is further clear that ∪4i=1Qi = (−1, 1]⊗ (−1, 1], and so that we also

see that S2
X ⊆ ∪4i=1Qi. �

Complete proof of Lemma 3. We argue for each coordinate 1 ≤ i ≤
d separately. Since the upcoming argument holds simultaneously for

all coordinates, the multivariate conclusion follows. By Lemma 2, we

may assume that ξ is a continuous random vector. Hence, each Fi is

continuous and increasing, though not necessarily strictly increasing.

This necessitates the use of heavier theory than would be required if

Fi was strictly increasing. In the strictly increasing case, our argument

reduces to the one given the main paper.

Recall the definition of the left continuous inverse, as e.g., described

in Rüschendorf (2009) and Shorack & Wellner (2009, Chapter 1), given

by

F−1i (t) = inf{x : Fi(x) ≥ t} for 0 < t < 1.

Define Ui = Fi(ξi). Since Fi is continuous, Proposition 2.1 of Rüschendorf

(2009) shows that ξi = F−1i (Ui) almost surely, and that Ui ∼ U [0, 1]

where U [0, 1] is the uniform distribution on the unit interval. We may

therefore assume that ξi = F−1i (Ui), that is, ξi = F−1i (Fi(ξi)), a trivial

equality in the strictly increasing case. We therefore have

Xi =
K∑
j=1

xjI{τi,j−1 < ξi ≤ τi,j} =
K∑
j=1

xjI{τi,j−1 < F−1i (Ui) ≤ τi,j}.

Theorem 1 and eq. (23) both in Shorack & Wellner (2009, Chapter 1)

shows that for any cumulative distribution function G, any 0 < t < 1

and numbers x1, x2 we have

(2) x1 < G−1(t) ≤ x2 ⇐⇒ G(x1) < t ≤ G(x2).

Using this result for G = Fi gives

Xi =
K∑
j=1

xjI{τi,j−1 < F−1i (Ui) ≤ τi,j} =
K∑
j=1

xjI{F1(τi,j−1) < Ui ≤ F1(τi,j)}.
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We then again use eq. (2) but now with G = Φ, the cumulative distri-

bution function of the standard normal, and see that

Xi =
K∑
j=1

xjI{F1(τi,j−1) < Ui ≤ F1(τi,j)}

=
K∑
j=1

xjI{Φ−1[F1(τi,j−1)] < Φ−1[Ui] ≤ Φ−1[F1(τi,j)]}

=
K∑
j=1

xjI{τ̃i,j−1 < ξ̃i ≤ τ̃i,j}

where τ̃i,j−1 = Φ−1(Fi(τi,j−1)), and τ̃i,j = Φ−1(Fi(τi,j)), and where

ξ̃i = Φ−1(Ui). Since Ui ∼ U [0, 1] we have that Φ−1(Ui) is standard

normal, and the conclusion follows. We note that the only property of

Φ we used was that it was a cumulative distribution function. By the

above argument, the marginals can be transformed to any distribution

function, including discrete or continuous distributions with atoms.

This follows from the uniformity of Ui and Theorem 1 of Shorack &

Wellner (2009, Chapter 1), where it is in general established that when

Ui ∼ U [0, 1], we have G−1(Ui) ∼ G for any cumulative distribution

function G. �
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